On Antipodal and Adjoint Pairs of Points for Two Convex Bodies

V. Soltan
Mathematical Institute of the Academy of Sciences of Moldova, Str. Academiei nr. 5, Chişinău 277028, Republica Moldova
17soltan@mathem.moldova.su

Abstract

The numbers of antipodal and of adjoint pairs of points are estimated for a given pair of disjoint convex bodies in E^{d}.

1. Introduction

It is well known (see, for instance, [4]) that any two disjoint convex bodies K_{1}, K_{2} in the Euclidean space E^{d} can be strictly separated by a hyperplane H, i.e., K_{1}, K_{2} lie in distinct open half-spaces determined by H. This result easily implies the existence of two distinct parallel hyperplanes H_{1}, H_{2} both separating K_{1}, K_{2} such that H_{1} supports K_{1} and H_{2} supports K_{2}. The last assertion has been improved by De Wilde [8], who showed that the above hyperplanes H_{1}, H_{2} can be chosen so that the sets of contact $H_{1} \cap K_{1}, H_{2} \cap K_{2}$ are single points. Based on this result, we introduce the following definition. (As usual, $\exp K$ and ext K denote, respectively, the set of exposed points and the set of extreme points of K.)

Definition 1. Let K_{1}, K_{2} be disjoint convex bodies in E^{d}. We say that points $x_{1} \in$ ext K_{1} and $x_{2} \in$ ext K_{2} are adjoint if there are distinct parallel hyperplanes H_{1}, H_{2} through x_{1}, x_{2}, respectively, both separating K_{1} and K_{2}. If, additionally, $H_{1} \cap K_{1}=\left\{x_{1}\right\}$ and $H_{2} \cap K_{2}=\left\{x_{2}\right\}$, the points x_{1}, x_{2} are called strictly adjoint.

Dual to adjointness is the notion of antipodality, introduced for the case of two convex bodies as follows:

Definition 2. Let K_{1}, K_{2} be disjoint convex bodies in E^{d}. We say that points $x_{1} \in \operatorname{ext} K_{1}$ and $x_{2} \in \operatorname{ext} K_{2}$ are antipodal provided there are parallel hyperplanes H_{1}, H_{2} through x_{1}, x_{2}, respectively, such that both K_{1}, K_{2} lie between H_{1}, H_{2}. If, additionally, $H_{1} \cap K_{1}=\left\{x_{1}\right\}$ and $H_{2} \cap K_{2}=\left\{x_{2}\right\}$, the points x_{1}, x_{2} are called strictly antipodal.

Clearly, extreme points $x_{1} \in K_{1}, x_{2} \in K_{2}$ forming a strictly antipodal or strictly adjoint pair are exposed for K_{1}, K_{2}, respectively.

In our notation De Wilde's theorem states that any two disjoint convex bodies in E^{d} determine at least one strictly adjoint pair of points. Our purpose here is to sharpen De Wilde's result and to prove a few related assertions on the numbers of (strictly) adjoint and of (strictly) antipodal pairs determined by two disjoint translates of a given pair of convex bodies. For similar results on the numbers of antipodal pairs and strictly antipodal pairs of points of a single convex body in E^{d} see [6].

2. Main Results

Denote by $p\left(K_{1}, K_{2}\right)$ (by $\bar{p}\left(K_{1}, K_{2}\right)$) the number of antipodal (strictly antipodal) pairs of points $x_{1} \in K_{1}, x_{2} \in K_{2}$. Similarly, denote by $q\left(K_{1}, K_{2}\right)$ (by $\bar{q}\left(K_{1}, K_{2}\right)$) the number of adjoint (strictly adjoint) pairs of points $x_{1} \in K_{1}, x_{2} \in K_{2}$. Here and subsequently, we mean that two pairs $\left\{x_{1}, x_{2}\right\},\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$ of points, where $x_{1}, x_{1}^{\prime} \in K_{1}$ and $x_{2}, x_{2}^{\prime} \in K_{2}$, are distinct if either $x_{1} \neq x_{1}^{\prime}$ or $x_{2} \neq x_{2}^{\prime}$. Define any of the values $p\left(K_{1}, K_{2}\right), \bar{p}\left(K_{1}, K_{2}\right), q\left(K_{1}, K_{2}\right), \bar{q}\left(K_{1}, K_{2}\right)$ to be ∞ if the respective family of pairs is infinite.

Clearly, $p\left(K_{1}, K_{2}\right) \geq \bar{p}\left(K_{1}, K_{2}\right)$ and $q\left(K_{1}, K_{2}\right) \geq \bar{q}\left(K_{1}, K_{2}\right)$.
Theorem 1. $\bar{p}\left(K_{1}, K_{2}\right) \geq 1$ and $\bar{q}\left(K_{1}, K_{2}\right) \geq d$ for any disjoint convex bodies K_{1}, K_{2} in E^{d}.

Examples 1 and 2 below demonstrate that the inequalities in Theorem 1 are sharp even for the values $p\left(K_{1}, K_{2}\right)$ and $q\left(K_{1}, K_{2}\right)$.

Example 1. Let K_{1} be the triangle with vertices $x_{1}=(0 ; 0), x_{2}=(0 ; 5)$, and $x_{3}=$ $(5 ; 0)$, and let K_{2} be the triangle with vertices $y_{1}=(4 ; 4), y_{2}=(3 ; 4)$, and $y_{3}=(4 ; 3)$ in the coordinate plane E^{2}. There is exactly one antipodal pair of points determined by K_{1}, K_{2}, namely, $\left\{x_{1}, y_{1}\right\}$, whence $p\left(K_{1}, K_{2}\right)=1$.

Example 2. Let K_{1} be the triangle with vertices $x_{1}=(0 ; 0), x_{2}=(0 ; 5)$, and $x_{3}=$ $(5 ; 0)$, and let K_{2} be the triangle with vertices $z_{1}=(4 ; 4), z_{2}=(4 ; 9)$, and $z_{3}=(9 ; 4)$ in the coordinate plane E^{2}. There are exactly two adjoint pairs determined by K_{1}, K_{2}, namely, $\left\{z_{1}, x_{2}\right\}$ and $\left\{z_{1}, x_{3}\right\}$, whence $q\left(K_{1}, K_{2}\right)=2$.

Clearly, Examples 1 and 2 can be easily modified for the higher-dimensional case.
It is easily seen that the equalities $\bar{p}\left(K_{1}, K_{2}\right)=1$ and $\bar{q}\left(K_{1}, K_{2}\right)=d$ are satisfied only for some special pairs $\left\{K_{1}, K_{2}\right\}$. The following theorem shows that any pair of convex bodies K_{1}, K_{2} can be placed by suitable translations in order to obtain bigger values of $\bar{p}\left(K_{1}, K_{2}\right)$ and $\bar{q}\left(K_{1}, K_{2}\right)$.

Theorem 2. For any convex bodies K_{1}, K_{2} in $E^{d}, d \geq 2$, there are translates $K_{2}^{\prime}, K_{2}^{\prime \prime}$ of K_{2} both disjoint to K_{1} such that $\bar{p}\left(K_{1}, K_{2}^{\prime}\right) \geq d+1$ and $\bar{q}\left(K_{1}, K_{2}^{\prime \prime}\right) \geq d+1$.

In fact, we can restrict our attention in Theorem 2 to the case when both K_{1} and K_{2} are polytopes.

Theorem 3. For convex bodies K_{1}, K_{2} in E^{d} the following conditions are equivalent:
(1) $p\left(K_{1}, K_{2}^{\prime}\right)$ is finite for every translate K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(2) $\vec{p}\left(K_{1}, K_{2}^{\prime}\right)$ is finite for every translate K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(3) $q\left(K_{1}, K_{2}^{\prime}\right)$ is finite for every translate K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(4) $\bar{q}\left(K_{1}, K_{2}^{\prime}\right)$ is finite for every translate K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(5) Both K_{1}, K_{2} are polytopes.

In connection with Theorem 2 the following question appears. For which pairs of convex bodies K_{1}, K_{2} in E^{d} are the inequalities $\bar{p}\left(K_{1}, K_{2}^{\prime}\right) \geq d+1$ and $\bar{q}\left(K_{1}, K_{2}^{\prime \prime}\right)$ $\geq d+1$ sharp? The answer to this question gives Theorem 4 below. Recall that K^{\prime} is a positive (negative) homothetic copy of a convex body K provided $K^{\prime}=a+\lambda K$ for a vector $a \in E^{d}$ and a real number $\lambda>0(\lambda<0)$.

Theorem 4. For convex bodies K_{1}, K_{2} in $E^{d}, d \geq 2$, the following conditions are equivalent:
(1) $\bar{p}\left(K_{1}, K_{2}^{\prime}\right) \leq d+1$ for every positive homothetic copy K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(2) $\bar{p}\left(K_{1}, K_{2}^{\prime}\right) \leq d+1$ for every translate K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(3) $\bar{q}\left(K_{1}, K_{2}^{\prime}\right) \leq d+1$ for every positive homothetic copy K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(4) $\bar{q}\left(K_{1}, K_{2}^{\prime}\right) \leq d+1$ for every translate K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(5) (i) K_{1}, K_{2} are two simplices negatively homothetic to each other if $d \geq 3$.
(ii) K_{1}, K_{2} are either triangles negatively homothetic to each other or parallelograms with parallel sides if $d=2$.

Conjecture 1. For any convex bodies K_{1}, K_{2} in $E^{d}, d \geq 2$, there are translates $K_{2}^{\prime}, K_{2}^{\prime \prime}$ of K_{2} both disjoint to K_{1} such that $p\left(K_{1}, K_{2}^{\prime}\right) \geq d^{2}$ and $q\left(K_{1}, K_{2}^{\prime \prime}\right) \geq d^{2}$.

Conjecture 2. For convex bodies $K_{1}, K_{2} \subset E^{d}, d \geq 2$, the following conditions are equivalent:
(1) $p\left(K_{1}, K_{2}^{\prime}\right) \leq d^{2}$ for every positive homothetic copy K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(2) $p\left(K_{1}, K_{2}^{\prime}\right) \leq d^{2}$ for every translate K_{2}^{\prime} of K_{2} disioint to K_{1}.
(3) $q\left(K_{1}, K_{2}^{\prime}\right) \leq d^{2}$ for every positive homothetic copy K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(4) $q\left(K_{1}, K_{2}^{\prime}\right) \leq d^{2}$ for every translate K_{2}^{\prime} of K_{2} disjoint to K_{1}.
(5) K_{1}, K_{2} are two simplices positively homothetic to each other.

Problem. Determine sharp lower and sharp upper bounds for the values $p\left(T_{m}, T_{n}^{\prime}\right)$, $\bar{p}\left(T_{m}, T_{n}^{\prime}\right), q\left(T_{m}, T_{n}^{\prime}\right)$, and $\bar{q}\left(T_{m}, T_{n}^{\prime}\right)$ as functions of d, m, and n, where T_{m} and T_{n} are d-polytopes in E^{d} with m and n vertices, respectively, and T_{n}^{\prime} is a translate of T_{n} disjoint to T_{m}.

A similar problem for the case of a single convex d-polytope is studied in [2] and [3].

3. Auxiliary Lemmas

Usual abbreviations conv, int, and bd are used for convex hull, interior, and boundary, respectively; $[x, y]$ and $[x, y\rangle$ denote the closed line segment with the endpoints x, y and the ray with apex x through y. Let v be a point exterior to K. A point $x \in K$ is called exposed relative to v if $\{x, v\}$ is a strictly adjoint pair for the sets $K,\{v\}$. We say that a closed half-space P of E^{d} exposedly supports a convex body K provided P contains K and the boundary hyperplane of P intersects K at one (exposed) point only. Following [7], a boundary point x of a closed convex set K in E^{d} is said to be visible from an exterior point w provided $[x, w] \cap K=\{x\}$.

The following lemmas are necessary in what follows.
Lemma 1 [4, Corollary 9.6.1]. For a convex body K in E^{d} and a point $v \in E^{d} \backslash K$, the cone

$$
C_{K}(v)=\{(1-\lambda) v+\lambda y: \lambda \geq 0, y \in K\}
$$

is convex, closed, and contains no line.
Lemma 2 [4, Theorem 18.7]. A closed convex cone in E^{d} containing no line is the closed convex hull of its exposed rays.

A point $v \in E^{d} \backslash K$ is called special for K provided every ray starting at v and supporting K has exactly one common point with K.

Lemma 3 [1]. For a given compact convex set K in E^{d} the set of special points for K is dense in $E^{d} \backslash K$.

Lemma 4 [8]. Two convex bodies K_{1}, K_{2} in E^{d} are separated (strictly separated) by a hyperplane parallel to a given hyperplane H if and only if the difference $K_{1}-K_{2}$ is separated (strictly separated) from 0 by a hyperplane parallel to H.

Lemma 5 (see [5]). For any convex bodies K_{1}, K_{2} in E^{d}, one has $\exp \left(K_{1}+K_{2}\right) \subset$ $\exp K_{1}+\exp K_{2}$.

We need two more lemmas.
Lemma 6. Let K_{1}, K_{2} be disjoint convex bodies in E^{d}, let H be a hyperplane strictly separating K_{1}, K_{2}, and let l be the one-dimensional subspace in E^{d} orthogonal to H. For any $\varepsilon>0$, there are distinct parallel hyperplanes $H_{1}^{\prime}, H_{2}^{\prime}$, and also distinct parallel hyperplanes $H_{1}^{\prime \prime}, H_{2}^{\prime \prime}$, such that:
(1) $H_{1}^{\prime}, H_{1}^{\prime \prime}$ exposedly support K_{1} and $H_{2}^{\prime}, H_{2}^{\prime \prime}$ exposedly support K_{2}.
(2) Both $H_{1}^{\prime}, H_{2}^{\prime}$ separate K_{1}, K_{2} and the strip between $H_{1}^{\prime \prime}, H_{2}^{\prime \prime}$ contains both K_{1}, K_{2}.
(3) The one-dimensional subspace orthogonal to $H_{1}^{\prime}, H_{2}^{\prime}$ (resp. to $H_{1}^{\prime \prime}, H_{2}^{\prime \prime}$) both form with l an angle at most ε.

Proof. Consider the convex body $M=K_{1}-K_{2}$. We prove by induction on $d(\geq 2)$ the following assertion:
(*) For any $\varepsilon>0$ and any orientation of l there is a half-space P exposedly supporting M and such that the outer normal of this half-space forms with l, taken in the given orientation, an angle at most ε.

Without loss of generality, we may assume that the origin 0 is in int M. Let S be the unit Euclidean sphere in E^{d}. It is known (see, for instance, Corollary 25.1.3 of [4]) that, for a vector $u \in S$, a half-space with outer normal u supports M nonexposedly if and only if the boundary surface of the polar body M^{*} is not differentiable at any point z with an outer normal cone containing u. Since the set of singular boundary points of M^{*} has ($d-1$)-Lebesgue measure 0 , the set of all outer normals u of half-spaces exposedly supporting M is dense in S. Now assertion (*) easily follows.

We continue the proof of Lemma 6. Let P be a half-space described in (*). Denote by z the (exposed) point at which P supports M. Since $z \in \exp M$, we have $z=z_{1}-z_{2}$, where $z_{1} \in \exp K_{1}$ and $z_{2} \in \exp K_{2}$ (see Lemma 5). From the above and from Lemma 4 it follows that hyperplanes H_{1}, H_{2} through z_{1}, z_{2} and parallel to the boundary hyperplane of P exposedly support K_{1}, K_{2}, respectively. Clearly, either both K_{1}, K_{2} lie between H_{1}, H_{2} or both H_{1}, H_{2} separate K_{1}, K_{2}, according to the orientation of l.

Lemma 7. Let P be a half-space of E^{d} exposedly supporting a convex body K at a point $x \in \operatorname{bd} K$, and let u be the outer normal of P. For any neighborhood $U(x)$ of x in bd K there is an $\varepsilon>0$ such that every half-space P^{\prime}, whose outer normal forms with u an angle at most ε, may support K in a subset of $U(x)$ only.

Proof. Indeed, assume for a moment the existence of half-spaces P_{1}, P_{2}, \ldots supporting K at points $z_{1}, z_{2}, \ldots \in \operatorname{bd} K$ such that $\left\|z_{i}-x\right\| \geq \delta$ for a suitable $\delta>0$ and such that the angles formed by the outer normals to P_{1}, P_{2}, \ldots with u are respectively at most $\varepsilon_{1}, \varepsilon_{2}, \ldots$, where $\varepsilon_{i} \rightarrow 0$. Due to the compactness arguments, we can suppose that $z_{i} \rightarrow z(\neq x)$ and $P_{i} \rightarrow P$. However, in this case P does not support K exposedly, contradicting the assumption of the lemma.

4. Proofs of Main Results

Proof of Theorem 1. Let H be a hyperplane strictly separating K_{1} and K_{2}. According to Lemma 4, there is a hyperplane parallel to H and strictly separating 0 from the difference $M=K_{1}-K_{2}$. Let H^{\prime} be the hyperplane parallel to H and supporting M such that both 0 and M are in the same half-space determined by H^{\prime}. By Lemma 6, there is a hyperplane $H^{\prime \prime}$ sufficiently close to H^{\prime} and exposedly supporting M at a point z, say. Since $z \in \exp M$, we have $z=x_{1}-x_{2}$, where $x_{1} \in \exp K_{1}$ and $x_{2} \in \exp K_{2}$ (see Lemma 5). From the above and from Lemma 4 it follows that the hyperplanes H_{1}, H_{2} parallel to $H^{\prime \prime}$ and passing through x_{1}, x_{2},
respectively, exposedly support K_{1}, K_{2} and both K_{1}, K_{2} lie between H_{1}, H_{2}. Thus $\bar{p}\left(K_{1}, K_{2}\right) \geq 1$.

In order to prove the inequality $\bar{q}\left(K_{1}, K_{2}\right) \geq d+1$, again consider the set $M=K_{1}-K_{2}$. We claim that M has at least d points exposed relative to 0 . It is easily seen that every exposed point of M visible from 0 and contained in the interior of the cone $C_{M}=\{\lambda y: \lambda \geq 0, y \in M\}$ is exposed relative to 0 .

Choose a point $v \in$ int $C_{M} \backslash M$ such that every ray starting at v and supporting M has exactly one point in common with M (see Lemma 3). In this case every exposed ray of the cone $C_{M}(v)=\{(1-\lambda) v+\lambda y: \lambda \geq 0, y \in M\}$ intersects M at an exposed point of M. Since M is a convex body disjoint to v, the cone $C_{M}(v)$ is closed and contains no line (by Lemma 1). Then, due to Lemma 2, $C_{M}(v)$ has at least d exposed rays. Let l_{1}, \ldots, l_{d} be some d of these rays. Denote by H_{i} a hyperplane in E^{d} such that

$$
H_{i} \cap C_{M}(v)=l_{i}, \quad i=1, \ldots, d .
$$

Clearly, H_{i} strictly separates 0 from M. By the above, $H_{i} \Gamma_{1} M$ is a point exposed for M relative to 0 . Thus we have found at least d points exposed relative to 0 .

Let x_{1}, \ldots, x_{d} be d points in M exposed relative to 0 . Denote by H_{i} a hyperplane strictly separating 0 from M such that $H_{i} \cap M=\left\{x_{i}\right\}$. Since $M=K_{1}-K_{2}$, every point x_{i} is of the form $x_{i}=z_{i}^{\prime}-z_{i}^{\prime \prime}$, where $z_{i}^{\prime}, z_{i}^{\prime \prime}$ are exposed points for K_{1}, K_{2}, respectively, and the hyperplanes $H_{i}^{\prime}, H_{i}^{\prime \prime}$ through $z_{i}^{\prime}, z_{i}^{\prime \prime}$ parallel to H_{i} satisfy

$$
H_{i}^{\prime} \cap K_{1}=\left\{z_{i}^{\prime}\right\}, \quad H_{i}^{\prime \prime} \cap K_{2}=\left\{z_{i}^{\prime \prime}\right\}
$$

Trivially, both $H_{i}^{\prime}, H_{i}^{\prime \prime}$ separate K_{1} and K_{2}. Hence $\left\{z_{i}^{\prime}, z_{i}^{\prime \prime}\right\}, i=1, \ldots, d$, are pairwise distinct strictly adjoint pairs for K_{1}, K_{2}. Therefore $\bar{q}\left(K_{1}, K_{2}\right) \geq d$.

Proof of Theorem 3. (1) \Rightarrow (2) and (3) \Rightarrow (4) are trivial.
(2) \Rightarrow (5) and (4) \Rightarrow (5). Assume, in order to obtain a contradiction, that K_{1} is not a polytope. Then the number of exposed points of K_{1} is infinite and, by the compactness of bd K_{1}, there is a point $x \in \operatorname{bd} K_{1}$ any of whose neighborhoods contains infinitely many exposed points of K_{1}. Choose a point $y \in$ int K_{1}, and let $U(x)$ be a neighborhood of x in bd K_{1} such that every hyperplane supporting K_{1} at a point in $U(x)$ intersects the ray $[y, x\rangle$ inside a given line segment $[x, z], z \in$ $[y, x\rangle \backslash K$. Now we can translate K_{2} in a position K_{2}^{\prime} such that:
(1) Any hyperplane H supporting K_{1} at a point in $U(x)$ strictly separates K_{2}^{\prime} from K_{1}.
(2) There is a hyperplane H^{\prime} parallel to H, supporting K_{2}^{\prime} and strictly separating K_{1}, K_{2}^{\prime}.

Similarly, there is a translate $K_{2}^{\prime \prime}$ of K_{2} disjoint to K_{1} and satisfying the property: for every hyperplane H supporting K_{1} at a point in $U(x)$ there is a hyperplane $H^{\prime \prime}$ parallel to H and supporting $K_{2}^{\prime \prime}$ such that both $K_{1}, K_{2}^{\prime \prime}$ lie between $H, H^{\prime \prime}$ and $H \cap K_{2}^{\prime \prime}=\varnothing, H^{\prime \prime} \cap K_{1}=\varnothing$.

For a given integer m, let x_{1}, \ldots, x_{m} be distinct exposed points of K_{1} lying in $U(x)$. Denote by $V\left(x_{i}\right), i=1, \ldots, m$, some pairwise disjoint neighborhoods of x_{1}, \ldots, x_{m} contained in $U(x)$. By Lemmas 6 and 7, there are m pairs of parallel hyperplanes $H_{1}, H_{1}^{\prime}, \ldots, H_{m}, H_{m}^{\prime}$ such that, for every $i=1, \ldots, m$:
(1) Both H_{i}, H_{i}^{\prime} separate K_{1} and K_{2}^{\prime}.
(2) H_{i} exposedly supports K_{1} at an exposed point $z_{i} \in V\left(x_{i}\right)$ and H_{i}^{\prime} exposedly supports K_{2}^{\prime}.

Hence $\bar{q}\left(K_{1}, K_{2}^{\prime}\right) \geq m$. Similarly, $\bar{p}\left(K_{1}, K_{2}^{\prime \prime}\right) \geq m$. Since m is chosen arbitrarily, $\bar{q}\left(K_{1}, K_{2}^{\prime}\right)=\bar{p}\left(K_{1}, K_{2}^{\prime \prime}\right)=\infty$.
(5) \Rightarrow (1) and (5) \Rightarrow (3). Since any antipodal or adjoint pair of points for polytopes K_{1}, K_{2} consists of their vertices, any of $p\left(K_{1}, K_{2}\right), q\left(K_{1}, K_{2}\right)$ is at most $m_{1} m_{2}$, where m_{1}, m_{2} are the numbers of vertices of K_{1}, K_{2}, respectively.

Proof of Theorem 2. Due to Theorem 3, it is sufficient to consider the case when both K_{1}, K_{2} are polytopes. Fix any vertex v of K_{1} and let C be the cone generated by K_{1} at $v: C=\left\{(1-\lambda) v+\lambda y: \lambda \geq 0, y \in K_{1}\right\}$. Clearly, C is a convex polyhedral cone with apex x, so is the cone C^{\prime} symmetric to C relative to v. Denote by F_{1}, \ldots, F_{m} all facets of K_{1} containing v. Now translate K_{2} in a position $K_{2}^{\prime} \subset$ int C disjoint to K_{1} such that for every vertex $w \in F_{i} \backslash\{v\}$ there are hyperplanes H, H^{\prime} parallel to each other, both K_{1}, K_{2} contained in the strip between them, with H exposedly supporting K_{1} at w and H^{\prime} supporting K_{2}^{\prime}. We can slightly move H and H^{\prime} simultaneously such that both H, H^{\prime} will support K_{1}, K_{2}^{\prime} exposedly. Hence every vertex $w \in F_{1} \cup \cdots \cup F_{m}$ determines a strictly antipodal pair of vertices for K_{1}, K_{2}^{\prime}.

Similarly, K_{2} can be translated in a position $K_{2}^{\prime \prime} \subset$ int C^{\prime} such that for every vertex $w \in F_{i} \backslash\{\nu\}$ there are hyperplanes G, G^{\prime} parallel to each other, both separating $K_{1}, K_{2}^{\prime \prime}$, with G exposedly supporting K_{1} at w and G^{\prime} supporting $K_{2}^{\prime \prime}$. As above, we can slightly move G and G^{\prime} simultaneously such that both G, G^{\prime} will support $K_{1}, K_{2}^{\prime \prime}$ exposedly. This implies that every vertex $w \in F_{1} \cup \cdots \cup F_{m}$ determines a strictly adjoint pair of vertices for $K_{1}, K_{2}^{\prime \prime}$.

Since the number of vertices of K_{1} lying in $F_{1} \cup \cdots \cup F_{m}$ is at least $d+1$, we have $\bar{p}\left(K_{1}, K_{2}^{\prime}\right) \geq d+1$ and $\bar{q}\left(K_{1}, K_{2}^{\prime \prime}\right) \geq d+1$.

Proof of Theorem 4. (1) $\Rightarrow(2)$ and (3) \Rightarrow (4) are trivial.
(2) \Rightarrow (5). Due to Theorem 3, it can be assumed that both K_{1} and K_{2} are polytopes.

First consider the case $d \geq 3$. From the proof of Theorem 2 it follows that under condition (2) of the theorem, every vertex v of K_{1} belongs to exactly d facets F_{1}, \ldots, F_{d} and every facet F_{1}, \ldots, F_{d} is a ($d-1$)-simplex. Clearly, in this situation K_{1} is a d-simplex if $d \geq 3$. Similarly, K_{2} is a d-simplex. Moreover, if K_{2} is translated in a position $K_{2}^{\prime} \subset$ int C, where $C=\left\{(1-\lambda) v+\lambda y: \lambda \geq 0, y \in K_{1}\right\}$, then each vertex of K_{1} lying in $F_{1} \cup \cdots \cup F_{d}$ belongs to exactly one strictly antipodal pair for K_{1}, K_{2}^{\prime}. In particular, v determines exactly one strictly antipodal pair with a vertex z, say, of K_{2}^{\prime}. It means that, for every hyperplane H supporting K_{1} exposedly at v, the hyperplane H^{\prime}, parallel to H and supporting K_{2}^{\prime} such that both K_{1}, K_{2}^{\prime} are between H, H^{\prime}, has with K_{2}^{\prime} exactly one point in common, namely,
z. This implies that the cones C and $C_{2}=\left\{(1-\lambda) z+y: \lambda \geq 0, y \in K_{2}^{\prime}\right\}$ are symmetric to each other. Since this conclusion holds for each vertex of K_{1}, K_{2} is a negative homothetic copy of K_{1}.

Now let $d=2$. Assume for a moment that one of K_{1}, K_{2}, say K_{1}, is not a triangle or a parallelogram. Then there are four consecutive vertices of K_{1}, say a, b, c, e, such that the half-lines $[a, b\rangle$ and $[e, c\rangle$ have a common point, x, exterior to K_{1}. Denote by D the cone with apex x bounded by $[b, a\rangle$ and $[c, e\rangle$. If we translate K_{2} in a position $K_{2}^{\prime} \subset$ int D sufficiently far from K_{1}, then each of a, b, c, e determines a strict antipodal pair, i.e., $\bar{p}\left(K_{1}, K_{2}^{\prime}\right) \geq 4$, contradicting the hypothesis. Hence each of K_{1}, K_{2} is either a triangle or a parallelogram. As in the case $d \geq 3$, for any vertex v_{1} of K_{1} there is a vertex v_{2} of K_{2} such that the sides of K_{1} congruent to v_{1} are parallel to the respective sides of K_{2} congruent to v_{2}, and the outer normals to these sides of K_{1} are opposite to the respective sides of K_{2}. Now it easily follows that either K_{1} and K_{2} are two parallelograms with parallel sides, or K_{1} and K_{2} are triangles negatively homothetic to each other.

Similar arguments are true under condition (4) of the hypothesis of Theorem 4.
(5) \Rightarrow (1). If K_{1}, K_{2} are convex d-polytopes in $E^{d}, d \geq 2$, and if $x_{1} \in K_{1}$, $x_{2} \in K_{2}$ form a strictly antipodal pair, the open outer normal cones of K_{1} at x_{1} and of $-K_{2}$ at $-x_{2}$ intersect. Since for a pair of negatively homothetic simplices K_{1}, K_{2} there are at most $d+1$ pairs of intersecting open outer normal cones, we have $\bar{p}\left(K_{1}, K_{2}\right) \leq d+1$. Similarly, any pair of disjoint parallelograms in E^{2} with parallel sides, determines at most three pairs of strictly antipodal vertices.

The proof of $(5) \Rightarrow$ (3) is similar.

Acknowledgment

The author thanks Endre Makai for his many helpful comments on an earlier draft of the paper.

References

1. B. A. Ivanov, Straight line segments on the boundary of a convex body (in Russian), Ukrain. Geom. Sb. 13 (1973), 69-71.
2. E. Makai, Jr., and H. Martini, On the number of antipodal or strictly antipodal pairs of points in finite subsets of R^{d}, in Applied Geometry and Discrete Math. The V. Klee Festschrift, DIMACS Series in Discrete Mathematics and Theoretic Computer Science, Vol. 4, American Mathematical Society, Providence RI, ACM, New York, 1991, pp. 457-470.
3. M. H. Nguyên and V. Soltan, Lower bounds for the number of antipodal and strictly antipodal pairs of vertices in a convex polytope, Discrete Comput. Geom. 11 (1994), 149-162.
4. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
5. A. K. Roy, Facial structure of the sum of two compact convex sets, Math. Ann. 197 (1972), 189-196.
6. V. Soltan and M. H. Nguyên, Lower bounds for the numbers of extreme and exposed diameters of a convex body, Studia Sci. Math. Hungar. 28 (1993), 99-104.
7. F. A. Valentine, Visible shorelines, Amer. Math. Monthly 77 (1970), 146-152.
8. M. De Wilde, Some properties of the exposed points of finite dimensional convex sets, J. Math. Anal. Appl. 99 (1984), 257-264.
