
Discrete Comput Geom 12:203-221 (1994)

c o m e ry

On Lines Missing Polyhedral Sets in 3-Space*

M. Pellegrini

Department of Computer Science, King's College,
Strand, London WC2R 2LS, England
marco@dcs.kcl.ac.uk

Abstract. We show some combinatorial and algorithmic results concerning finite
sets of lines and terrains in 3-space. Our main results include:

(1) An O(n32 c l 'fi~) upper bound on the worst-case complexity of the set of lines
that can be translated to infinity without intersecting a given finite set of n lines,
where c is a suitable constant. This bound is almost tight.

(2) An O(nl 5 + ~) randomized expected time algorithm that tests whether a direction
v exists along which a set of n red lines can be translated away from a set of n blue
lines without collisions, s > 0 is an arbitrary small but fixed constant.

(3) An O(n32 c ~4~/~) upper bound on the worst-case complexity of the envelope of
lines above a terrain with n edges, where c is a suitable constant.

(4) An algorithm for computing the intersection of two polyhedral terrains in
3-space with n total edges in time O(n 4/a +~ -1- kl/3n 1 +~ + k log 2 n), where k is the size
of the output, and e > 0 is an arbitrary small but fixed constant. This algorithm
improves on the best previous result of Chazelle etal. [5].

The tools used to obtain these results include Pliicker coordinates of lines, random
sampling, and polarity transformations in 3-space.

1. Introduction

I t is a c o m m o n pa t te rn in computa t iona l geometry that the combina tor ia l
s t ructure of a p rob lem is the main ingredient for the design of an efficient
a lgor i thm. Thus it is impor t an t to derive good combina to r i a l bounds for the
quanti t ies of interest in three-dimensional problems. Results in three-dimensional
compu ta t i ona l geomet ry are still much fewer than those for s imilar p roblems cast

* A preliminary version of this work appeared in the Proceedings of the 9th ACM Symposium on
Computational Geometry, pp. 19-28.

204 M. Pellegrini

in two-dimensional space. One of the reasons for this state of affairs is that the
combinatorial properties of lines and other one-dimensional objects in 3-space are
not well understood. In a seminal paper of 1989 [5] Chazelle et al. use in an
orginal way a range of techniques (Pliicker coordinates of lines, geometric random
sampling, segment trees) and obtain bounds on the complexity of certain con-
figurations of lines in 3-space as well as efficient algorithms for solving problems
on polyhedral terrains. This paper is in the same line of research and it aims at
improving bounds on the combinatorial structure of sets of lines, and algorithms
for three-dimensional translation and intersection problems.

1.1. Complexity of Sets of Lines lnduced by a Finite Set of Lines

Using Pliicker coordinates of oriented lines in projective 3-space it is quite easy
to define a topology on the set of oriented spatial lines (see, e.g., pp. 24-25 [3]).
Consequently, we can define paths of lines and other topological concepts for sets
of lines. A given finite set L of n lines in 3-space induces a decomposition of the
set of spatial lines ~ into isotopy classes. Two lines are in the same isotopy class
if a continuous path (of lines) having the two given lines as extremes exists,
such that any line on the path does not intersect any line of the given finite set.

We investigate worst-case upper bound on the combinatorial complexity of the
following classes of lines:

(i) M(L) c L# is the set of lines in R 3 that do not intersect any line in L.
(ii) I(L) c M(L) is a connected component of M(L) (i.e., an isotopy class of

missing lines).
(iii) F(L) c M(L) is the set of free lines in R 3 with respect to L (i.e., the set of

lines in M(L) that can be translated in some direction to infinity without
collisions with elements of L).

These classes arise naturally in three-dimensional visibility and translation
problems.

In the topology of lines derived by the Pliicker coordinates these sets are open
sets. For any of the above-mentioned sets of lines its complexity can be expressed
as the number of extremal lines in the closure of the set. A line is extremal when
it is incident to four lines in L. We denote with I QI the complexity of the set Q.
For a given finite set L of n lines the following bounds are known: II(L)I = | 2)
and IM(L)I = | 4) [5]. There is an O(n 3) upper bound for the lines vertically
above L, which matches a cubic worst-case lower bound [5]. Clearly, a line l e L#
vertically above any line in L can be translated to infinity without collisions with
L along the vertical direction. In the definition of the set F(L) we generalize this
notion of a collision-free translation by considering translations in any direction.

3 c logn In Section 2 we prove that IF(L) I = O(n 2 ~Ci~-). This bound is almost tight since
the f~(n 3) lower bound in [5] holds for IF(L)I. This bound is proved by finding a
representation for F(L) as a family of O(n 2) polyhedra in Pliicker space which are
in one-to-one correspondence with the cells of a planar arrangement of n lines.

On Lines Missing Polyhedral Sets in 3-Space 205

The technique used is similar to one in 1,20] and the main novelty is in the
reduction of the problem to this special representation. A recent method of
Agarwal [1] together with the reduction shown in this paper implies a slightly
tighter bound IF(L)I = O(n 3 log n).

1.2. Collision-Free Translations of Lines

Translation of polyhedral objects without collisions is an important problem in
robotics and CAD/CAM in relation to the assembly of objects composed of
polyhedral parts 1-15]. General versions of the assembly problems for polyhedra
in 3-space can be PSPACE-hard [15]. In this paper we discuss some restricted
types of assembly problems for which we can design efficient algorithms. We
consider a finite set A of n red lines and a finite set B of n blue lines, and we ask
for a direction v, if it exists, such that we can translate A simultaneously in direction
v without collision with B. We give in Section 3 a nontrivial algorithm that finds
a feasible direction in time 10(n 15 +9. The algorithm for this translation problem
relies heavily on the upper bound obtained for I F(A)I. The general approach is to
build a fast data structure to test whether a line 1 E B is in F(A) and then trade
off the query time and preprocessing time of the algorithm. This general approach
is now somewhat standard. What makes this algorithm interesting is that the
queries are not answered independently. We need to maintain a "coherence"
among the different answers since in general two lines can be free for A but in
different directions.

Although sets of lines are not usually found per se in application problems, it
is important to be able to solve efficiently the problem restricted to lines as a
subroutine for conceivable algorithms solving more practical versions of the
problem involving polyhedra.

For a survey of results on the translation problem for planar sets we refer the
reader to 1-24]. At the moment, efficient algorithms in 3-space are known only for
translating convex polyhedra. Given two convex polyhedra with n edges each, the
translation problem can be solved in time O(n) 1-16]. If instead we are given two
simple polyhedra with n edges each, an algorithm in 1,17] solves the translation
problem in time O(n 4 log n).

1.3. On the Line-Envelope o f a Terrain

In the second part of this paper we consider a class of polyhedral objects that are
useful in modeling actual physical data (e.g., geographical information, surfaces of
objects): polyhedral terrains. A polyhedral terrain is the graph of a piecewise linear
bivariate function. For a polyhedral terrain P with n edges, we show in Section 4
that the set M(P) c .Sf of lines missing P has complexity [M(P)[= O(na2C ICi~'~).

1 Here and throughout the paper we denote with e a positive real parameter independent of n that
we can choose arbirarily small. The multiplicative constants in the big-Oh notation may depend on e
and in such a case they tend to infinity when e tends to zero.

206 M. Pellegrini

The boundary of M(P) is also called the line-envelope of P. We give a remarkably
simple proof of this bound based on the property of lines stabbing convex
polyhedra. This bound has been obtained independently in [11] by using a more
general and much more complex technique. Previously, only the naive O(n*) upper
bound was known. An f~(n2~(n)) lower bound for IM(P)I is shown in [11]. Again,
the counting method of Agarwal [1] together with the reduction shown in this
paper implies a slightly tighter bound]M(P)I = O(n 3 log n).

1.4. Intersection o f Polyhedral Terrains

Computing the intersection of polyhedra in 3-space is a basic problem in computa-
tional geometry [21], [9] and has immediate applications, for example, in
computing the interference of polyhedral mechanical parts. In Section 5
we give an efficient output-sensitive algorithm which has two polyhedral
terrains on complexity n as input and produces their intersection in time
O(n ~/3+~ + kt/3+~nt+e + k log 2 n), where k is the number of edges, vertices,
and faces of the intersection. The previously asymptotically fastest algorithm
due to Chazelle et aL has a time bound O(n3/2+~+ k log 2 n) [5]. For the
range 0 < k < n 3/2 the algorithm we present has a better asymptotic performance
than the one in [5] and for k > n 3/2 it is as fast.

As follows from the discussion in [6] and [5], the running time is dominated
by the time needed to find all intersections of an edge from one terrain with a
face on the other terrain. The gist of our algorithm is in detecting efficiently those
edges that do not contribute edge-facet intersections, by using auxiliary data
structures controlled by a slack parameter. This parameter controls the tradeoff
between the time spent in setting up the data structures and the time spent in
using them. The freedom given by the slack parameter is then used during the
analysis to derive the improved time bound on the running time of the algorithm.

The paper is organized as follows. In Section 2 we derive a bound on the set
of free lines induced by lines and in Section 3 we discuss the translation problem
for two sets of lines in 3-space. In Section 4 we derive a bound for the set of lines
missing a polyhedral terrain. In Section 5 we present the algorithm for intersecting
two polyhedral terrains.

2. Free Lines Induced by Lines

2.1. Notation and Preliminaries

Pliicker Coordinates o f Lines. Let us fix an orthogonal reference frame in 3-space
with unit vectors (i, j, k) forming a positively oriented triple according to the skew
rule. A point in this real three-dimensional space has Cartesian coordinates (x, y, z)
and homogeneous coordinates (xo, xx, x2, x3). The relations between the two
systems of coordinates are given by the following equations: x = xl/Xo, y = x2/xo,

On Lines Missing Polyhedral Sets in 3-Space 207

and z = x3 / x o. Two points a = (x o, x 1, x2, X3) and b = (Yo, Yl, Y2, Y3) in three-
dimensional homogeneous coordinates define a line l in 3-space. The six quantities
~u = xiY~ - x y l for ij = 01, 02, 03, 12, 23, 31 are called Pli icker coordinates of the
line l (oriented from x to y) [22]. These coordinates are the two-by-two minors
of the two-by-four matrix formed by the coordinates of the point a (on the first
row) and b (on the second row). The six parameters are not independent; they
must satisfy the following equation (whose solution set constitutes the Pliicker
hypersurface or Klein quadric or Grassman manifold ~ 2 [-23], [22]):

l-I: ~01~23 + ~02~31 + ~03r = 0. (1)

The incidence relation between two lines l and l' can be expressed using the
Pliicker coordinates of l and l'. Let a 1, bl (resp. a2, b2) be two points on l (resp.
l') oriented as l (resp. l'). The incidence between I and l' is expressed as the vanishing
of the determinant of a four-by-four matrix whose rows are the coordinates of
al , b~, a2, b2 in this order from top to bottom:

alo a l l a12
blo bl~ b12

a20 a21 ~22
b20 b21 b22

a13

b13 = 0.
a23
b23

(2)

If we expand the determinant according to the two-by-two minors of the
submatrix formed by the coordinate of the points al , b~ and the minors of the
submatrix formed by the points a2, b2, we obtain the following bilinear equation
in which only Pliicker coordinates are involved:

r + r + r162 + r162 + r + r = o. (3)

We introduce a mapping x:l~--,zr(/) which maps an oriented line in R 3 to a
hyperplane in 2 5 (five-dimensional oriented projective space) whose plane co-
ordinates are

(r ~31' r C01, r ~03)"

A second mapping p: l~--~ p(l) maps a line in R 3 to a point in 2 5 whose coordinates
are the Pliicker coordinates of I. The incidence relation between the two lines l, l'
(expressed by (3)) can be reformulated as an incidence relatioin between points
and hyperplanes in 2 5. Equation (3) can be rewritten as a dot product in the form
rr(l') �9 p(/) = 0, which is equivalent to requiring point p(/) to belong to hyperplane
n(l'). Computations that are standard in real spaces can be done in oriented
projective spaces using techniques in [23].

Definition 1. For any given pair of lines I and 1' the sign of n(l')" p(l) is called the
Pli icker relative orientat ion of I and l', denoted by 1 ~ l'.

208 M. Pellegrini

Comput ing I ~ l' is equivalent to testing the relative position of a Pliicker point
p(l') with respect to a Pliicker hyperplane n(/).

The " A b o v e " Relation. Given a line l, a vector v, and a line l' in R 3 we say that
l is above l' in direction v (namely, above(l, l', v)) if moving l in direction v we
eventually intersect l'. Note that an above(l, l', v) is true if and only if I is free f rom
l' in direction - v . Let us define oriented lines, as before, by ordered pairs of points
in 3-space: l -- (a, b) and l' = (a, b'). The tsp-relative orientation is the sign of the
triple scalar product of a - b, a' - b', and v:

tsp(l, 1', v) = sign
a x - b . a y - b y a~-b~,

r t b z . a '~-b~ a ' y -by a~
V x 13y V z

(4)

We introduce a mapp ing ~r': l~--~ ~r'(/) which maps an oriented line in R a to a
line in ~2 (two-dimensional oriented projective space) whose plane coordinates are
(a x - bx, by - at, a~ - b=). A second mapp ing p': (l', v) ~ p'(l', v) maps a line and a
vector in R 3 to a point in ~ 2 whose coordinates are

t t t r ! ! t !
[(ay -- br)v z - (a'z - bz)vy, (ax - bx)vz - (a'z - bz)vx, (a; - bx)v~, - (ay - by)vx].

The triple scalar product defined in (4) is equivalent to comput ing the sign of
the dot product rt'(/), i f(f , v), which is equivalent to checking the relative posit ion
of the point p'(l', v) with respect to the line n'(/). We denote with G the two-
dimensional projective space underlying the codomains of the mappings re' and
p'. In the following sections of this paper we describe geometric constructions in
Pliicker space and on the plane G. The reason for introducing this parametric plane
G is embodied in the next l emma that links the predicate " a b o v e " with the relative
orientat ion in Pliicker space and the tsp-relative or ientat ion on the plane G.

L e m m a 1 [19]. Considering the signs (+ 1, - 1) as boolean values, a line l is above
a set L = {ll} of lines with respect to a direction v if and only if the following predicate
is true:

A [(li • l) xor tsp(li, l, v)]. (5)
i

O u r aim now is to find a bound on the descriptive complexity of the lines
satisfying formula (5) for some value of v, with respect to a given finite set of lines
L. O n the parametr ic plane G we have a set of p lanar lines {n'(l)lle L} induced
by L, which form the a r rangement AG(L). For each cell c in AG(L) the correspond-
ing set of Pliicker points of free lines is defined by an intersection of Pliicker
half-spaces forming a po lyhedron KJL) in Pliicker space. A vertex of Kc(L) is
called a free vertex.

The set F(L) is represented therefore as the intersection of the Pliicker hypersur-
face with the collection of polyhedra in Pliicker space ~g'(L) = {KJL)Ic ~ A~(L)}.

On Lines Missing Polyhedral Sets in 3-Space 209

Note that the polyhedra in JUg(L) are pairwise disjoint since they are different cells
in the arrangement of hyperplanes {rt(/)lle L}. A bound on ~clKc(L)l, where the
operator II counts the faces of any dimension bounding a polytope, implies a
bound on]F(L)I.

2.2. An Upper Bound for }F(L)I

We now consider a set Lof lines in general position (i.e., only two lines meet any
four lines in L) and the corresponding collection J{'(L). A standard perturbation
argument [9], [5] shows that the maximum complexity of o~((L) is attained by a
set of hyperplanes in general position (i.e., any five hyperplanes meet in a single
point). Under this general-position hypothesis we have that any polyhedron Kc(L)
is simple. From Lemma 2.1 in [4] we have that the number of vertices of a simple
polyhedron is an upper bound to the number of faces of any dimension bounding
the polyhedron. We present a proof of a bound on IF(L)] which follows closely
the proof of an upper bound on the set of lines stabbing n triangles in 3-space [20].

We choose in the range [1 .. n] an integer r large enough so that we can use
the partitioning results in [12] and [7] on the arrangement Ao(L). By these results,
the plane G is partitioned into a set E~(L) of O(r 2) triangles so that no triangle
meets more than O(n/r) lines. Let a be one of these triangles on G. We partition
L into two sets of lines in 3-space: Lout(t7), whose hyperplanes n'(l) do not cut a,
and L~n(tr), whose hyperplanes n'(/) cut tr. Furthermore, by the properties of the
part i t ion, I Lout(O')[< n and [LiB(if)] < O(n/r). With K,(Lout(tr)) we denote the poly-
hedron obtained in Plficker space by intersecting half-spaces supported by hyper-
planes in Hout(a) = {~(/)ll ~ Lout(a)}, where we choose for each such hyperplane the
side whose sign is opposite to the sign of n'(/) �9 q, for an (abstract) point q etr on G.
Note that we obtain the same polytope for every point q ~ tr, therefore q is chosen
arbitrarily in constant time.

Definition 2. Given a set L, a region a, a set Lout(a), and a set Li.(a) defined
as above, A,(i,j, L) is the set of free vertices incident to i hyperplanes in
Bout(a) = {rc(/)l/eLo,t(a)}, incident to j hyperplanes in Hi,(a)= {x(/)l/eLi.(a)},
and contained in the closure of K,(Lout(a)).

Let ~-(n) be the maximum number of free vertices for a set of n lines in general
position. Let ~ , (n) be the number of free vertices in K,(Lout(a)) for a ~r e Y~o. We
will show a uniform upper bound on ~-(n). Suppose without loss of generality
that L, of size n, attains the maximum value ~-(n). We have

~ ~ ~-~(n) (6)
a �9 I](;(L)

and

~-.(n) _< lAg(0, 5, L)I + lAg(l, 4, L)i + IA~(2, 3, L)I

+ lAg(3, 2, L)I + IA,(4, 1, L)I + [A,(5, 0, L)[. (7)

210 M. Pellegrini

Now we bound independently each term in (7):

1. IA,(5, 0, L)I represents the number of vertices touching five hyperplanes in
Hout(a) and in K,(Lout(a)). These vertices are the vertices of K,(Lout(a)). The
number of such vertices is O(n2), by the Upper Bound Theorem for polytopes
(see Chapter 6, Theorem 6.12, of [9]).

2. IA,(4, 1, L)I. These are vertices formed by intersecting an edge of K,,(Lout(a))
with a hyperplane from Hi,(a). Since there are at most O(n 2) such edges, the
number of vertices is bounded by O(n3/r).

3. IA,(3, 2, L)I represents the number of vertices incident to two hyperplanes
in Hi.(a) and a two-dimensional face of K,(Lout(~r)). We count these vertices
by intersecting pairs of hyperplanes in Hi~(a), thus forming O((n/r) 2) three-
dimensional subspaces, then we intersect each such subspace with the
K,(Lout(a)). Each such intersection is a three-dimensional polytope and thus
has O(n) vertices. The total number of such vertices is thus O(n3/r2).

4. IA,(2, 3, L)I represents the number of vertices incident to three hyperplanes
in Hin(cr), two hyperplanes in Hout(O'), and on the boundary of K~(Lo~t(a)).

Let us consider the family of two-dimensional subspaces S t Sk
obtained by intersecting every triple of hyperplanes from Hi~(a). Let
us consider the family of planar polygons P1 Pk where P i =
S l n Kq(Luut(a)). Each vertex v of P~ can be charged to one of its incident
edges so that no edge is charged more than once. Let e be an edge of P~
and let h be its generating hyperplane in Hout(a). If we choose any subset
B c Lout which P'~ = Si c~ K,(B). We can charge this edge e' to one of its
incident vertices v' such that each vertex is charged no more than once.

We partition Lout into r disjoint sets BI B, of size at most [-n/r-]. We
form r sets Qi = Bi u Lin(a), for i = 1 , . . . , r. From the above observations
we have that each free vertex v in A~(2, 3, L) can be charged to some free
vertex v' of some Qi in such a way that v' is charged only a constant number
of times. The maximum number of free vertices for any set of 2n/r lines is
~q~(2n/r). Therefore r~q~(2n/r) is an upper bound for IA,(2, 3, L)I.

5. IA,(1, 4, L)] represents the number of vertices touching four hyperplanes in
Hin(a), one hyperplane in Hout(O'), and incident on K.(Lout(o')). We partition
Lou t into r disjoint sets B: B, of size at most Fn/r-]. We form r sets
Q~ = Bi u Lin(a), for i = 1 r. We observe that every vertex in A,(1, 3, L)
is a f ree vertex fo r exactly one o f the sets Bi. The maximum number of free
vertices for any set of 2n/r lines is ~(2n/r) . Therefore r~q~(2n/r) is an upper
bound for [As(l, 3, L)I.

6. IA,(0, 5, L)I counts the number of extremal free lines for the set Li~(a) of size
n/r within K,(Lout(a)). I A,(0, 5, L) I is bounded from above by .,~(n/r).

We obtain the following recurrence relation:

St(n) < rZn 2 + n3r + n 3 + r3~(n/r) + r2~(n/r), (8)

where we omit multiplicative constants. Equation (8) is solved in [20]. We obtain

On Lines Missing Polyhedral Sets in 3-Space 211

the bound ~(n) = O(n32 c l,/i~) and, as a consequence, the following theorem:

Theorem 1. Given a set L of n lines in 3-space IF(L)I = O(na2C~) , for a suitable
constant c.

Since the lines in the construction of an upper envelope of lines in [5] are particular
free lines, the lower bound fl(n 3) in [5] holds for free lines.

3. Translating Sets of Lines

Once we know that the set of free lines with respect to L has complexity at most
O(n3fl(n)) the first algorithmic problem to be addressed is testing a line for
membership in F(L).

Definition 3. If a line 1 is free in direction v, then v is a feasible direction for l.

We state a simple but fundamental lemma:

Lemma 2. For any line l the set of feasible directions for l with respect to any set
of lines L is represented on the sphere of directions as a convex wedge which has
the direction of l as apex.

Proof Consider lines 11 and 12. The points on the sphere of direction representing
the directions for which 11 is translated away from l z is a hemisphere whose
bounding great circle is incident to the direction of In. Thus the feasibility direction
of lx with respect to a set of lines L is an intersection of hemispheres whose great
circle is incident to a fixed point. Such intersection is therefore a connected and
convex spherical wedge. []

Conceptually, we want to locate the Pliicker polyhedron in ~ff(L) containing
the Pliicker point of a query line l, and then use the cell of A~(L) associated with
that polyhedron to compute the feasible directions for I. On the other hand, it is
not obvious how to make the construction of ~ff(L) independent from the construc-
tion of Ao(L), while attaining a roughly cubic time bound. For this reason we
propose an approach based on the interleaved construction of ~ (L) and Ao(L),
together with the fast point-location data structures required.

Theorem 2. Membership in F(L) can be tested in time O(log n) using a data structure
of size O(n a +~), which is built in O(n 3 +~) expected time. Moreover, the data structure
returns a constant size representation of the set of all feasible directions for the query
line.

Proof. (1) Construction of the data structure. We select a random sample R of L,
where the size of R is r < n, and we build the planar arrangement AG(R) on the

212 M. Pellegrini

plane G of the tsp-test, obtaining O(r 2) cells. For each such cell we build the
corresponding Pliicker polyhedron in 5-space for the lines in R by intersecting
Pliicker half-spaces. The convex polyhedra in o,~ff(R) are pairwise disjoint and have
a total of O(r3fl(r)) faces of any dimension. Therefore we can triangulate these
Pliicker polyhedra obtaining O(r3~(r)) disjoint simplices. From results in [8] on
the properties of random samples, each simplex is cut by no more than O(n/r log r)
of the Pliicker hyperplanes corresponding to lines in L, with high probability. Let
s be a simplex in Pliicker space so generated and let c be the corresponding cell
in AG(R).

We have to consider two phases for each simplex x. Phase (i). Let L~(s) c L be
the set of lines such that n(/) does not meet s. For these lines the sign of ~(/) with
respect to s is well defined. We can invert such sign and determine a half-plane
~'(/) + on the plane G. We take the intersection of these half-planes with the region
c, and we store such polygon P,. The maximum size of this polygon is O(n). If P~
is empty, we mark s as not-in-F and we finish the preprocessing of s, otherwise
we go to the next phase. Phase (ii). Let L2(s) c L be the set of lines such that re(/)
meets s. From the above discussion this set has size IL2(s)l = O(n/r log r). We deal
with this set by a recursive call to the construction procedure we are describing.

The result of the construction is a search tree which we denote with D(L). It is
easy to see that the time needed to carry to carry on the construction satisfies this
recurrence:

T(n) < clr3[3(r)[T(n/r log r) + n log n + n] + c2nr 5,

where c a and c 2 are constants. By choosing for r a suitable constant value we
obtain a solution O(n3+~). A similar bound holds for the storage.

(2) Query algorithm. Using Lemma 2 we can represent the feasible directions
for I as an interval on a one-dimensional space associated with I. We keep during
the query the current interval of feasible directions for I which we denote with if(/).
At the end of the query we return if(/), which will be empty in the case when the
query line I is not free. Given a query line I we initialize if(/) to [- 0% + ~] and
we locate the point p(/) in Pliicker space in o~ff(R) stored at the root of D(L). If p(/)
does not fall into any simplex, or is within a simplex marked not-F, then we set
if(/) = J~. If/9(/) is within a simplex s we find the associated polygon Ps. For a
given line I and a variable v, the locus p'(l, v) is a line in G. Therefore in logarithmic
time we can check whether this locus meets Ps- If it does not, we set if = ~Z~. If it
does, we update if(/) by intersecting it with the interval of values of v for which
p'(l, v) falls within Ps. Then we recurse the query in the data structure associated
with s. We intersect if(/) with the feasibility interval returned by the recursive call.
The correctness of the query algorithm derives from the fact that it computes the
value of formula (5) for the query line.

If we choose r to be a constant, the query time is O(log 2 n). If we choose r to
be a small power of n, whose exponent depends on e, we can reduce the query
time to O(log n) while keeping the preprocessing asymptotically the same function
of n (e.g., see [20-1 and [18] for details). []

On Lines Missing Polyhedral Sets in 3-Space 213

3.1. Finding a Feasible Direction

Given two sets of lines A and B can we separate one set from the other using one
translation v? This is equivalent to asking whether

3v I A (l~ O lj) x~ tsp(l~, l~, v) 1"
l i e A , j ~ B

In turn this is equivalent to solving IAI IBI linear inequalities, which we can
solve in time O(IAI I B I) using Megiddo's method for linear programming in linear
time 1-14]. The discussion of the previous section gives us a first handle to produce
a subquadratic algorithm. A trivial observation which will become useful is that
set A is free from B in direction v if and only if B is free from A in direction - v.
So, when comparing sets A and B we can switch the roles of A and B, but we
have to take care of the fact that the set of feasible direction obtained is reflected
with respect to the origin.

Theorem 3. It is possible to find a feasible direction for two sets of n and m lines
in time O(na/4m 3/4 +~ + m ~ +~ + n 1 +~), where ~ is an arbitrary small positive real
constant, and the multiplicative constants may depend on e.

Proof Let us consider a set A of n lines and a set of B of m lines. The aim of
the first part of the algorithm is to produce efficiently for each line in l e A the
representation if(l) of its wedge of feasible directions. We consider two cases.

Case 1. Let us suppose that m < n 3. We take a random sample R c B of constant
size r. We build the planar arrangement AG(R) on the plane G of the tsp-test,
obtaining O(r z) cells. For each cell we build the corresponding P1/icker polyhedron
in 5-space for the lines in R. The convex polyhedra in)~r(R) are all disjoint and
have a total of O(r3fl(r)) faces of any dimension. Therefore we can triangulate these
Pliicker polyhedra obtaining O(r3fl((r)) disjoint simplices.

Let s be a simplex in Pliicker space so generated and let c be the unique
corresponding cell in Aa(R). For each simplex s we compute the set A~ of Pliicker
points of lines in A which are inside s. Let IA(s)l = ns. We define Ll(s) c B and
L2(s) ~_ B as in the proof of Theorem 2. Let ms = IL2(s) l. From results in [8] on
the properties of random samples, ms = O(m/r log r) with high probability.

For each simplex s we have two phases. As in phase (i) of the proof of Theorem
2 we construct the polygon Ps using Ll(s). If Ps is empty and ns > 0 we interrupt
the call returing a negative answer. Otherwise, for each line I e A s, we check
whether the corresponding locus p'(l, v) on the parametric plane G meets Ps and
we extract the corresponding interval of directions. We update if(1) by intersecting
its old value with the new interval. If any interval if(l) is empty we interrupt the
procedure and return a negative answer. Otherwise we go to the next phase. Phase
(ii). We recurse the algorithm on the set A s and the set L2(s). The recursive call

214 M. Pellegrini

either returns a negative answer or it returns an interval if(/) for each line of A s.
We intersect this interval with the one computed previously. If any interval is
empty we answer negativelY.

Case 2. Let us suppose now that m > n 3. In this case we call the algorithm of
Theorem 2, using the lines in A as input and the lines in B as queries. We use
O(n a§ time to preprocess A and we perform rn queries in O(m log n) time. We
obtain m linear constraints. The total cost of these operations is O(m 1 +'). We
obtain for each line of B a feasibility interval with respect to A. Each pair in
{(l, if(/))l/e B} defines a wedge on the sphere of directions. By intersecting all the
wedges we obtain a polygon. Each point on the polygon is a direction for which
B is free from A. By reversing the sign of the directions we obtain the polygon of
directions for which A is free from B. It is now easy to determine for each line
l ~ A its interval it(f) with respect to B. This reflection step is needed to compare
the intervals returned by deep recursive calls of the algorithm with the data at the
higher levels of the algorithm. Finding the polygon of free directions costs time
O(m log m), determining the if(/) for lines in A s takes time O(n log m).

The overall algorithm generates O(n) feasibility intervals. We find a common
feasible direction by computing a point in the intersection of wedges corresponding
to the feasibility intervals in time O(n) using Megiddo's linear programming
method. The total time T(n, m) needed to compute the intervals dominates the
overall running time. We have

fO(m 1 +~) for m > n 3,

T(n, m) = ~ ~')
,~=1 T(n,, m,) + #(rXn + m)log m + mr c otherwise,

(9)

for some constants c, where #(r) = O(r3~(r)), mi = O((m/r) log r), and ~i n~ = n. The
correctness of the algorithm comes from an argument similar to that of Theorem
2. The time bound for 7(n, m) is O(n3/4m 3/4+~ + n 1+~ + ml+~), as follows from an
analysis similar to one in [10l. If n = m, we have T(n, n) = O(nl'S+~). []

4. Complexity of the Line-Envelope of a Terrain

Let us consider a well-known duality transformation between points and planes
in 3-space, namely, the polarity 6 [21] which maps a point p = (a, b, c) distinct
from the origin O into the plane 6(p) of equation ax + by + cz = 1. Plane 6(p) is
the plane normal to the line Op and at distance 1~lOp[from O, on the same side
as p. Given a convex compact polytope P containing O in its interior, we define
the set of planes ~(P) = {6(p)lp ~ P} in dual space. We define as P~ the complement
in dual space of the set of dual points belonging to planes in 6(P). It is easy to
show that p6 is a convex compact polytope containing O in its interior if the
primal and the dual spaces are overlapped. If no two facets of P are coplanar, then
there is a one-to-one correspondence between k-faces of P and (2 - k)-faces of p6.

On Lines Missing Polyhedral Sets in 3-Space 215

The polarity transformation is convolutory (i.e., (P~)~ = P) [21]. Given a line I as
a locus of points we obtain in the dual space a locus of planes which is a
one-dimensional pencil of planes. We define as l 6 the axis of such a pencil of planes.

Lemma 3. Given a convex compact polytope P containing the origin, a line 1 misses
P if and only if l ~ is a stabbing line for P~.

Proof. If a line l in primal space meets the convex polytope P, then all planes
in the pencil of axis I meet P. Therefore in the dual space l ~ does not intersect P~.
Conversely, if a line I in primal space misses P, then there is one plane supported
by l which is disjoint from P. Therefore the dual line l 6 stabs P~. []

For convenience we establish the main result of this section for the class of
star-shaped polyhedra, which includes polyhedral terrains.

Theorem 4. Given a compact star-shaped polyhedron ~ of size n, IM(~)I :
O(n32C I ~) .

Proof. Given a star-shaped polytope ~ with n edges and center O, we triangulate
its boundary as follows: we project each edge of ~ onto the sphere at infinity
obtaining a planar map. We triangulate this map and back project the new edges
on the boundary of 9 ~. This triangulation E has O(n) triangles. We then compute
the convex hull of the origin and every triangle a ~ E, thus obtaining a set of O(n)
tetrahedra covering ~ and such that each contains the origin. We can perturbate
slightly each tetrahedron to make sure that the origin is in the interior of each
tetrahedron. Let 9 ~ be the set of dual polytopes to such tetrahedra. It is crucial
to observe that, since O is common to all tetrahedra in the decomposition of ~ ,
the dual of O, namely the plane at infinity in the dual space, is disjoint from all
the dual tetrahedra in ~ . Therefore we can apply the result on the set of stabbing
lines described in [20] to bound the number of extremal stabbing lines for 9 ~.
From Lemma 3 this bound also holds for the set of extremal lines missing ~. []

5. Intersecting Polyhedral Terrains

In this section we give an improved algorithm for computing the intersection of
two terrains. We start by recollecting the main features of the algorithm in [5]
which is the skeleton of our algorithm. Next we discuss where the algorithm in
[5] is modified. The change does not impact on the proof of correctness of the
algorithm, which is derived using the same arguments as in [5], and for this reason
is not repeated here. What has to be changed is the analysis of the time bound of
the algorithm. This analysis is quite simple in [5]. Here we are able to prove better
bounds by using a more sophisticated approach.

216 M. Pellegrini

5.1. The Aloorithm o f Chazelle et al.

We refer to the algorithm in [5] as the CEGS algorithm throughout this section.
It is observed in [5] that the problem is easily solved by a straightforward tracing
procedure once we have computed all the intersections of edges from one terrain
with facets from the other terrain, and vice versa. Thus, given terrains E 1 with n
(red) edges and E2 with m (blue) edges, we concentrate our discussion on finding
the intersections of red edges with blue facets. For technical reasons the facets are
subdivided into trapezoids and we count edge-trapezoid incidences.

The CEGS algorithm is based on the properties of a data structure called the
Hereditary Segment Tree, introduced in [53, which is an extension of the well-
known segment-tree data structure (see, e.g., [21]). This data structure allows us
to store two sets of planar segments in such a way as to make it easy to keep
track of their intersections. In the CEGS algorithm this data structure is aug-
mented with auxiliary data structures that take as input the lists of edges stored
at the nodes of the hereditary segment trees. The auxiliary data structures allow
us to compute quickly the above-below relation of edges in 3-space.

We take the edges of Y~I and we project them vertically on the xy-plane
obtaining a set R of n red edges. We take the edges of E 2 and we project them
vertically on the xy-plane obtaining a set B of m blue edges. Let N = n + m. Now
we build an hereditary segment tree Y- with branching degree 6, whose value will
be determined later, on the sets B and R. The height of the tree is O(log6 N) and
each edge is stored in 0(6 log~ N) lists of red and blue edges associated with the
nodes of ~'- [53. Let v be a node of ~-- and let R v, By be the lists of blue and red
edges stored at v. We build on the list By a complete binary tree Tv and we associate
to a node 0 of T~ the list B o of blue edges stored in the subtree rooted at 0. We
also associate to 0 a list R o c Rv of red edges. This construction is carried out in
such a way as to obtain sets B0 and R o of mutually intersecting planar edges.

The Auxil iary Data Structure. Given a set of M lines in 3-space it is shown in
1"5] how to store them into a data structure of size O(M2+~), so that for a query
line I we can determine in time O(log M) whether l is above all M lines or below
all M lines. This data structure is called the-envelope structure and it is built in
time O(M2+'). Given a list Be we go back to the edges of E 1 that project onto
edges of B e . We extend these edges into full lines and we build the envelope
structure for these lines. We also extend the lines in R 0 into full lines and we use
them to query the envelope data structure. Because the edges mutually intersect
on the xy-plane the above/below relation among the corresponding edges of the
terrains in 3-space is not changed by extending the edges into full lines.

Since we use quadratic time to build an envelope structure we cannot afford
to construct it for every list. Instead we build it only if I Bo[< N ~1 -~)/2. By choosing

= IN'/2_] we have that we spend a total time O(N 3/2+~) in the construction of
envelope structures.

The Query Phase. When the auxiliary data structures are in place we start a phase
of queries using the red edges in R0 for every node 0 in the tree T~ and for every

On Lines Missing Polyhedral Sets in 3-Space 217

v in J- . If a red edge r ~ R o is below or above all edges in B 0 we stop since r cannot
intersect any blue trapezoid incident to edges in Bo. Otherwise we distinguish three
cases:

i. If 0 is a leaf, then test r for intersections with the two trapezoids incident to
the edge stored at 0. If it does, report the intersection.

2. If B o was too large to warrant the construction of the envelope structure,
then recursively query both children of 0 with r.

3. If 0 is not a leaf and the list B e is small enough so that the envelope structure
has been built, use the line spanning r as a query line. If r is above or below
all edges of Bo stop. Otherwise, recursively query both children of 0.

Let k, be the number of intersections between r ~ R 0 and a facet of E 2. The basic
properties of the hereditary segment trees imply that each such intersection
is detected exactly once [5]. On the other hand, each red edge is duplicated
at most O(logN) times in the hereditary segment tree. Thus case 3 has
overall cost O(klog 2 N). Each edge in E~ incurs an overhead cost because it
is replicated in the data structure and an overhead cost because it is duplicated
during case 2 of the query phase. The total overhead per edge that cannot be
charged to intersections is O(N (1 +,)/2). The overall time bound of the algorithm
is thus O(N 3/2+~ + k log 2 N), where k is the size of the output.

5.2. Variations

Agarwal and Matou~ek note in [2] that Chazelle et al. [5] reduce the problem
of detecting if a line is above or below a set of lines to the problem to answering
half-space emptiness queries in Pliicker space (five-dimensional projective space).
This reduction, together with the method for solving half-space emptiness queries
in [13], gives us a new envelope structure that, for a set of M lines and for a
parameter s in the range M < s < M 2, is built in time O(s 1 +~) using O(s) storage.
Given a query line l we can determine in time O(M ~ +*/s ~/2) whether l is above
all M lines or below all M lines. We call this data structure a slack envelope
structure because we have a slack parameter s to control the preprocessing time
and the query time. Now we make the following modifications to the algorithm
of Chazelle et al. :

1. We build a normal envelope structure for nodes with IBol <- N (~-~)/3. We
build a slack envelope structure at any other node 0. The value of the
parameter s at each node 0 is critical and we determine its value during the
analysis in the next subsection.

2. Since now every node has a normal or a slack envelope structure, case 2 of
the query phase is eliminated.

Note that the "semantic" of the algorithm has not changed and therefore the proof
of correctness in [5] also holds for this mutant algorithm. In the next subsection
we prove the complexity bound.

218 M. PeUegrini

5.3. Analysis of the New Aloo~ithm

Theorem 5. Given a polyhedral terrain Y'I with n red edoes and a polyhedral
terrain Y~2 with n blue edfes, let N = n + m. All intersections between edges
Y'l and faces of X2 can be found in time O(N 4/3+~ + kl/aN 1 +e + k log 2 n), where k
is the number of such intersections.

Proof Let us consider the tree To and the lists R v of size nv and B~ of size my for
a node v of the hereditary segment tree oj. Let N~ = n~ + mo. Let i = 0 log 2 m o
be the levels of the tree To, where i = 0 represents the root level. We denote with the
pair of indices (i,j) the j th node of level i. At level i we have to build 2 i envelope
data structures, where each such data structure has m(i,i) = m J2 ~ blue edges as
input. Node (i,j) at level i receives, during the query phase, k, j) red edges, where
k(i.j3 is the number of red edges passed to node (i,j), from the father of node (ij)
plus the red edges stored at (i, j). Since an edge is passed only if it contributes at
least one intersection we have ~ k(~j) < (k + nv) log n o. We observe that we can
keep the preprocessing time fixed on each level and thus reduce the query time
for levels with higher index. This effect tending to the reduction of the total time
is counterbalanced by the fact that if we discover many intersections (i.e., k is large)
we have to perform many queries.

At a generic level i we have blue input size m(~,j) = m~ and l(i) = m~-~ nodes,
with 0 < ~ < 1. For nodes with 0 < ~ < �89 we build normal envelope structures
for a total preprocessing cost O(m~/3+~) = O(N~/3+'). Each query on these data
structure costs O(log too) and can be charged to an intersection. It is enough to
consider from now on only levels with exponent �9 in the range ~ < ~ < 1. Let us
redefine the slack storage parameter to be s = m[i,i) = m~ ~, for a parameter 7 in
the range 1 < y < 2. At level i the total cost for preprocessing and queries is

l(1) J(1)
~ �9 x - r/2 (1 0) Z mo + ~, k(i,j)(mv) ,

j = l j = l

where we have omitted multiplicative constants and e-powers in order to simplify
the subsequent computations.

The first summation gives m~ ~+1-~. Our objective is to have the same total
preprocessing time at each level, which we denote with the exponent q. We have
q = aq, + 1 - ~t and consequently ? = 1 + (~ / - 1)/cc The exponent of the cost
function for each query is ~ (1 - ? /2)= (c t - ~ / + 1)/2. The analysis is greatly
simplified by the following observation:

O b s e r v a t i o n 1. An upper bound on the runnin# time of the algorithm is obtained
when the intersections are detected at nodes with the lowest possible level number.

Proof For any given problem instance with n and m edges, the number of
intersections is a given number k. We set the slack parameter s so that the bound
on the preprocessing time to set up the envelope data structures at each node and

On Lines Missing Polyhedral Sets in 3-Space 219

the bounds on the time of a single query depend only on the total number of
intersections to be discovered and on the position of the node in the tree.
Consequently, s will not depend on the distribution of the intersections over the
tree. On the other hand, any intersection that is detected is traced down to the
leaves of the tree. As we observed before, the query time decreases with the level
number, therefore we obtain an upper bound on the cost under the assumption
that intersections are detected at the level with the lowest number. Equivalently,
we can assume that there is a threshold level 7 such that for i < i every query
results in a detection of an intersection, and for i > 7 no new intersection is detected
and we keep on tracing the intersections detected before. []

We call the levels with i < i satured, and levels i > i nonsaturated. We assume
for the time being that we know that the total number of intersections k = N~ for
a parameter fl in the range 1 < fl < 2. On the saturated levels k~.j~ = n~ < N o. Let
us define the real number_ ~ such that 2~= N~ -~. We have that the number of
intersections k satisfies 2~-1n~ < k < 2~n~ and therefore k = | After easy
calculations we have that ~ ~ 2 - / L We obtain bounds correct within constant
multiplicative factors by considering the levels with ct > 2 - B saturated, and those
with ct < 2 - 3 nonsaturated.

Saturation case. We have 2 - fl < ct < 1. The summation on the second term of
(10) is

1(0
--o..-on m (~-r+1)/2 _< N~ -~+ t +(~-"+1)/2 = Ntv 5-'t-a)/2 (11)

j = l

The total cost is given by summing (11) over all the saturation levels. The level
with the highest cost is the last saturated level, which is attained at the lower end
of the ct range, for ~ = 2 - /~ . There are at most O(log2 my) levels. We obtain a
bound O(N(f +3-~)/2 log2 my) on the cost of the queries on saturated levels.

Nonsaturation case. When we reach the last saturated level no new intersections
are discovered. The cost of each query decreases when the level number increases.
The preprocessing cost is Ng at each level. Therefore the total query cost of each
nonsaturated level is bounded by the cost of the last saturated level. The cost for
all the queries on the nonsaturated levels is O(Ntf § 3-~/2 log2 m~). Now we choose
~/to balance the preprocessing and query costs. Setting t / = (/~ + 3 - r/)/2 we obtain
~/=/~/3 + 1. Summarizing the above discussion, and taking into account the effect
of e factors, the cost of tracing the intersection on slack envelope structures is
0(N4/3 +, + k l /aN 1 +~).

When we run the algori thm we do not know the value of k and as a consequence
we do not know how much time to allocate for the preprocessing of the envelope
structures. To overcome this situation we guess a value for k and we run the
algorithm. The initial guess is k o = n, then guess k, is obtained by doubling the
preceding one: ku = 2k,_ 1. The number of guesses is O(log2 No). If we exceed the
time allowed by the bound we stop and start again doubling our estimate. For

220 M. Pellegrini

the first and the second terms of the bound this extra logarithmic factor is absorbed
by the n * factor. Fo r the third term we note that the guessed values for ku form a
geometric progression. Therefore the sum of the terms is propor t ional to the last
term in the summat ion , which in tu rn is no more than twice the actual number
of intersections k. We obta in the b o u n d stated in Theorem 5, by summing over
the whole pr imary tree J - the bound for a single node v. []

6. Conclusions

We have shown some combinator ia l bounds on the complexity of sets of lines
missing polyhedral sets in 3-space. We have applied one of these bounds to the
design of an algori thm for solving a t ransla t ion problem for lines in 3-space. We
have also discussed an improved algori thm for comput ing the intersection of
polyhedral terrains. M a n y natura l questions on lines in 3-space are still left
unanswered. For example, which is the complexity of F(Q) and I(Q) for Q a simply
polyhedron or a set of rods in R3? We conjecture that a complexity close to cubic
is the right answer. A related challenge is to use these combinator ia l bounds
effectively for solving algorithmic problems on polyhedral objects in 3-space.

References

1. P. K. Agarwal. On stabbing lines for convex polyhedra in 3d. Technical Report CS-1993-09,
Department of Computer Science, Duke University, Durham, NC 27706, April 1993.

2. P. K. Agarwal and J. Matou~ek. Ray shooting and parametric search. Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, pages 517-526, 1992.

3. P. S. Alexandrov. Combinatorial Topology. Graylock Press, Rochester, NY, 1956.
4. B. Aronov, J. Matou~ek, and M. Sharir. On the sum of squares of cell complexities in hyperplane

arrangements. Proceedings of the 7th ACM Symposium on Computational Geometry, pages 307-313,
1991.

5. B. ChazeUe, H. Edelsbrunner, L. Guibas, and M. Sharir. Lines in space: combinatorics, algorithms,
and applications. Proceedings of the 21st A CM Symposium on Theory of Computing, pages 382-393,
1989.

6. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichromatic line-segment
problems and polyhedral terrains. Algorithmica, 11(2): 116-132, 1994. Also Technical Report
UIUCDCS-R-90-1578, Department of Computer Science, University of Illinois at Urbana Cham-
paign, IL, 1990.

7. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry.
Combinatorica, 10(3):229-249, 1990.

8. K. L. Clarkson. New applications of random sampling in computational geometry. Discrete
Comput. Geom., 2:195-222, 1987.

9. H. Edlesbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.
10. H. Edelsbrunner, L. Guibas, and M. Sharir. The complexity and construction of many faces in

arrangements of lines and segments. Discrete Comput. Geom., 5:161-196, 1990.
11. D. Halperin and M. Sharir. New bounds for lower envelopes in three dimensions, with applications

to visibility in terrains. Proceedings of the 9th A CM Symposium on Computational Geometry, pages
11-18, 1993.

12. J. Matou~ek. Construction of e-nets. Discrete Comput. Geom., 5:427~148. 1990.
13. J. Matou~ek. Reporting points in half-spaces. Comput. Geom. Theory AppZ, 2(3): 169-186, 1992.

On Lines Missing Polyhedral Sets in 3-Space 221

14. N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput.
Mach., 31(1):115 126, 1984.

15. B. K. Natarajan. On planning assemblies. Proceedinos of the 4th ACM Symposium on Computa-
tional Geometry, pages 299-308, 1988.

16. O. Nurmi and J. R. Sack. Separating a polyhedron by one translation from a set of obstacles. In
J. van Leeuwen, editor, Proceedings of the Workshop on Graph-Theoretic Concepts in Computer
Science, pages 202-212. Lecture Notes in Computer Science, volume 344. Springer-Verlag, Berlin,
1988.

17. D. Nussbaum and J. R. Sack. Translation separability of polyhedra. Abstracts of the First Canadian
Conference on Computational Geometry, Montreal, page 34, 1989.

18. M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471494, 1993.
19. M. Pellegrini. On collision-free placements of simplices and the closest pair of lines in 3-space.

SIAM J. Comput., 23(1):133-153, 1994. Preliminary version in Proceedinos of the 8th ACM
Symposium on Computational Geometry, pages 130-137.

20. M. Pellegrini and P. Shor. Finding stabbing lines in 3-space. Discrete Comput. Geom., 8:191-208,
1992.

21. F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag,
New York, 1985.

22. D. M. H. Sommerville. Analytical Geometry of Three Dimensions. Cambridge University Press,
Cambridge, 1951.

23. J. Stolfi. Primitives for computational geometry. Technical Report 36, Digital Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA, 1989.

24. G. Toussaint. Movable separability of sets. In G. Toussaint, editor, Computational Geometry, pages
335-375. North-Holland, Amsterdam, 1985.

Received March 31, 1993, and in revised form December 23, 1993.

