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Abstract. We show some combinatorial and algorithmic results concerning finite 
sets of lines and terrains in 3-space. Our main results include: 

(1) An O(n32 c l 'fi~) upper bound on the worst-case complexity of the set of lines 
that can be translated to infinity without intersecting a given finite set of n lines, 
where c is a suitable constant. This bound is almost tight. 

(2) An O(nl 5 + ~) randomized expected time algorithm that tests whether a direction 
v exists along which a set of n red lines can be translated away from a set of n blue 
lines without collisions, s > 0 is an arbitrary small but fixed constant. 

(3) An O(n32 c ~4~/~) upper bound on the worst-case complexity of the envelope of  
lines above a terrain with n edges, where c is a suitable constant. 

(4) An algorithm for computing the intersection of two polyhedral terrains in 
3-space with n total edges in time O(n 4/a +~ -1- kl/3n 1 +~ + k log 2 n), where k is the size 
of the output, and e > 0 is an arbitrary small but fixed constant. This algorithm 
improves on the best previous result of Chazelle etal.  [5]. 

The tools used to obtain these results include Pliicker coordinates of lines, random 
sampling, and polarity transformations in 3-space. 

1. Introduction 

I t  is a c o m m o n  pa t te rn  in computa t iona l  geometry  that  the combina tor ia l  
s t ructure of  a p rob lem is the main  ingredient  for the design of  an efficient 
a lgor i thm.  Thus it is impor t an t  to derive good  combina to r i a l  bounds  for the 
quanti t ies  of  interest  in three-dimensional  problems.  Results in three-dimensional  
compu ta t i ona l  geomet ry  are  still much fewer than  those for s imilar  p roblems  cast 

* A preliminary version of this work appeared in the Proceedings of the 9th ACM Symposium on 
Computational Geometry, pp. 19-28. 
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in two-dimensional space. One of the reasons for this state of affairs is that the 
combinatorial properties of lines and other one-dimensional objects in 3-space are 
not well understood. In a seminal paper of 1989 [5] Chazelle et al. use in an 
orginal way a range of techniques (Pliicker coordinates of lines, geometric random 
sampling, segment trees) and obtain bounds on the complexity of certain con- 
figurations of lines in 3-space as well as efficient algorithms for solving problems 
on polyhedral terrains. This paper is in the same line of research and it aims at 
improving bounds on the combinatorial structure of sets of lines, and algorithms 
for three-dimensional translation and intersection problems. 

1.1. Complexity of Sets of Lines lnduced by a Finite Set of Lines 

Using Pliicker coordinates of oriented lines in projective 3-space it is quite easy 
to define a topology on the set of oriented spatial lines (see, e.g., pp. 24-25 [3]). 
Consequently, we can define paths of lines and other topological concepts for sets 
of lines. A given finite set L of n lines in 3-space induces a decomposition of the 
set of spatial lines ~ into isotopy classes. Two lines are in the same isotopy class 
if a continuous path (of lines) having the two given lines as extremes exists, 
such that any line on the path does not intersect any line of the given finite set. 

We investigate worst-case upper bound on the combinatorial complexity of the 
following classes of lines: 

(i) M(L) c L# is the set of lines in R 3 that do not intersect any line in L. 
(ii) I(L) c M(L) is a connected component of M(L) (i.e., an isotopy class of 

missing lines). 
(iii) F(L) c M(L) is the set of free lines in R 3 with respect to L (i.e., the set of 

lines in M(L) that can be translated in some direction to infinity without 
collisions with elements of L). 

These classes arise naturally in three-dimensional visibility and translation 
problems. 

In the topology of lines derived by the Pliicker coordinates these sets are open 
sets. For  any of the above-mentioned sets of lines its complexity can be expressed 
as the number of extremal lines in the closure of the set. A line is extremal when 
it is incident to four lines in L. We denote with I QI the complexity of the set Q. 
For a given finite set L of n lines the following bounds are known: II(L)I = | 2) 
and IM(L)I = | 4) [5]. There is an O(n 3) upper bound for the lines vertically 
above L, which matches a cubic worst-case lower bound [5]. Clearly, a line l e L# 
vertically above any line in L can be translated to infinity without collisions with 
L along the vertical direction. In the definition of the set F(L) we generalize this 
notion of a collision-free translation by considering translations in any direction. 

3 c logn In Section 2 we prove that IF(L) I = O(n 2 ~Ci~-). This bound is almost tight since 
the f~(n 3) lower bound in [5] holds for IF(L)I. This bound is proved by finding a 
representation for F(L) as a family of O(n 2) polyhedra in Pliicker space which are 
in one-to-one correspondence with the cells of a planar arrangement of n lines. 
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The technique used is similar to one in 1,20] and the main novelty is in the 
reduction of the problem to this special representation. A recent method of 
Agarwal [1] together with the reduction shown in this paper implies a slightly 
tighter bound IF(L)I = O(n 3 log n). 

1.2. Collision-Free Translations of  Lines 

Translation of polyhedral objects without collisions is an important problem in 
robotics and CAD/CAM in relation to the assembly of objects composed of 
polyhedral parts 1-15]. General versions of the assembly problems for polyhedra 
in 3-space can be PSPACE-hard [15]. In this paper we discuss some restricted 
types of assembly problems for which we can design efficient algorithms. We 
consider a finite set A of n red lines and a finite set B of n blue lines, and we ask 
for a direction v, if it exists, such that we can translate A simultaneously in direction 
v without collision with B. We give in Section 3 a nontrivial algorithm that finds 
a feasible direction in time 10(n 15 +9. The algorithm for this translation problem 
relies heavily on the upper bound obtained for I F(A)I. The general approach is to 
build a fast data structure to test whether a line 1 E B is in F(A) and then trade 
off the query time and preprocessing time of the algorithm. This general approach 
is now somewhat standard. What makes this algorithm interesting is that the 
queries are not answered independently. We need to maintain a "coherence" 
among the different answers since in general two lines can be free for A but in 
different directions. 

Although sets of lines are not usually found per se in application problems, it 
is important to be able to solve efficiently the problem restricted to lines as a 
subroutine for conceivable algorithms solving more practical versions of the 
problem involving polyhedra. 

For a survey of results on the translation problem for planar sets we refer the 
reader to 1-24]. At the moment, efficient algorithms in 3-space are known only for 
translating convex polyhedra. Given two convex polyhedra with n edges each, the 
translation problem can be solved in time O(n) 1-16]. If instead we are given two 
simple polyhedra with n edges each, an algorithm in 1,17] solves the translation 
problem in time O(n 4 log n). 

1.3. On the Line-Envelope o f  a Terrain 

In the second part of this paper we consider a class of polyhedral objects that are 
useful in modeling actual physical data (e.g., geographical information, surfaces of 
objects): polyhedral terrains. A polyhedral terrain is the graph of a piecewise linear 
bivariate function. For  a polyhedral terrain P with n edges, we show in Section 4 
that the set M(P) c .Sf of lines missing P has complexity [M(P)[ = O(na2C ICi~'~). 

1 Here and throughout the paper we denote with e a positive real parameter independent of n that 
we can choose arbirarily small. The multiplicative constants in the big-Oh notation may depend on e 
and in such a case they tend to infinity when e tends to zero. 
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The boundary of M(P) is also called the line-envelope of P. We give a remarkably 
simple proof of this bound based on the property of lines stabbing convex 
polyhedra. This bound has been obtained independently in [11] by using a more 
general and much more complex technique. Previously, only the naive O(n*) upper 
bound was known. An f~(n2~(n)) lower bound for IM(P)I is shown in [11]. Again, 
the counting method of Agarwal [1] together with the reduction shown in this 
paper implies a slightly tighter bound ]M(P)I = O(n 3 log n). 

1.4. Intersection o f  Polyhedral Terrains 

Computing the intersection of polyhedra in 3-space is a basic problem in computa- 
tional geometry [21], [9] and has immediate applications, for example, in 
computing the interference of polyhedral mechanical parts. In Section 5 
we give an efficient output-sensitive algorithm which has two polyhedral 
terrains on complexity n as input and produces their intersection in time 
O(n ~/3+~ + kt/3+~nt+e + k log 2 n), where k is the number of edges, vertices, 
and faces of the intersection. The previously asymptotically fastest algorithm 
due to Chazelle et aL has a time bound O(n3/2+~+ k log 2 n) [5]. For the 
range 0 < k < n 3/2 the algorithm we present has a better asymptotic performance 
than the one in [5] and for k > n 3/2 it is as fast. 

As follows from the discussion in [6] and [5], the running time is dominated 
by the time needed to find all intersections of an edge from one terrain with a 
face on the other terrain. The gist of our algorithm is in detecting efficiently those 
edges that do not contribute edge-facet intersections, by using auxiliary data 
structures controlled by a slack parameter. This parameter controls the tradeoff 
between the time spent in setting up the data structures and the time spent in 
using them. The freedom given by the slack parameter is then used during the 
analysis to derive the improved time bound on the running time of the algorithm. 

The paper is organized as follows. In Section 2 we derive a bound on the set 
of free lines induced by lines and in Section 3 we discuss the translation problem 
for two sets of lines in 3-space. In Section 4 we derive a bound for the set of lines 
missing a polyhedral terrain. In Section 5 we present the algorithm for intersecting 
two polyhedral terrains. 

2. Free Lines Induced by Lines 

2.1. Notation and Preliminaries 

Pliicker Coordinates o f  Lines. Let us fix an orthogonal reference frame in 3-space 
with unit vectors (i, j, k) forming a positively oriented triple according to the skew 
rule. A point in this real three-dimensional space has Cartesian coordinates (x, y, z) 
and homogeneous coordinates (xo, xx, x2, x3). The relations between the two 
systems of coordinates are given by the following equations: x = xl/Xo, y = x2/xo, 
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and z = x3 / x  o. Two points a = (x o, x 1, x2, X3) and b = (Yo, Yl, Y2, Y3) in three- 
dimensional homogeneous coordinates define a line l in 3-space. The six quantities 
~u = xiY~ - x y l  for ij = 01, 02, 03, 12, 23, 31 are called Pli icker coordinates of the 
line l (oriented from x to y) [22]. These coordinates are the two-by-two minors 
of the two-by-four matrix formed by the coordinates of the point a (on the first 
row) and b (on the second row). The six parameters are not independent; they 
must satisfy the following equation (whose solution set constitutes the Pliicker 
hypersurface or Klein quadric or Grassman manifold ~ 2  [-23], [22]): 

l-I: ~01~23 + ~02~31 + ~03r = 0. (1) 

The incidence relation between two lines l and l' can be expressed using the 
Pliicker coordinates of l and l'. Let a 1, bl (resp. a2, b2) be two points on l (resp. 
l') oriented as l (resp. l'). The incidence between I and l' is expressed as the vanishing 
of the determinant of a four-by-four matrix whose rows are the coordinates of 
al ,  b~, a2, b2 in this order from top to bottom: 

alo a l l  a12 
blo bl~ b12 

a20 a21 ~22 
b20 b21 b22 

a13 

b13 = 0. 
a23 
b23 

(2) 

If we expand the determinant according to the two-by-two minors of the 
submatrix formed by the coordinate of the points al ,  b~ and the minors of the 
submatrix formed by the points a2, b2, we obtain the following bilinear equation 
in which only Pliicker coordinates are involved: 

r + r + r162 + r162 + r + r = o. (3) 

We introduce a mapping x:l~--,zr(/) which maps an oriented line in R 3 to a 
hyperplane in 2 5 (five-dimensional oriented projective space) whose plane co- 
ordinates are 

(r ~31' r C01, r ~03)" 

A second mapping p: l~--~ p(l) maps a line in R 3 to a point in 2 5 whose coordinates 
are the Pliicker coordinates of I. The incidence relation between the two lines l, l' 
(expressed by (3)) can be reformulated as an incidence relatioin between points 
and hyperplanes in 2 5. Equation (3) can be rewritten as a dot product in the form 
rr(l') �9 p(/) = 0, which is equivalent to requiring point p(/) to belong to hyperplane 
n(l'). Computations that are standard in real spaces can be done in oriented 
projective spaces using techniques in [23]. 

Definition 1. For  any given pair of lines I and 1' the sign of n(l')" p(l) is called the 
Pli icker  relative orientat ion of I and l', denoted by 1 ~ l'. 
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Comput ing  I ~ l' is equivalent to testing the relative position of a Pliicker point 
p(l') with respect to a Pliicker hyperplane n(/). 

The  " A b o v e "  Relation. Given a line l, a vector  v, and a line l' in R 3 we say that  
l is above l' in direction v (namely, above(l, l', v)) if moving l in direction v we 
eventually intersect l'. Note  that  an above(l, l', v) is true if and only if I is free f rom 
l' in direction - v .  Let us define oriented lines, as before, by ordered pairs of points 
in 3-space: l -- (a, b) and l' = (a, b'). The  tsp-relative orientation is the sign of the 
triple scalar product  of  a - b, a' - b', and v: 

tsp(l, 1', v) = sign 
a x - b .  a y - b y  a~-b~, 

r t b z  . a '~-b~  a ' y -by  a~ 
V x 13y V z 

(4) 

We introduce a mapp ing  ~r': l~--~ ~r'(/) which maps  an oriented line in R a to a 
line in ~2  ( two-dimensional  oriented projective space) whose plane coordinates  are 
(a x - bx, by - at,  a~ - b=). A second mapp ing  p':  (l', v ) ~  p'(l', v) maps  a line and a 
vector  in R 3 to a point  in ~ 2  whose coordinates  are 

t t t r ! ! t ! 
[(ay -- br)v z - (a'z - bz)vy, (ax - bx)vz - (a'z - bz)vx, (a; - bx)v~, - (ay - by)vx]. 

The triple scalar product  defined in (4) is equivalent to comput ing  the sign of 
the dot  product  rt'(/), i f(f ,  v), which is equivalent to checking the relative posit ion 
of the point  p'(l', v) with respect to the line n'(/). We denote with G the two- 
dimensional  projective space underlying the codomains  of  the mappings  re' and 
p'. In  the following sections of  this paper  we describe geometric  constructions in 
Pliicker space and on the plane G. The  reason for introducing this parametric plane 
G is embodied  in the next l emma that  links the predicate " a b o v e "  with the relative 
orientat ion in Pliicker space and the tsp-relative or ientat ion on the plane G. 

L e m m a  1 [19]. Considering the signs (+ 1, - 1) as boolean values, a line l is above 
a set L = {ll} of lines with respect to a direction v if and only if the following predicate 
is true: 

A [(li • l) xor tsp(li, l, v)]. (5) 
i 

O u r  aim now is to find a bound  on the descriptive complexity of  the lines 
satisfying formula  (5) for some value of v, with respect to a given finite set of lines 
L. O n  the parametr ic  plane G we have a set of  p lanar  lines {n'(l)lle L} induced 
by L, which form the a r rangement  AG(L). For  each cell c in AG(L) the correspond-  
ing set of Pliicker points  of free lines is defined by an intersection of Pliicker 
half-spaces forming a po lyhedron  KJL)  in Pliicker space. A vertex of Kc(L) is 
called a free vertex. 

The  set F(L) is represented therefore as the intersection of the Pliicker hypersur-  
face with the collection of  polyhedra  in Pliicker space ~g'(L) = {KJL)Ic ~ A~(L)}. 
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Note that the polyhedra in JUg(L) are pairwise disjoint since they are different cells 
in the arrangement of hyperplanes {rt(/)lle L}. A bound on ~clKc(L)l, where the 
operator II counts the faces of any dimension bounding a polytope, implies a 
bound on ]F(L)I. 

2.2. An Upper Bound for }F(L)I 

We now consider a set Lof  lines in general position (i.e., only two lines meet any 
four lines in L) and the corresponding collection J{'(L). A standard perturbation 
argument [9], [5] shows that the maximum complexity of o~((L) is attained by a 
set of hyperplanes in general position (i.e., any five hyperplanes meet in a single 
point). Under this general-position hypothesis we have that any polyhedron Kc(L) 
is simple. From Lemma 2.1 in [4] we have that the number of vertices of a simple 
polyhedron is an upper bound to the number of faces of any dimension bounding 
the polyhedron. We present a proof of a bound on IF(L)] which follows closely 
the proof of an upper bound on the set of lines stabbing n triangles in 3-space [20]. 

We choose in the range [1 .. n] an integer r large enough so that we can use 
the partitioning results in [12] and [7] on the arrangement Ao(L). By these results, 
the plane G is partitioned into a set E~(L) of O(r 2) triangles so that no triangle 
meets more than O(n/r) lines. Let a be one of these triangles on G. We partition 
L into two sets of lines in 3-space: Lout(t7), whose hyperplanes n'(l) do not cut a, 
and L~n(tr), whose hyperplanes n'(/) cut tr. Furthermore, by the properties of the 
part i t ion,  I Lout(O')[ < n and [LiB(if)] < O(n/r). With K,(Lout(tr)) we denote the poly- 
hedron obtained in Plficker space by intersecting half-spaces supported by hyper- 
planes in Hout(a ) = {~(/)ll ~ Lout(a)}, where we choose for each such hyperplane the 
side whose sign is opposite to the sign of n'(/) �9 q, for an (abstract) point q etr  on G. 
Note that we obtain the same polytope for every point q ~ tr, therefore q is chosen 
arbitrarily in constant time. 

Definition 2. Given a set L, a region a, a set Lout(a), and a set Li.(a) defined 
as above, A,(i,j, L) is the set of free vertices incident to i hyperplanes in 
Bout(a ) = {rc(/)l/eLo,t(a)}, incident to j hyperplanes in Hi,(a)= {x(/)l/eLi.(a)}, 
and contained in the closure of K,(Lout(a)). 

Let ~-(n) be the maximum number of free vertices for a set of n lines in general 
position. Let ~ , (n)  be the number of free vertices in K,(Lout(a)) for a ~r e Y~o. We 
will show a uniform upper bound on ~-(n). Suppose without loss of generality 
that L, of size n, attains the maximum value ~-(n). We have 

~ ~ ~-~(n) (6) 
a �9 I](;(L) 

and 

~-.(n) _< lAg(0, 5, L)I + lAg(l, 4, L)i + IA~(2, 3, L)I 

+ lAg(3, 2, L)I + IA,(4, 1, L)I + [A,(5, 0, L)[. (7) 
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Now we bound independently each term in (7): 

1. IA,(5, 0, L)I represents the number of vertices touching five hyperplanes in 
Hout(a ) and in K,(Lout(a)). These vertices are the vertices of K,(Lout(a)). The 
number of such vertices is O(n2), by the Upper Bound Theorem for polytopes 
(see Chapter 6, Theorem 6.12, of [9]). 

2. IA,(4, 1, L)I. These are vertices formed by intersecting an edge of K,,(Lout(a) ) 
with a hyperplane from Hi,(a ). Since there are at most O(n 2) such edges, the 
number of vertices is bounded by O(n3/r). 

3. IA,(3, 2, L)I represents the number of vertices incident to two hyperplanes 
in Hi.(a ) and a two-dimensional face of K,(Lout(~r)). We count these vertices 
by intersecting pairs of hyperplanes in Hi~(a ), thus forming O((n/r) 2) three- 
dimensional subspaces, then we intersect each such subspace with the 
K,(Lout(a)). Each such intersection is a three-dimensional polytope and thus 
has O(n) vertices. The total number of such vertices is thus O(n3/r2). 

4. IA,(2, 3, L)I represents the number of vertices incident to three hyperplanes 
in Hin(cr), two hyperplanes in Hout(O'), and on the boundary of K~(Lo~t(a)). 

Let us consider the family of two-dimensional subspaces S t . . . . .  Sk 
obtained by intersecting every triple of hyperplanes from Hi~(a). Let 
us consider the family of planar polygons P1 . . . . .  Pk where P i =  
S l n Kq(Luut(a)). Each vertex v of P~ can be charged to one of its incident 
edges so that no edge is charged more than once. Let e be an edge of P~ 
and let h be its generating hyperplane in Hout(a ). If we choose any subset 
B c Lout which P'~ = Si c~ K,(B). We can charge this edge e' to one of its 
incident vertices v' such that each vertex is charged no more than once. 

We partition Lout into r disjoint sets BI . . . . .  B, of size at most [-n/r-]. We 
form r sets Qi = Bi u Lin(a ), for i = 1 , . . . ,  r. From the above observations 
we have that each free vertex v in A~(2, 3, L) can be charged to some free 
vertex v' of some Qi in such a way that v' is charged only a constant number 
of times. The maximum number of free vertices for any set of 2n/r lines is 
~q~(2n/r). Therefore r~q~(2n/r) is an upper bound for IA,(2, 3, L)I. 

5. IA,(1, 4, L)] represents the number of vertices touching four hyperplanes in 
Hin(a), one hyperplane in Hout(O'), and incident on  K.(Lout(o')). We partition 
Lou t into r disjoint sets B: . . . . .  B, of size at most Fn/r-]. We form r sets 
Q~ = Bi u Lin(a ), for i = 1 . . . . .  r. We observe that every vertex in A,(1, 3, L) 
is a f ree  vertex fo r  exactly one o f  the sets Bi. The maximum number of free 
vertices for any set of 2n/r lines is ~(2n/r) .  Therefore r~q~(2n/r) is an upper 
bound for [As(l, 3, L)I. 

6. IA,(0, 5, L)I counts the number of extremal free lines for the set Li~(a ) of size 
n/r within K,(Lout(a)). I A,(0, 5, L) I is bounded from above by .,~(n/r). 

We obtain the following recurrence relation: 

St(n) < rZn 2 + n3r + n 3 + r3~(n/r)  + r2~(n/r),  (8) 

where we omit multiplicative constants. Equation (8) is solved in [20]. We obtain 
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the bound ~(n)  = O(n32 c l,/i~) and, as a consequence, the following theorem: 

Theorem 1. Given a set L of n lines in 3-space IF(L)I = O(na2C~) , for  a suitable 
constant c. 

Since the lines in the construction of an upper envelope of lines in [5] are particular 
free lines, the lower bound fl(n 3) in [5] holds for free lines. 

3. Translating Sets of Lines 

Once we know that the set of free lines with respect to L has complexity at most 
O(n3fl(n)) the first algorithmic problem to be addressed is testing a line for 
membership in F(L). 

Definition 3. If a line 1 is free in direction v, then v is a feasible direction for l. 

We state a simple but fundamental lemma: 

Lemma 2. For any line l the set of feasible directions for l with respect to any set 
of lines L is represented on the sphere of directions as a convex wedge which has 
the direction of l as apex. 

Proof Consider lines 11 and 12. The points on the sphere of direction representing 
the directions for which 11 is translated away from l z is a hemisphere whose 
bounding great circle is incident to the direction of In. Thus the feasibility direction 
of lx with respect to a set of lines L is an intersection of hemispheres whose great 
circle is incident to a fixed point. Such intersection is therefore a connected and 
convex spherical wedge. [] 

Conceptually, we want to locate the Pliicker polyhedron in ~ff(L) containing 
the Pliicker point of a query line l, and then use the cell of A~(L) associated with 
that polyhedron to compute the feasible directions for I. On the other hand, it is 
not obvious how to make the construction of ~ff(L) independent from the construc- 
tion of Ao(L), while attaining a roughly cubic time bound. For  this reason we 
propose an approach based on the interleaved construction of ~ ( L )  and Ao(L), 
together with the fast point-location data structures required. 

Theorem 2. Membership in F(L) can be tested in time O(log n) using a data structure 
of size O(n a +~), which is built in O(n 3 +~) expected time. Moreover, the data structure 
returns a constant size representation of the set of all feasible directions for the query 
line. 

Proof. (1) Construction of the data structure. We select a random sample R of L, 
where the size of R is r < n, and we build the planar arrangement AG(R ) on the 
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plane G of the tsp-test, obtaining O(r 2) cells. For each such cell we build the 
corresponding Pliicker polyhedron in 5-space for the lines in R by intersecting 
Pliicker half-spaces. The convex polyhedra in o,~ff(R) are pairwise disjoint and have 
a total of O(r3fl(r)) faces of any dimension. Therefore we can triangulate these 
Pliicker polyhedra obtaining O(r3~(r)) disjoint simplices. From results in [8] on 
the properties of random samples, each simplex is cut by no more than O(n/r log r) 
of the Pliicker hyperplanes corresponding to lines in L, with high probability. Let 
s be a simplex in Pliicker space so generated and let c be the corresponding cell 
in AG(R ). 

We have to consider two phases for each simplex x. Phase (i). Let L~(s) c L be 
the set of lines such that n(/) does not meet s. For these lines the sign of ~(/) with 
respect to s is well defined. We can invert such sign and determine a half-plane 
~'(/) + on the plane G. We take the intersection of these half-planes with the region 
c, and we store such polygon P,. The maximum size of this polygon is O(n). If P~ 
is empty, we mark  s as not-in-F and we finish the preprocessing of s, otherwise 
we go to the next phase. Phase (ii). Let L2(s ) c L be the set of lines such that re(/) 
meets s. From the above discussion this set has size IL2(s)l = O(n/r log r). We deal 
with this set by a recursive call to the construction procedure we are describing. 

The result of the construction is a search tree which we denote with D(L). It is 
easy to see that the time needed to carry to carry on the construction satisfies this 
recurrence: 

T(n) < clr3[3(r)[T(n/r log r) + n log n + n] + c2nr 5, 

where c a and c 2 are constants. By choosing for r a suitable constant value we 
obtain a solution O(n3+~). A similar bound holds for the storage. 

(2) Query algorithm. Using Lemma 2 we can represent the feasible directions 
for I as an interval on a one-dimensional space associated with I. We keep during 
the query the current interval of feasible directions for I which we denote with if(/). 
At the end of the query we return if(/), which will be empty in the case when the 
query line I is not free. Given a query line I we initialize if(/) to [ -  0% + ~ ]  and 
we locate the point p(/) in Pliicker space in o~ff(R) stored at the root of D(L). If p(/) 
does not fall into any simplex, or is within a simplex marked not-F, then we set 
if(/) = J~. If/9(/) is within a simplex s we find the associated polygon Ps. For a 
given line I and a variable v, the locus p'(l, v) is a line in G. Therefore in logarithmic 
time we can check whether this locus meets Ps- If it does not, we set if = ~Z~. If it 
does, we update if(/) by intersecting it with the interval of values of v for which 
p'(l, v) falls within Ps. Then we recurse the query in the data structure associated 
with s. We intersect if(/) with the feasibility interval returned by the recursive call. 
The correctness of the query algorithm derives from the fact that it computes the 
value of formula (5) for the query line. 

If we choose r to be a constant, the query time is O(log 2 n). If we choose r to 
be a small power of n, whose exponent depends on e, we can reduce the query 
time to O(log n) while keeping the preprocessing asymptotically the same function 
of n (e.g., see [20-1 and [18] for details). []  
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3.1. Finding a Feasible Direction 

Given two sets of lines A and B can we separate one set from the other using one 
translation v? This is equivalent to asking whether 

3v I A (l~ O lj) x~ tsp(l~, l~, v) 1" 
l i e A , j ~ B  

In turn this is equivalent to solving IAI IBI linear inequalities, which we can 
solve in time O(IAI I B I) using Megiddo's method for linear programming in linear 
time 1-14]. The discussion of the previous section gives us a first handle to produce 
a subquadratic algorithm. A trivial observation which will become useful is that 
set A is free from B in direction v if and only if B is free from A in direction - v. 
So, when comparing sets A and B we can switch the roles of A and B, but we 
have to take care of the fact that the set of feasible direction obtained is reflected 
with respect to the origin. 

Theorem 3. It is possible to find a feasible direction for two sets of n and m lines 
in time O(na/4m 3/4 +~ + m ~ +~ + n 1 +~), where ~ is an arbitrary small positive real 
constant, and the multiplicative constants may depend on e. 

Proof Let us consider a set A of n lines and a set of B of m lines. The aim of 
the first part  of the algorithm is to produce efficiently for each line in l e A the 
representation if(l) of its wedge of feasible directions. We consider two cases. 

Case 1. Let us suppose that m < n 3. We take a random sample R c B of constant 
size r. We build the planar arrangement AG(R ) on the plane G of the tsp-test, 
obtaining O(r z) cells. For each cell we build the corresponding P1/icker polyhedron 
in 5-space for the lines in R. The convex polyhedra in )~r(R) are all disjoint and 
have a total of O(r3fl(r)) faces of any dimension. Therefore we can triangulate these 
Pliicker polyhedra obtaining O(r3fl((r)) disjoint simplices. 

Let s be a simplex in Pliicker space so generated and let c be the unique 
corresponding cell in Aa(R). For  each simplex s we compute the set A~ of Pliicker 
points of lines in A which are inside s. Let IA(s)l = ns. We define Ll(s) c B and 
L2(s) ~_ B as in the proof of Theorem 2. Let ms = IL2(s) l. From results in [8] on 
the properties of random samples, ms = O(m/r log r) with high probability. 

For  each simplex s we have two phases. As in phase (i) of the proof of Theorem 
2 we construct the polygon Ps using Ll(s). If Ps is empty and ns > 0 we interrupt 
the call returing a negative answer. Otherwise, for each line I e A s, we check 
whether the corresponding locus p'(l, v) on the parametric plane G meets Ps and 
we extract the corresponding interval of directions. We update if(1) by intersecting 
its old value with the new interval. If any interval if(l) is empty we interrupt the 
procedure and return a negative answer. Otherwise we go to the next phase. Phase 
(ii). We recurse the algorithm on the set A s and the set L2(s). The recursive call 
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either returns a negative answer or it returns an interval if(/) for each line of A s. 
We intersect this interval with the one computed previously. If any interval is 
empty we answer negativelY. 

Case 2. Let us suppose now that m > n 3. In this case we call the algorithm of 
Theorem 2, using the lines in A as input and the lines in B as queries. We use 
O(n a§ time to preprocess A and we perform rn queries in O(m log n) time. We 
obtain m linear constraints. The total cost of these operations is O(m 1 +'). We 
obtain for each line of B a feasibility interval with respect to A. Each pair in 
{(l, if(/))l/e B} defines a wedge on the sphere of directions. By intersecting all the 
wedges we obtain a polygon. Each point on the polygon is a direction for which 
B is free from A. By reversing the sign of the directions we obtain the polygon of 
directions for which A is free from B. It is now easy to determine for each line 
l ~ A its interval it(f) with respect to B. This reflection step is needed to compare 
the intervals returned by deep recursive calls of the algorithm with the data at the 
higher levels of the algorithm. Finding the polygon of free directions costs time 
O(m log m), determining the if(/) for lines in A s takes time O(n log m). 

The overall algorithm generates O(n) feasibility intervals. We find a common 
feasible direction by computing a point in the intersection of wedges corresponding 
to the feasibility intervals in time O(n) using Megiddo's linear programming 
method. The total time T(n, m) needed to compute the intervals dominates the 
overall running time. We have 

fO(m 1 +~) for m > n 3, 

T(n, m) = ~ ~') 
,~=1 T(n,, m,) + #(rXn + m)log m + mr c otherwise, 

(9) 

for some constants c, where #(r) = O(r3~(r)), mi = O((m/r) log r), and ~i  n~ = n. The 
correctness of the algorithm comes from an argument similar to that of Theorem 
2. The time bound for 7(n, m) is O(n3/4m 3/4+~ + n 1+~ + ml+~), as follows from an 
analysis similar to one in [10l. If n = m, we have T(n, n) = O(nl'S+~). [] 

4. Complexity of the Line-Envelope of a Terrain 

Let us consider a well-known duality transformation between points and planes 
in 3-space, namely, the polarity 6 [21] which maps a point p = (a, b, c) distinct 
from the origin O into the plane 6(p) of equation ax + by + cz = 1. Plane 6(p) is 
the plane normal to the line Op and at distance 1~lOp[ from O, on the same side 
as p. Given a convex compact polytope P containing O in its interior, we define 
the set of planes ~(P) = {6(p)lp ~ P} in dual space. We define as P~ the complement 
in dual space of the set of dual points belonging to planes in 6(P). It is easy to 
show that p6 is a convex compact polytope containing O in its interior if the 
primal and the dual spaces are overlapped. If no two facets of P are coplanar, then 
there is a one-to-one correspondence between k-faces of P and (2 - k)-faces of p6. 
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The polarity transformation is convolutory (i.e., (P~)~ = P) [21]. Given a line I as 
a locus of points we obtain in the dual space a locus of planes which is a 
one-dimensional pencil of planes. We define as l 6 the axis of such a pencil of planes. 

Lemma 3. Given a convex compact polytope P containing the origin, a line 1 misses 
P if and only if l ~ is a stabbing line for P~. 

Proof. If a line l in primal space meets the convex polytope P, then all planes 
in the pencil of axis I meet P. Therefore in the dual space l ~ does not intersect P~. 
Conversely, if a line I in primal space misses P, then there is one plane supported 
by l which is disjoint from P. Therefore the dual line l 6 stabs P~. [] 

For convenience we establish the main result of this section for the class of 
star-shaped polyhedra, which includes polyhedral terrains. 

Theorem 4. Given a compact star-shaped polyhedron ~ of size n, IM(~)I : 
O(n32C I ~ ) .  

Proof. Given a star-shaped polytope ~ with n edges and center O, we triangulate 
its boundary as follows: we project each edge of ~ onto the sphere at infinity 
obtaining a planar map. We triangulate this map and back project the new edges 
on the boundary of 9 ~. This triangulation E has O(n) triangles. We then compute 
the convex hull of the origin and every triangle a ~ E, thus obtaining a set of O(n) 
tetrahedra covering ~ and such that each contains the origin. We can perturbate 
slightly each tetrahedron to make sure that the origin is in the interior of each 
tetrahedron. Let 9 ~ be the set of dual polytopes to such tetrahedra. It is crucial 
to observe that, since O is common to all tetrahedra in the decomposition of ~ ,  
the dual of O, namely the plane at infinity in the dual space, is disjoint from all 
the dual tetrahedra in ~ .  Therefore we can apply the result on the set of stabbing 
lines described in [20] to bound the number of extremal stabbing lines for 9 ~. 
From Lemma 3 this bound also holds for the set of extremal lines missing ~.  []  

5. Intersecting Polyhedral Terrains 

In this section we give an improved algorithm for computing the intersection of 
two terrains. We start by recollecting the main features of the algorithm in [5] 
which is the skeleton of our algorithm. Next we discuss where the algorithm in 
[5] is modified. The change does not impact on the proof of correctness of the 
algorithm, which is derived using the same arguments as in [5], and for this reason 
is not repeated here. What has to be changed is the analysis of the time bound of 
the algorithm. This analysis is quite simple in [5]. Here we are able to prove better 
bounds by using a more sophisticated approach. 



216 M. Pellegrini 

5.1. The Aloorithm o f  Chazelle et al. 

We refer to the algorithm in [5] as the CEGS algorithm throughout this section. 
It is observed in [5] that the problem is easily solved by a straightforward tracing 
procedure once we have computed all the intersections of edges from one terrain 
with facets from the other terrain, and vice versa. Thus, given terrains E 1 with n 
(red) edges and E2 with m (blue) edges, we concentrate our discussion on finding 
the intersections of red edges with blue facets. For  technical reasons the facets are 
subdivided into trapezoids and we count edge-trapezoid incidences. 

The CEGS algorithm is based on the properties of a data structure called the 
Hereditary Segment Tree, introduced in [53, which is an extension of the well- 
known segment-tree data structure (see, e.g., [21]). This data structure allows us 
to store two sets of planar segments in such a way as to make it easy to keep 
track of their intersections. In the CEGS algorithm this data structure is aug- 
mented with auxiliary data structures that take as input the lists of edges stored 
at the nodes of the hereditary segment trees. The auxiliary data structures allow 
us to compute quickly the above-below relation of edges in 3-space. 

We take the edges of Y~I and we project them vertically on the xy-plane 
obtaining a set R of n red edges. We take the edges of E 2 and we project them 
vertically on the xy-plane obtaining a set B of m blue edges. Let N = n + m. Now 
we build an hereditary segment tree Y- with branching degree 6, whose value will 
be determined later, on the sets B and R. The height of the tree is O(log6 N) and 
each edge is stored in 0(6 log~ N) lists of red and blue edges associated with the 
nodes of ~'- [53. Let v be a node of ~-- and let R v, By be the lists of blue and red 
edges stored at v. We build on the list By a complete binary tree Tv and we associate 
to a node 0 of T~ the list B o of blue edges stored in the subtree rooted at 0. We 
also associate to 0 a list R o c Rv of red edges. This construction is carried out in 
such a way as to obtain sets B0 and R o of mutually intersecting planar edges. 

The Auxil iary Data Structure. Given a set of M lines in 3-space it is shown in 
1"5] how to store them into a data structure of size O(M2+~), so that for a query 
line I we can determine in time O(log M) whether l is above all M lines or below 
all M lines. This data structure is called the-envelope structure and it is built in 
time O(M2+'). Given a list Be we go back to the edges of E 1 that project onto 
edges of B e . We extend these edges into full lines and we build the envelope 
structure for these lines. We also extend the lines in R 0 into full lines and we use 
them to query the envelope data structure. Because the edges mutually intersect 
on the xy-plane the above/below relation among the corresponding edges of the 
terrains in 3-space is not changed by extending the edges into full lines. 

Since we use quadratic time to build an envelope structure we cannot afford 
to construct it for every list. Instead we build it only if I Bo[ < N ~1 -~)/2. By choosing 

= IN'/2_] we have that we spend a total time O(N 3/2+~) in the construction of 
envelope structures. 

The Query Phase. When the auxiliary data structures are in place we start a phase 
of queries using the red edges in R0 for every node 0 in the tree T~ and for every 
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v in J- .  If a red edge r ~ R o is below or above all edges in B 0 we stop since r cannot 
intersect any blue trapezoid incident to edges in Bo. Otherwise we distinguish three 
cases: 

i. If 0 is a leaf, then test r for intersections with the two trapezoids incident to 
the edge stored at 0. If it does, report the intersection. 

2. If B o was too large to warrant the construction of the envelope structure, 
then recursively query both children of 0 with r. 

3. If 0 is not a leaf and the list B e is small enough so that the envelope structure 
has been built, use the line spanning r as a query line. If r is above or below 
all edges of Bo stop. Otherwise, recursively query both children of 0. 

Let k, be the number of intersections between r ~ R 0 and a facet of E 2. The basic 
properties of the hereditary segment trees imply that each such intersection 
is detected exactly once [5]. On the other hand, each red edge is duplicated 
at most O(logN) times in the hereditary segment tree. Thus case 3 has 
overall cost O(klog  2 N). Each edge in E~ incurs an overhead cost because it 
is replicated in the data structure and an overhead cost because it is duplicated 
during case 2 of the query phase. The total overhead per edge that cannot be 
charged to intersections is O(N (1 +,)/2). The overall time bound of the algorithm 
is thus O(N 3/2+~ + k log 2 N), where k is the size of the output. 

5.2. Variations 

Agarwal and Matou~ek note in [2] that Chazelle et al. [5] reduce the problem 
of detecting if a line is above or below a set of lines to the problem to answering 
half-space emptiness queries in Pliicker space (five-dimensional projective space). 
This reduction, together with the method for solving half-space emptiness queries 
in [13], gives us a new envelope structure that, for a set of M lines and for a 
parameter s in the range M < s < M 2, is built in time O(s 1 +~) using O(s) storage. 
Given a query line l we can determine in time O(M ~ +*/s ~/2) whether l is above 
all M lines or below all M lines. We call this data structure a slack envelope 
structure because we have a slack parameter s to control the preprocessing time 
and the query time. Now we make the following modifications to the algorithm 
of Chazelle et al. : 

1. We build a normal envelope structure for nodes with IBol <- N (~-~)/3. We 
build a slack envelope structure at any other node 0. The value of the 
parameter  s at each node 0 is critical and we determine its value during the 
analysis in the next subsection. 

2. Since now every node has a normal or a slack envelope structure, case 2 of 
the query phase is eliminated. 

Note that the "semantic" of the algorithm has not changed and therefore the proof  
of correctness in [5] also holds for this mutant algorithm. In the next subsection 
we prove the complexity bound. 
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5.3. Analysis of  the New Aloo~ithm 

Theorem 5. Given a polyhedral terrain Y'I with n red edoes and a polyhedral 
terrain Y~2 with n blue edfes, let N = n + m. All intersections between edges 
Y'l and faces of X2 can be found in time O(N 4/3+~ + kl/aN 1 +e + k log 2 n), where k 
is the number of such intersections. 

Proof Let us consider the tree To and the lists R v of size nv and B~ of size my for 
a node v of the hereditary segment tree oj.  Let N~ = n~ + mo. Let i = 0 . . . . .  log 2 m o 
be the levels of the tree To, where i = 0 represents the root level. We denote with the 
pair of indices (i,j) the j th node of level i. At level i we have to build 2 i envelope 
data structures, where each such data structure has m(i,i ) = m J2 ~ blue edges as 
input. Node (i,j) at level i receives, during the query phase, k, j)  red edges, where 
k(i.j3 is the number of red edges passed to node (i,j), from the father of node (ij) 
plus the red edges stored at (i, j). Since an edge is passed only if it contributes at 
least one intersection we have ~ k(~j) < (k + nv) log n o. We observe that we can 
keep the preprocessing time fixed on each level and thus reduce the query time 
for levels with higher index. This effect tending to the reduction of the total time 
is counterbalanced by the fact that if we discover many intersections (i.e., k is large) 
we have to perform many queries. 

At a generic level i we have blue input size m(~,j) = m~ and l(i) = m~-~ nodes, 
with 0 < ~ < 1. For nodes with 0 < ~ < �89 we build normal envelope structures 
for a total preprocessing cost O(m~/3+~) = O(N~/3+'). Each query on these data 
structure costs O(log too) and can be charged to an intersection. It is enough to 
consider from now on only levels with exponent �9 in the range ~ < ~ < 1. Let us 
redefine the slack storage parameter to be s = m[i,i ) = m~ ~, for a parameter 7 in 
the range 1 < y < 2. At level i the total cost for preprocessing and queries is 

l(1) J(1) 
~ �9 x - r/2 ( 1 0 )  Z mo + ~, k(i,j)(mv) , 

j = l  j = l  

where we have omitted multiplicative constants and e-powers in order to simplify 
the subsequent computations. 

The first summation gives m~ ~+1-~. Our  objective is to have the same total 
preprocessing time at each level, which we denote with the exponent q. We have 
q = aq, + 1 - ~t and consequently ? = 1 + (~ / -  1)/cc The exponent of the cost 
function for each query is ~ ( 1 -  ? /2 )=  ( c t - ~ / +  1)/2. The analysis is greatly 
simplified by the following observation: 

O b s e r v a t i o n  1. An upper bound on the runnin# time of  the algorithm is obtained 
when the intersections are detected at nodes with the lowest possible level number. 

Proof For  any given problem instance with n and m edges, the number of 
intersections is a given number k. We set the slack parameter  s so that the bound 
on the preprocessing time to set up the envelope data structures at each node and 
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the bounds on the time of a single query depend only on the total number  of 
intersections to be discovered and on the position of  the node in the tree. 
Consequently, s will not  depend on the distribution of the intersections over the 
tree. On  the other hand, any intersection that is detected is traced down to the 
leaves of  the tree. As we observed before, the query time decreases with the level 
number, therefore we obtain an upper bound on the cost under the assumption 
that intersections are detected at the level with the lowest number. Equivalently,  
we can assume that there is a threshold level 7 such that for i < i every query 
results in a detection of an intersection, and for i > 7 no new intersection is detected 
and we keep on tracing the intersections detected before. [ ]  

We call the levels with i < i satured, and levels i > i nonsaturated. We assume 
for the time being that we know that the total number  of  intersections k = N~ for 
a parameter  fl in the range 1 < fl < 2. On  the saturated levels k~.j~ = n~ < N o. Let 
us define the real number_ ~ such that 2~= N~ -~. We have that the number  of 
intersections k satisfies 2~-1n~ < k < 2~n~ and therefore k = | After easy 
calculations we have that ~ ~ 2 - / L  We obtain bounds correct within constant  
multiplicative factors by considering the levels with ct > 2 - B saturated, and those 
with ct < 2 - 3 nonsaturated.  

Saturation case. We have 2 - fl < ct < 1. The summation on the second term of 
(10) is 

1(0 
--o..-on m (~-r+1)/2 _< N~ -~+ t +(~-"+1)/2 = Ntv 5-'t-a)/2 (11) 

j = l  

The total cost is given by summing (11) over all the saturation levels. The level 
with the highest cost is the last saturated level, which is attained at the lower end 
of the ct range, for ~ = 2 - /~ .  There are at most  O(log2 my) levels. We obtain a 
bound O(N( f  +3-~)/2 log2 my) on the cost of the queries on saturated levels. 

Nonsaturation case. When we reach the last saturated level no new intersections 
are discovered. The cost of each query decreases when the level number  increases. 
The preprocessing cost is Ng at each level. Therefore the total query cost of each 
nonsaturated level is bounded by the cost of the last saturated level. The cost for 
all the queries on the nonsaturated levels is O(Ntf  § 3-~/2 log2 m~). Now we choose 
~/to balance the preprocessing and query costs. Setting t / =  (/~ + 3 - r/)/2 we obtain 
~/=/~/3 + 1. Summarizing the above discussion, and taking into account  the effect 
of e factors, the cost of tracing the intersection on slack envelope structures is 
0(N4/3 +, + k l /aN  1 +~). 

When we run the algori thm we do not know the value of k and as a consequence 
we do not know how much time to allocate for the preprocessing of the envelope 
structures. To overcome this situation we guess a value for k and we run the 
algorithm. The initial guess is k o = n, then guess k, is obtained by doubling the 
preceding one: ku = 2k,_ 1. The number  of guesses is O(log2 No). If  we exceed the 
time allowed by the bound we stop and start again doubling our  estimate. For  
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the first and the second terms of the bound  this extra logarithmic factor is absorbed 
by the n * factor. Fo r  the third term we note that the guessed values for ku form a 
geometric progression. Therefore the sum of the terms is propor t ional  to the last 
term in the summat ion ,  which in tu rn  is no more  than twice the actual number  
of intersections k. We obta in  the b o u n d  stated in Theorem 5, by summing over 
the whole pr imary tree J -  the bound  for a single node v. []  

6. Conclusions 

We have shown some combinator ia l  bounds  on the complexity of sets of lines 
missing polyhedral  sets in 3-space. We have applied one of these bounds  to the 
design of an algori thm for solving a t ransla t ion problem for lines in 3-space. We 
have also discussed an improved algori thm for comput ing  the intersection of 
polyhedral  terrains. M a n y  natura l  questions on lines in 3-space are still left 
unanswered.  For  example, which is the complexity of F(Q) and I(Q) for Q a simply 
polyhedron or a set of rods in R3? We conjecture that a complexity close to cubic 
is the right answer. A related challenge is to use these combinator ia l  bounds  
effectively for solving algorithmic problems on polyhedral  objects in 3-space. 
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