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Abstract. The numbers of antipodal and of adjoint pairs of points are estimated 
for a given pair of disjoint convex bodies in E d. 

1. Introduct ion 

It is well known (see, for instance, [4]) that any two disjoint convex bodies Kt ,  K 2 in 
the Euclidean space E a can be strictly separated by a hyperplane H, i.e., K j ,  K 2 lie 
in distinct open half-spaces determined by H. This result easily implies the existence 
of two distinct parallel hyperplanes H I ,  H 2 both separating K1, K 2 such that H~ 
supports K~ and H 2 supports K 2. The last assertion has been improved by De 
Wilde [8], who showed that the above hyperplanes H~, H 2 can be chosen so that the 
sets of contact H~ A K~, H 2 n K 2 are single points. Based on this result, we 
introduce the following definition. (As usual, exp K and ext K denote, respectively, 
the set of exposed points and the set of extreme points of K.) 

Def in i t ion  1. Let K1, K 2 be disjoint convex bodies in E d. We say that points 
x 1 E ext K 1 and x 2 E ext K 2 are adjoint if there are distinct parallel hyperplanes 
H1, H 2 through Xl, x2, respectively, both separating K 1 and K 2. If, additionally, 
H 1 A K 1 = {x 1} and H 2 N K 2 = {x2}, the points xt ,  x 2 are called strictly adjoint. 

Dual to adjointness is the notion of antipodality, introduced for the case of two 
convex bodies as follows: 

Def in i t ion  2. Let K1, K 2 be disjoint convex bodies in E d. We say that points 
x I ~ ext K 1 and x 2 ~ ext K 2 are antipodal provided there are parallel hyperplanes 
H1, H 2 through x 1, x2, respectively, such that both K1, K 2 lie between H1, H E. If, 
additionally, H 1 A K  1 = { x  1} and H 2 A K  2={x2},  the points x l , x  2 are called 
strictly antipodal. 
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Clearly, extreme points xa E Ka, x 2 ~ K 2 forming a strictly antipodal or strictly 
adjoint pair are exposed for K~, K 2, respectively. 

In our notation De Wilde's theorem states that any two disjoint convex bodies in 
E ~ determine at least one strictly adjoint pair of points. Our purpose here is to 
sharpen De Wilde's result and to prove a few related assertions on the numbers of 
(strictly) adjoint and of (strictly) antipodal pairs determined by two disjoint translates 
of a given pair of convex bodies. For similar results on the numbers of antipodal 
pairs and strictly antipodal pairs of points of  a single convex body in E a see [6]. 

2. Main Results 

Denote by p ( K l ,  K 2) (by p(K1,  K2)) the number of antipodal (strictly antipodal) 
pairs of points x 1 ~ K1, x z ~ K s. Similarly, denote by q(K1, K 2) (by gI(Ka, K2)) the 
number of  adjoint (strictly adjoint) pairs of points x 1 E Ka, x 2 ~ K 2. Here and 
subsequently, we mean that two pairs {xl, x2} , {X'l, x'2} of points, where xl ,  x] ~ K 1 
and x2, x~ ~ K2, are distinct if either x I 4= x] or x 2 4= x~. Define any of the values 
p ( K  1 , K2), ~ ( K  1 , K2), q ( K  1 , K2), ~/(K1, K 2) to be ~ if the respective family of pairs 
is infinite. 

Clearly, p ( K l ,  K 2) >_/3(KI, K2) and q(K1, K 2) > q(K1, K2). 

Theorem 1. /3(K1, K s) >_ 1 and gI(K1, K 2) >_ d for any disjoint convex bodies K1, K 2 
in E d. 

Examples 1 and 2 below demonstrate that the inequalities in Theorem 1 are 
sharp even for the values p(K1,  K 2) and q ( K l ,  K2). 

Example 1. Let K 1 be the triangle with vertices x I = (0; 0), x 2 = (0; 5), and x 3 = 
(5; 0), and let K 2 be the triangle with vertices Yl = (4; 4), Y2 = (3; 4), and Y3 = (4; 3) 
in the coordinate plane E 2. There is exactly one antipodal pair of points determined 
by K~, K2, namely, {xl, y~}, whence p(K1 ,  K 2) = 1. 

Example 2. Let K 1 be the triangle with vertices x I = (0; 0), x z = (0; 5), and x 3 = 
(5; 0), and let K 2 be the triangle with vertices z I = (4; 4), z 2 = (4; 9), and z 3 = (9; 4) 
in the coordinate plane E 2. There are exactly two adjoint pairs determined by 
K1, K 2 , namely, {z 1 , x 2} and {z 1 , x3}, whence q ( K  l , K 2) = 2. 

Clearly, Examples 1 and 2 can be easily modified for the higher-dimensional case. 
It is easily seen that the equalities /3(K1, K 2) = 1 and U/(K1,K 2) = d are 

satisfied only for some special pairs {K~, K2}. The following theorem shows that any 
pair of convex bodies K 1 , K 2 can be placed by suitable translations in order to 
obtain bigger values of fi(K 1 , K 2) and g/(K 1 , K2). 

Theorem 2. For any convex bodies K1, K 2 in E a, d >__ 2, there are translates K~, K'~ 

o f  K 2 both disjoint to K 1 such that p (K1 ,  K'  2) > d + 1 and 7/(K1, K~) > d + 1. 
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In fact, we can restrict our attention in Theorem 2 to the case when both K 1 and 
K 2 are polytopes. 

Theorem 3. For 

(1) p ( K ~ ,  K.' 2) 
(2) /5(K1, K~) 
(3) q(K~ ,  K '  2) 
(4) 
(5) 

convex bodies K t  , K 2 in E d the following conditions are equivalent: 

is finite for et2ery translate K'2 o f  K 2 disjoint to K 1 . 

is finite for  every translate K~ o f  K 2 disjoint to K 1 . 
is finite for  every translate K '  2 o f  K 2 disjoint to K 1 . 

Ft( K1,  K '  2) is finite for  every translate K '  2 o f  K 2 disjoint to K 1 . 

Both K1,  K 2 are polytopes. 

In connection with Theorem 2 the following question appears. For  which pairs of 
convex bodies K1, K 2 in E d are the inequalities /5(K1, K 2) > d + 1 and g/(K 1 , K~) 
> d + 1 sharp? The answer to this question gives Theorem 4 below. Recall that K '  
is a positive (negative) homothetic copy of a convex body K provided K '  = a + AK 
for a vector a ~ E d and a real number A > 0 (A < 0). 

Theorem 4. For convex bodies K1,  K 2 in E d, d >_ 2, the following conditions are 

equivalent: 

(1) fi(K1, K~) _< d + 1 for every positive homothet ic  copy K '  2 o f  K 2 disjoint to K 1 . 

(2) p ( K  1 , K~) _< d + 1 for every translate K '  2 o f  K 2 disjoint to K 1 . 

(3) ~/(K I , K~) _< d + 1 for  every positive homothetic copy K '  2 o f  K 2 disjoint to K 1 . 

(4) c-/(K1, K~) _< d + 1 for every translate K '  2 o f  K 2 disjoint to K 1 . 
(5) (i) Ka, K 2 are two simplices negatively homothetie to each other i f  d >_ 3. 

(ii) K1, K 2 are either triangles negatively homothetic to each other or paral- 

lelograms with parallel sides i f  d = 2. 

Conjecture 1. For any convex bodies K1,  K 2 in E d, d >_ 2, there are translates K' 2 , K~ 

o f  K 2 both disjoint to K 1 such that p ( K 1 ,  K '  2) >_ d 2 and q ( K  1 , K~) >_ d E. 

Conjecture 2. For convex bodies KI ,  K 2 c E a, d > 2, the following conditions are 

equivalent: 

(1) p ( K  1 , K '  2) <_ d e for every positive homothetic cop); K '  2 o f  K 2 disjoint to K 1 . 

(2) p ( K  1 , K '  2) < d 2 for every translate K '  2 o f  K 2 disjoint to K 1 . 
(3) q ( K  l , K '  z) <<_ d 2 for  every positive homothetic copy K '  2 o f  K 2 disjoint to K~. 

(4) q ( K  1 , K '  2) < d 2 for  every translate K'9 o f  K 2 disjoint to K 1 . 
(5) Kj  , K 2 are two simplices positively homothetic to each other. 

Problem. Determine sharp lower and sharp upper bounds for the values p ( T  m, 7",), 
f i(Tm, T') ,  q ( T  m, T') ,  and ~/(Tm, T')  as functions of d, m, and n, where Tm and T n 
are d-polytopes in E a with m and n vertices, respectively, and T" is a translate of Tn 

disjoint to T m. 

A similar problem for the case of a single convex d-polytope is studied in [2] 

and [3]. 
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3. Auxiliary Lemmas 

Usual abbreviations conv, int, and bd are used for convex hull, interior, and 
boundary, respectively; [x ,y]  and [x, y )  denote the closed line segment with the 
endpoints x, y and the ray with apex x through y. Let v be a point exterior to K. A 
point x ~ K is called exposed relative to v if {x, v} is a strictly adjoint pair for the sets 
K, {v}. We say that a closed half-space P of E a exposedly supports a convex body K 
provided P contains K and the boundary hyperplane of P intersects K at one 
(exposed) point only. Following [7], a boundary point x of a closed convex set K in 
E a is said to be visible from an exterior point w provided [x, w ] n  K = {x}. 

The following lemmas are necessary in what follows. 

Lemma 1 [4, Corollary 9.6.1]. For a convex body K in E d and a point v ~ E ~ \ K, the 
cone 

CK(V) = { ( 1 - h ) v +  A y : h > O , y ~ K }  

is convex, closed, and contains no line. 

Lemma 2 [4, Theorem 18.7]. A closed convex cone in E d containing no line is the 
closed convex hull o f  its exposed rays. 

A point v ~ E a \ K is called special for K provided every ray starting at v and 
supporting K has exactly one common point with K. 

Lemma 3 [1]. For a given compact convex set K in Ea the set o f  special points for K is 
dense in E d \ K. 

Lemma 4 [8]. Two convex bodies K1, K z in E d are separated (strictly separated) by a 
hyperplane parallel to a given hyperplane H if and only if the difference K 1 - K 2 is 
separated (strictly separated) from 0 by a hyperplane parallel to H. 

Lemma 5 (see [5]). For any convex bodies K1, K 2 in E d, one has exp(K 1 + K: )  c 
exp K 1 + exp K z . 

We need two more lemmas. 

Lemma 6. Let K1, K 2 be disjoint convex bodies in E a, let H be a hyperplane strictly 
separating K1, K2, and let 1 be the one-dimensional subspace in E a orthogonal to H. 
For any e > O, there are distinct parallel hyperplanes H~, H~, and also distinct parallel 
hyperplanes H~', H~', such that: 

(1) H~, H~ exposedly support K l and H~, H i exposedly support K 2 . 

(2) Both H~, H~ separate K1, K 2 and the strip between H'I' , H~ contains both 
K1, Kz.  

(3) The one-dimensional subspace orthogonal to H~, H~ (resp. to H~', H i )  both 
form with l an angle at most ~. 
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Proof. Consider the convex body M = K 1 - K 2 . We prove by induction on d (>  2) 
the following assertion: 

(* )  For any e > 0 and any orientation o f  l there is a half-space P exposedly supporting 
M and such that the outer normal o f  this half-space forms with l, taken in the given 
orientation, an angle at most e. 

Without loss of generality, we may assume that the origin 0 is in int M. Let S be 
the unit Euclidean sphere in E d. It is known (see, for instance, Corollary 25.1.3 of 
[4]) that, for a vector u ~ S, a half-space with outer normal u supports M nonexpos- 
edly if and only if the boundary surface of the polar body M* is not differentiable at 
any point z with an outer normal cone containing u. Since the set of singular 
boundary points of M* has (d - 1)-Lebesgue measure 0, the set of all outer normals 
u of half-spaces exposedly supporting M is dense in S. Now assertion (*)  easily 
follows. 

We continue the proof of Lemma 6. Let P be a half-space described in (*). 
Denote by z the (exposed) point at which P supports M. Since z ~ exp M, we have 
z = z~ - z 2, where z~ ~ exp K1 and z 2 ~ exp K 2 (see Lemma 5). From the above 
and from Lemma 4 it follows that hyperplanes H~, H 2 through z I , z 2 and parallel to 
the boundary hyperplane of P exposedly support K 1 ,  K 2 ,  respectively. Clearly, 
either both K1, K 2 lie between H1, H 2 or both H1, H 2 separate K 1 , K 2 ,  according 
to the orientation of l. [] 

Lemma 7. Let P be a half-space orE  ~ exposedly supporting a convex body K at a point 
x E bd K, and let u be the outer normal o f  P. For any neighborhood U(x)  o f x  in bd K 
there is an e > 0 such that every half-space P' ,  whose outer normal forms with u an 
angle at most e, may support K in a subset o f  U(x)  only. 

Proof. Indeed, assume for a moment  the existence of half-spaces P1, P2 . . . .  
supporting K at points zl ,  z 2 . . . .  ~ bd K such that I[z i - xL[ >_ 6 for a suitable 
6 > 0 and such that the angles formed by the outer normals to P1, Pz , . .  �9 with u are 
respectively at most e a , e 2 . . . .  , where 8 i --~ 0. Due to the compactness arguments, 
we can suppose that z i --* z (4~ x)  and Pi --* P. However, in this case P does not 
support K exposedly, contradicting the assumption of the lemma. [] 

4. Proofs of  Main Results 

Proof o f  Theorem 1. Let H be a hyperplane strictly separating K 1 and K 2 . 

According to Lemma 4, there is a hyperplane parallel to H and strictly separating 0 
from the difference M = K 1 - K  2. Let H '  be the hyperplane parallel to H and 
supporting M such that both 0 and M are in the same half-space determined by H ' .  
By Lemma 6, there is a hyperplane H" sufficiently close to H '  and exposedly 
supporting M at a point z, say. Since z ~ e x p M ,  we have z = x  1 - x  z, where 
x I ~ exp K~ and x 2 ~ exp K z (see Lemma 5). From the above and from Lemma 4 it 
follows that the hyperplanes H 1, H 2 parallel to H" and passing through x I , x 2, 
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respectively, exposedly support  K1, K 2 and both K1, K 2 lie between H1, H 2. Thus 

f i ( K l ,  K 2) >_ 1. 
In order  to prove the inequality q(K1, K 2) >__ d + 1, again consider the set 

M = K 1 - K  2. We claim that M has at least d points exposed relative to 0. It is 
easily seen that every exposed point of M visible from 0 and contained in the 
interior of the cone C M = { A y :  A >_ 0, y ~ M} is exposed relative to 0. 

Choose a point v ~ int C M \ M such that every ray starting at v and supporting 
M has exactly one point in common with M (see Lemma 3). In this case every 
exposed ray of the cone C M ( V )  = {(1 -- A)v + Ay: A >_ 0, y ~ M} intersects M at an 
exposed point  of M. Since M is a convex body disjoint to v, the cone C M ( V )  is closed 
and contains no line (by Lemma 1). Then, due to Lemma 2, C M ( V )  has at least d 
exposed rays. Let l 1 . . . .  , l a be some d of these rays. Denote  by H i a hyperplane in 
E a such that 

H i A C M ( V )  = li, i = 1 . . . . .  d. 

Clearly, H i strictly separates 0 from M. By the above, H i f'J M is a point exposed for 
M relative to 0. Thus we have found at least d points exposed relative to 0. 

L e t  X l , . . .  , x a be d points in M exposed relative to 0. Denote  by H i a hyperplane 
strictly separating 0 from M such that H i n M = {xi}. Since M = K x - K2, every 
point  x i is of the form x i = z~ - z 7, where zl, z 7 are exposed points for K~, K 2, 
respectively, and the hyperplanes H ' ,  H"  through zl ,  z '  i' parallel to H i satisfy 

HI N K 1 = {zl} , H"  N K 2 = (z"}. 

Trivially, both H ' ,  H"  separate  K 1 and K 2 . Hence {zl, z'i'}, i = 1 . . . . .  d, are pairwise 
distinct strictly adjoint pairs for K 1 , K 2 . Therefore c-/(K1, K 2) >_ d. []  

P r o o f  o f  Theorem 3. (1) ~ (2) and (3) ~ (4) are trivial. 
(2) ~ (5) and (4) ~ (5). Assume, in order  to obtain a contradiction, that K 1 is 

not a polytope. Then the number  of exposed points of K 1 is infinite and, by the 
compactness of bd K1, there is a point x ~ bd K 1 any of  whose neighborhoods 
contains infinitely many exposed points of K 1 . Choose a point  y ~ int K~, and let 
U ( x )  be a neighborhood of x in bd K l such that every hyperplane supporting K 1 
at a point in U ( x )  intersects the ray [y, x )  inside a given line segment [x, z], z E 
[y, x )  \ K. Now we can translate K 2 in a position K& such that: 

(1) Any hyperplane H supporting K l at a point in U ( x )  strictly separates K~ 

from K 1 . 
(2) There is a hyperplane H '  paral lel  to H,  supporting K~ and strictly separating 

K1, g~.  

Similarly, there is a translate K~ of  K 2 disjoint to K 1 and satisfying the property: for 
every hyperplane H supporting K 1 at a point  in U ( x )  there is a hyperplane H" 
parallel  to H and supporting K~ such that both K 1 , K~ lie between H, H" and 

H C ~ K ~ = Q , H "  A K  1 = ( ~ .  
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For  a given integer m, let x ~ , . . . ,  x,, be distinct exposed points of K 1 lying in 
U(x) .  Denote by V(x i ) ,  i = 1 . . . . .  m,  some pairwise disjoint neighborhoods of 
x I . . . . .  x m contained in U(x) .  By Lemmas 6 and 7, there are m pairs of parallel  
hyperplanes H1, H i . . . . .  Hm, H "  such that, for every i = 1 . . . . .  m: 

(1) Both Hi, H" separate K 1 and K~. 
(2) H i exposedly supports K 1 at an exposed point z i ~ V ( x )  and H i' exposedly 

supports K~. 

Hence ?/(K~, K~) _> m. Similarly, /3(K1, K~) >_ m. Since m is chosen arbitrarily, 
q(K1, K~) = p ( K , ,  K~) = ~. 

(5) ~ ( t )  and (5) ~ (3). Since any antipodal or adjoint pair of points for poly- 
topes Ka, K 2 consists of their vertices, any of p ( K ~ ,  K2),  q ( K ~ ,  K 2) is at most 
m l m 2 ,  where m~, m 2 are the numbers of vertices of K 1 , K2, respectively. [ ]  

P r o o f  o f  Theorem 2. Due to Theorem 3, it is sufficient to consider the case when 
both K1, K 2 are polytopes. Fix any vertex v of K 1 and let C be the cone generated 
by K 1 at v: C = {(1 - A)v + Ay: A >__ 0, y E K1). Clearly, C is a convex polyhedral 
cone with apex x, so is the cone C '  symmetric to C relative to v. Denote  by 
F 1 . . . . .  F m all facets of  K~ containing v. Now translate K 2 in a position K~ c int C 
disjoint to K 1 such that for every vertex w ~ F i \{v} there are hyperplanes H, H '  
parallel  to each other, both K~, K 2 contained in the strip between them, with H 
exposedly supporting K 1 at w and H '  supporting K~. We can slightly move H and 
H '  simultaneously such that both H, H '  will support  KI ,  K~ exposedly. Hence every 
vertex w E F 1 u ... cA F m determines a strictly antipodal pair of vertices for K 1 , K~. 

Similarly, K 2 can be translated in a position K~ c i n t  C '  such that for every 
vertex w e F i \ {v} there are hyperplanes G, G '  parallel  to each other, both separat- 
ing K1, K~, with G exposedly supporting K 1 at w and G '  supporting K~. As above, 
we can slightly move G and G '  simultaneously such that both G , G '  will support 
K~,K~ exposedly. This implies that every vertex w ~ F~ t3 ... tO F m determines a 
strictly adjoint pair of vertices for K1, K~. 

Since the number of vertices of K 1 lying in F~ u .-- U Fm is at least d + 1, we 
have /~(Kl ,  K~) > d + 1 and F/(K1, K~) > d + 1. [ ]  

P r o o f  o f  Theorem 4. (1) ~ (2) and (3) ~ (4) are trivial. 
(2) ~ (5). Due to Theorem 3, it can be assumed that both K 1 and K z are 

polytopes. 
First consider the case d > 3. From the proof of Theorem 2 it follows that under 

condition (2) of the theorem, every vertex v of K a belongs to exactly d facets 
F 1 . . . . .  F a and every facet F 1 . . . . .  F a is a (d  - 1)-simplex. Clearly, in this situation 
K 1 is a d-simplex if d >_>_ 3. Similarly, K 2 is a d-simplex. Moreover,  if K 2 is 
translated in a position K ~ c i n t C ,  where C = { ( 1 -  A ) v +  Ay: A > 0 ,  y ~ K l } ,  
then each vertex of K 1 lying in F1 U ... tO F~ belongs to exactly one strictly 
antipodal  pair for K 1, K~. In particular, v determines exactly one strictly antipodal 
pair with a vertex z, say, of K~. It means that, for every hyperplane H supporting 
K 1 exposedly at v, the hyperplane H ' ,  parallel to H and supporting K~ such that 
both K 1 , K~ are between H, H ' ,  has with K~ exactly one point in common, namely, 
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z. This implies that  the cones  C and C 2 = { ( 1 - h ) z + y :  h > _ 0 ,  y ~ K ~ }  are 

symmetr ic  to each other.  Since this conclusion holds for  each vertex of  K1, K 2 is a 
negat ive  homothe t i c  copy of  K~. 

Now let d = 2. Assume  for a m o m e n t  that  one  of  K1, K 2, say K1, is not  a 
t r iangle or  a para l le logram.  T h e n  there  are  four  consecut ive  vert ices of  K I ,  say 

a, b, c, e, such that  the half-l ines [a, b )  and [e, c )  have a c o m m o n  point,  x, exter ior  

to K 1. D e n o t e  by D the cone with apex x bounded  by [ b , a )  and [ c , e ) .  If  we 

translate  K 2 in a posi t ion K~ c i n t  D sufficiently far f rom K1, then each of  a, b, c, e 
de te rmines  a strict ant ipodal  pair, i.e., p ( K 1 ,  K~) >_ 4, contradict ing the hypothesis.  

H e n c e  each of  K1, K 2 is e i ther  a tr iangle or  a para l le logram.  As  in the case d _> 3, 

for any vertex v 1 of  K~ there  is a ver tex v 2 of  K 2 such that  the sides of  K 1 

congruen t  to v~ are  paral lel  to the respect ive sides of  K 2 congruent  to v 2, and the 

ou te r  normals  to these sides of  K 1 are  oppos i te  to the respect ive sides of  K 2. Now it 
easily follows that  e i ther  K~ and K 2 are two para l le lograms with paral lel  sides, or  

K~ and K 2 are tr iangles negatively homothe t i c  to each other.  
Similar  a rguments  are t rue under  condi t ion  (4) of  the hypothesis  of  T h e o r e m  4. 

( 5 ) ~ ( 1 ) .  If  K 1 , K  2 are  convex d-polytopes  in Ea; d > 2 ,  and if x 1 ~ K 1 ,  

x 2 E K 2 fo rm a strictly ant ipodal  pair, the open  ou te r  normal  cones  of  K 1 at x 1 and 

of  - K  2 at - x  2 intersect.  Since for a pair of  negatively homothe t i c  simplices K1, K 2 

there  are  at most  d + 1 pairs of  intersect ing open  ou te r  normal  cones,  we have 

/5(K1, K 2) < d + 1. Similarly, any pair  of disjoint  para l le lograms in E 2 with paral le l  

sides, de te rmines  at most  three  pairs of  strictly ant ipodal  vertices.  

The  p roo f  of  (5) ~ (3) is similar. [ ]  
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