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Abstract. A weighted graph is called d-realizable if its vertices can be chosen 
in d-dimensional Euclidean space so that the Euclidean distance between every 
pair of adjacent vertices is equal to the prescribed weight. We prove that if a 
weighted graph with k edges is d-realizable for some d, then it is d-realizable 
for d = [( 8~-k + 1 - 1)/2] (this bound is sharp in the worst case). We prove 
that for a graph G with n vertices and k edges and for a dimension d the 
image of the so-called rigidity map Ea,  ~ Rk is a convex set in Ek provided d > 
[( 8v/8-k + 1 - 1)/2]. These results are obtained as corollaries of a general convex- 
ity theorem for quadratic maps which also extends the Toeplitz-Hausdorff 
theorem. The main ingredients of the proof are the duality for linear program- 
ming in the space of quadratic forms and the "corank formula" for the strata of 
singular quadratic forms. 

1. Introduction. Main Results 

This paper  is motivated by the following problem of distance geometry. Suppose that 
G = ( V , E ; p )  is a graph with the set of vertices V, the set of edges E, and 
nonnegative weights {Pe: e ~ E} on its edges. We are interested in whether it is 
possible to place the vertices of G in the Euclidean space R d of a given dimension d 
so that the Euclidean distance between every pair  of adjacent vertices vi, vj would 
be equal to the prescribed weight Pij. If a map q~: V ~ •d exists such that 

*This research was supported by the United States Army Research Office through the Army 
Center of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical 
Sciences Institute of Cornell University, Contract DAAL03-91-C0027. 



190 A.I. Barvinok 

[l~(vi) - (~p(vj)[[ = Pit for every pair of adjacent vertices ui, Uj in G, we say that the 
weighted graph G is d-realizable and call the map r its realization. If  a graph is 
d-realizable for some d, then we say that the graph is realizable. The problem of 
d-realizability naturally arises in chemistry ("molecules"), mechanics ("bar and joint 
constructions"), robotics, and is interesting by itself (for these and related problems 
see, for example, [5], [7], and [11]). To test d-realizability of  a given graph one has to 
test feasibility of a system of real quadratic equations. Let us denote by ( . ,  .) the 
standard inner product in R e. A weighted graph G = (V, E; p)with n = IVI vertices 
is d-realizable if and only if the following system of equations 

(1.1) (Vi, Vi} + (Vj, Vj)-- 2"(Vi, Vj)=p2 f o r a d j a c e n t v e r t i c e s v i a n d v  ~ 

has  a so lu t ion  U 1 , . . . ,  U n E ~ d .  

In this paper we apply some convexity arguments to deal with such systems. 
Equations (1.1) suggest the following notion. 

(1.2) Vectorial Quadratic Equations. Let us denote by ~n• the linear space of all 
n-tuples v = (v 1 . . . . .  v n) of d-vectors vj ~ R d. Thus IW '• can be identified with 
Euclidean nd-dimensional space ~nd. In particular, we assume that the inner 
product, the norm, and the topology in R~• coincide with those in R ha. Suppose 
that Q = (qij),  1 <_ i , j  <_ n, is a symmetric n • n matrix. For a given n-tuple of 
d-vectors v = (v 1 . . . . .  vn) ~ R ~• we define the value of the vectorial quadratic 
form q as follows: 

n 

q ( v )  = Y'~ qii" (v i ,  vi)  + 2" Y'~ qij" (v i ,  v j ) ,  
i = 1  l < i < j < n  

where ( -, .) is the inner product in R a. If we consider q as a real quadratic form on 
the Euclidean space R ha, then in a suitable basis its matrix consists of  d diagonal 
blocks, each of which is represented by the n • n matrix Q. For a number d E ~J, 
for k vectorial quadratic forms ql . . . . .  qk: ~n• ff~, and for k real numbers 
a l , . . . ,  a k we consider the system 

(1.2.1) 

qi(Vl . . . . .  V n) = ai, vj ~ R d, a i ~ ~ ,  i = 1 . . . . .  k ,  j = 1 . . . . .  n ,  

of vectorial quadratic equations. The larger d is, the more "freedom" there is. 
Thus we observe that the system (1.1) is a particular example of a system of 

vectorial quadratic equations (1.2.1). On the other hand, by an appropriate system of 
vectorial quadratic equations we can encode other geometric properties of an 
embedded graph in R d. 

In this paper we prove the following main result. 

(1.3) Theorem. I f  for  some dimension d ~ ~ a solution u p . . .  , v n ~ R d to a system 
(1.2.1) o f  k vectorial quadratic equations exists, then a solution to this system exists 
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already for 

d = 
8 ~ ' k +  1 - 1]  

] 2 

where [.] denotes the integer part. 

An equivalent way to write the above bound is to define d as the smallest positive 
integer satisfying (d + 1)(d + 2 ) /2  > k. We note that the bound for d is indepen- 
dent on n. An immediate consequence of Theorem 1.3 is the following results. 

(1.4) Corollary.  Suppose that a weighted graph G = (V, E, p) with k = IEI edges is 
realizable. Then this graph is d-realizable for 

8 ~ . k  + 1 - 1  
d =  

2 

For example, a hexagon with nine fixed lengths of its six sides and three main 
diagonals is realizable if and only if it is 3-realizable. A hexagon with fixed lengths of 
its six sides and fixed angles between three pairs of opposite sides is realizable if and 
only if it is 3-realizable (since these conditions can be expressed by a system of nine 
vectorial quadratic equations). 

It can be observed that the bound of Corollary 1.4 and thus the bound of 
Theorem 1.3 is sharp in the worst case. Indeed, the complete graph with n vertices 
(that is, the 1-skeleton of an (n - 1)-dimensional simplex) and sufficiently generic 
weights on its k = n �9 (n - 1) /2  edges is d-realizable only for d > n - 1, if it is 
realizable at all. 

Theorem 1.3 is closely related to the famous Toepli tz-Hausdorff  theorem (see, 
for example, [10], [8], and [13]) which asserts that the image of the unit sphere under 
certain quadratic maps is convex. Indeed, we will see that our approach leads to the 
following result. 

(1.5) Theorem. Let ql . . . . .  qk be vectorial quadratic forms on ~n• Then the image 
q(B) of  the unit ball B c R n• under the quadratic map q: ~nxd _~ R~, q(v) = 
(ql(v)  . . . . .  q~(v)), is convex provided 

d > 
v/8.k + 1 - 1  ( d +  1 ) ( d + 2 )  

or, equivalently, 2 > k. 

Varying d and k we obtain many convexity results similar to the Toeplitz-Haus- 
dorff theorem. 

(1.6) Corollary. The image q(B) of  the unit ball B c R n under a quadratic map 
q: R n -~  R E /S conuex. 
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Proof. We put d = 1 and k = 2 in Theorem 1.5. [] 

We note that a version of the Toepl i t z -Hausdor f f  theorem states that already the 
image of the unit sphere in ~n under  a quadratic map q: R" ~ R 2 is convex 
provided n > 2 (see [10] and [13]). 

(1.7) Corollary.  Let  C ~ be a complex vector space and let q l , . . . ,  qs: Cn ~ R 
be Hermitian forms with real coefficients. The image q(B) of  the unit ball B = 
{(z 1 . . . . .  z~): 2,1 .z  1 + ... +2,~ -z~ < 1} undera map q: C ~ ~ Ns, q = (ql . . . . .  q5), is 
convex. 

Proof. Identifying C n with IR n• we reduce Corollary 1.7 to Theorem 1.5 with 
d = 2 and k = 5. []  

We note that the Toepl i t z -Hausdor f f  theorem states that the image of the unit 
sphere in C n under  a quadrat ic  map q: C n ~ C is convex provided n > 1. A version 
of this theorem states that the image in N3 of the unit sphere in C n under a map 
defined by three Hermit ian forms is convex (see [81 and [10]). 

Finally, we come back to the problem of the realizability of graphs. Let G = 
(V, E)  be a graph with n = Igl vertices {1, 2 . . . . .  n} and k edges. For  every 
dimension d ~ N graph G defines a so-called rigidity map q~: R n• ~ R k by the 
formula 

~G(Vl . . . . .  Vn) = ( . . . .  [I Vi -- Vj II 2 . . . .  ) where i and j are adjacent  in G 

(see, for example, Section 3.6 of [51). 

(1.8) Corollary.  Let  us f ix a graph G = (V, E)  with k = IEI edges and a number 
d E N .  I f  

v ~ - ' k +  1 - 1]  ( d +  1 ) ( d + 2 )  
d > 2 ] or, equivalently, 2 > k,  

then the image ~c(B) o f  the unit ball B c N~xd under the rigidity map q~a is a convex 
set in N k. 

Proof. Follows by Theorem 1.5. []  

For  a given graph G = (V, E)  and given weights { Pe: e ~ E} the problem of 
d-realizability is the problem of testing whether  the vector ( pff: e ~ E)  belongs to 
the image of the rigidity map. Corollary 1.8 implies that if d > [(~/8 �9 k + 1 - 1)/2], 
then we actually have a convex problem. 

2. The Idea of the Proof. Semidefinite Programming 

In this section we present  the main construction which we use to prove our results. 
Let us consider the linear space W~ of all n • n real symmetric matrices. We can 
identify W n with the space R (n(n§ 1))/2. The space W n is equipped with the (standard) 
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inner product  

( A , B )  = T r A B  

for matrices A,  B ~ W~. If A = (aij) , B = (b/j), 1 < i, j < n, then 

( A ,  B )  = Y'~ai/'biy. 
i , j  

We use the same notation for inner products in different spaces but this should not 
cause any difficulty since it is clear from the context which space is considered. We 
observe that this inner product  is invariant under the action of the orthogonal group 
by conjugation, that is, 

( A ,  B )  = (GtAG,  G t B G )  

for an orthogonal matrix G (since G is orthogonal,  the transposed matrix G t 

coincides with the inverse matrix G - l ) .  For  a matrix X E W~ we write X > 0 if 
and only if X is a positive semidefinite matrix. We recall that the set of all posi- 
tive semidefinite matrices in W~ is a closed convex self-conjugate cone, that is 
( X , Y )  > 0 for all Y >_>_ 0 if and only if X > 0. 

Suppose that Q is an n x n symmetric matrix and q is the corresponding 
vectorial quadratic form defined on Enxd (see (1.2)). For  an n-tuple v = (v 1 . . . . .  v,), 
vi ~ ~d, let us define an n x n symmetric matrix X = (x d) by the formula xij = 
(vi,  vj) ,  1 <_ i, j < n. Then (see (1.2)) 

q ( v )  = ~ qii(Vi, Vi) + 2" ~ qij(Vi, Vj) 
i=1 l < i < j ~ n  

= ~,  qiixii + 2" ~ qijxij = (Q, X ) .  
i=1 l<_i<j<n 

We begin with the following simple result. 

(2.1) Lemma. Let ql , .  . . , q~: ~nxd ~ ~ be vectorial quadratic forms with the matri- 

ces Ql . . . . .  Qk ~ Wn and let a I . . . . .  a k be real numbers. A solution v 1 . . . . .  lfl n E~_ ~ d  to 

the system o f  vectorial quadratic equations 

qi(u1 . . . . .  On) = ai ,  i = 1 . . . . .  k ,  

exists i f  and only i f  a positive semidefinite symmetric matrix X exists such that 

(Qi,  X )  = a i for i = 1 , . . . , k  and rank X_< d. 

Proof. Suppose that v = (v a . . . . .  vn), v / ~  ~d, is a solution to the above system. 
Let us define an n •  matrix X = ( x i j )  by the formula X i / =  (vi, v/) for i, 
j = 1 . . . . .  n. Then qi(v) = (Qi,  X )  and the matrix X satisfies the desired con- 
ditions. Conversely, suppose that X satisfies the conditions. Since X is posi- 
tive semidefinite and rank X _< d there are n vectors V l , . . . , v  n ~ ~ d  such that 



194 A.I. Barvinok 

Xij = (Vi, Vj) for i, j = 1 . . . . .  n. Then the n-tuple v = ( u  1 . . . . .  Un) is a solution to 
the system. []  

Lemma 2.1 allows us to reformulate Theorem 1.3 in the following way. 

(2.2) Reformulation of Theorem 1.3. Suppose that Q1 . . . . .  Qk are n • n symmetric' 

matrices and a 1 . . . . .  a k are real numbers. I f  a positive semidefinite matrix X exists such 
that 

(2.2.1) (Qi,  X )  = ai, i = 1 . . . . .  k, 

then a positive semidefinite matrix X *  exists such that it satisfies (2.2.1) and additionally 

rank X* < 
v '8 .k  + 1 - 1  

Let us consider the set of ~ of  all positive semidefinite matrices X such that 
(Qi ,  X )  = ai, i = 1 . . . . .  k.  This is a closed convex set and we will find a matrix 
X* ~ ~ of the desired rank as an extreme point of ,~, more precisely, as a 
solution to a certain optimization problem. 

(2.3) Linear Programming in the Space of Quadratic Forms. For given matrices 
Q1 . . . . .  Qk ~ W~, for given positive definite matrix F ~ W~, and for given real vector 
a = (aa , . . . ,  a k) ~ ~k let us consider the following two linear programs in W~: 

(2.3.1) Find ~" = inf(F,  X )  

Subject to ( a i ,  X )  = a i for i = 1 . . . . .  k 

and X > O  X ~ W  n. 

(2.3.2) Find T = sup(a ,  z )  

Subject to ( F  - E~= lzi" Qi) >- 0; 

z = (z ,  . . . . .  zk) ~ R k. 

Problems 2.3.1 and 2.3.2 are known under the general name "semidefinite 
programs" (see, for example, [2], [3], and [12]). We will show that in "general 
position" every optimal solution X*  to Problem 2.3.1 satisfies the desired rank 
condition. To prove this, we use the linear programming duality between Problems 
2.3.1 and 2.3.2, and, in particular, the complementary slackness condition. Most of 
the results presented below in this section are known (see, for example, [2], and [3]) 
or follow immediately from general theorems on linear programming in topological 
vector spaces [4], [12], but for the sake of completeness we present their proofs here. 
In Section 3 we discuss the general position of an affine subspace in W~. Finally, in 
Section 4 we prove Theorems 1.3 and 1.5. We begin with the following standard 
duality principle. 
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(2.4) Lemma.  We have r > T. I f  "r < + ~ (thus a feasible point X exists in Problem 
2.3.1), then z = T and the infimum in (2.3.1) is attained. 

Proof. It is immedia te  that  ~" > T. Indeed,  let X be a feasible point  for (2.3.1) and 
let z be  a feasible point  for (2.3.2). T h e n  

k 

( F -  Y'~z i ' Q i , X )  > 0 and  therefore ( F , X  
i=1 

>_ (a, z). 

We have to check that T > z. 
Suppose  that ~- < + ~. It is clear that  z > 0. Let  us consider  the following cone 

K c IR k+ l: 

K = {(b 1 . . . . .  bk , t ) :  ( Q i , X )  = b i for i = 1 . . . . .  k and  

( F ,  X )  = t for some X >__ 0}. 

In  o ther  words, K is the image of the cone of positive semidefinite matrices X ~ W n 
unde r  the l inear  map q~: X ~ ((Q1, X )  . . . . .  (Q~, X ) ,  ( F ,  X ) ) .  Thus  K is a convex 
cone.  Since F is positive definite, the compact  set {~p(X): X >_ 0 and  Tr  X = 1} does 
not  conta in  the origin and  consti tutes a compact  base of K. Therefore ,  K is closed. 
The intersect ion of the straight l ine II c IRk+l, II  = {(a, u): u E R}, with the cone 
K is a nonempty  closed interval  of the type [(a, ~-), (a, b)], where  b > ~- (it may 
happen  that  b = +o~). Thus  the in f imum in (2.3.1) is at tained.  Let us choose an 
arbitrary n u m b e r  e > 0. The  point  p = (a, z - e )  does not  belong to the cone K 
and  since K is closed a hyperplane exists which strictly separates p from K. Thus  a 
vector (z  I . . . . .  Zk, W) exists such that  

k 

( w ' F -  E z i . a i  , X )  >_ O fo ra l l  X > 0 ;  
i=1 

w" ( z -  e )  - ( a ,  z )  < 0 for z = (z  1 . . . . .  Zk). 

F r o m  the first inequal i ty  we deduce that 

w ' F  -- z i .  Qi  ~> O, 
i= 

since the cone of  all positive semidefini te  matrices is self-conjugate. Therefore ,  since 
(a, z ) ~ K ,  we have that  w ' r - ( a ,  z ) > 0 .  Thus  w > 0  and  without  loss of 
general i ty we may assume that  w = 1. Then  the point  z is feasible for Prob lem 2.3.2 
and (a ,  z )  > ~" - e. Thus  T > r - e. Since we have chosen an arbitrary positive e 
we have that  T > r .  [ ]  

The  following result  is the "complementa ry  slackness" condi t ion  for Problems 
2.3.1 and  2.3.2. 
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(2.5) Lemma. 
such that 

Suppose that z* = (z~ . . . . .  z~, ) is an optimal solution to Problem 2.3.2 

rank F -  Y'~z 7 . Q i  
i = 1  

>__n - d .  

I f  the set o f  feasible X for  Problem 2.3.1 is nonempty, then an optimal solution X* to 
Problem 2.3.1 exists and for  any such solution we have 

rank X*  < d. 

Proof. Lemma 2.4 implies that a solution X* exists. For  such a solution X* by 
Lemma 2.4 we have 

k k 

( F -  EZi Oi, ) ( F , X * )  Y'~z*'(Qi,  X*)  r T O. 
i = 1  i = 1  

Let us denote  A = (F  - F.ki= 1 z~ �9 Qi). Then A and X* are positive semidefinite, 
rank A > n - d, and ( A ,  X* ) = 0. Since A is positive semidefinite, its eigenvalues 
are nonnegative and the number  of positive eigenvalues is equal to rank A. Let us 
choose an orthogonal  matrix G such that A ~  = G lAG is a diagonal matrix whose 
first n - d diagonal entries are strictly positive. Since the matrix X ~  = G - 1 X * G  is 
positive semidefinite the diagonal elements of X~ are nonnegative. Since the inner 
product  in the space W n is invariant under  the action of the orthogonal group by 
conjugation we have ( X * ,  A )  = (X~ ,  A ~ )  = 0, and, therefore,  we must have the 
first n - d diagonal elements of the matrix X~ equal to zero. Again, since X~ is 
positive semidefinite, we must have that all the elements in the first n - d  rank 
X~ < d, and, therefore,  rank X*  < d. []  

We need the following technical results. 

(2.6) Lemma. Suppose that T < + ~  in Problem 2.3.2 but the supremum is not 
attained. Then a nonzero vector w = (w 1 . . . . .  wk ) ~ ~k  exists such that (a,  w)  = 0 

and - ~,ki= 1 Wi" Qi > O. 

Proof. A sequence z ( s )  = ( Z l ( S )  . . . . .  Zk(S)) ~ ~k, S = 1, 2 . . . . .  exists such that (a ,  
z ( s ) )  ~ T as s ~ a n d  

(k  ) F - ~ z i ( s )  "Qi 
i = 1  

> 0  

for all s ~ N / .  We must have that [[z(s) l l ~  ~ as s ~  since otherwise the 
supremum in (2.3.2) would be at tained in a limit point  of the set {z(s): s ~ N}. Let 
us consider the sequence w(s)  = z ( s ) / I I  z ( s )  II of points on the unit sphere. This 
sequence has a nonzero limit point  w where the conditions of our  lemma are 
satisfied. [ ]  
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(2.7) Lemma. Suppose that the matrices Q 1 , . . . ,  Qk are linearly independent and that 
a positive definite matrix X exists such that ( X ,  Qi)  = ai for  i = 1 . . . . .  k. Then 
Problem 2.3.2 has an optimal solution. 

Proof. By Lemma 2.4 we deduce that T < + ~ in (2.3.2). Suppose that Problem 
2.3.2 does not have an optimal solution. Let w = ( w l , . . . , w  k) be a vector from 
[_emma 2.6. Then 

Wi " Q i ,  X = ~ wi  . a i = O. 
i=1 i=1 

Since the matrix E~= 1 wi " Qi is negative semidefinite and X is positive definite we 
must have (see also the proof  of Lemma 2.5) 

k 

Wi " Q i  = O, 
i=1 

and, therefore, the matrices Q1 , . . . ,  Qk are linearly dependent .  []  

Now we can prove the main result of this section. 

(2.8) Lemma. Let  Q1 . . . . .  Qk be n • n symmetric matrices and let a l , . . . ,  a k be real 
numbers.  Suppose that, for  a positive definite matrix F and for  some number  d ~ ~ ,  

rank F -  ~_. z i . Qi >_ n - d 
i=1 

for  all z = (z j  . . . . .  z k) ~ IR k. Suppose further that a positive semidefinite matrix Xex i s t s  

such that 

(Qi, X )  = a i for  i = 1 . . . . .  k .  

Then a positive semidefinite matrix X*  exists such that 

(Qi, X* )  = a  i for  i =  1 . . . . .  k ,  

rank X* >_ d,  

(2.8.1) 

(2.8.2) 

and 

(2.8.3) 

P r o o f .  

( F ,  X * )  < ( F ,  X ) .  

Without  loss of generality we assume that the matrices QI . . . . .  Qk are 
linearly independent .  Let us choose an arbitrary positive definite matrix Y and put 
bi = (Qi ,  Y )  for i = 1 . . . . .  k; b = (b 1 . . . . .  bk) E ~k .  For  s ~ [0, 1] let us define 
X ( s )  = (1 - s ) .  Y + s -  X and a(s)  = (1 - s ) .  b + s .  a. Then by Lemma 2.7 for any 
s < 1 Problem 2.3.2 with the vector a(s )  has an optimal solution since the positive 
definite matrix X ( s )  is a feasible point  for Problem 2.3.1. Thus by Lemma 2.5 



198 A . I .  B a r v i n o k  

a solution X*(s )  of Problem 2.3.1 exists such that  rank X*(s )  < d. Besides, we 
have that  (F,  X * ( s ) )  < s .  (F,  X )  + (1 - s ) .  ( F ,  Y);  in particular,  the family 
{X*(s):  0 < s < 1} is bounded.  Therefore  for a sequence Sm ~ 1 a limit X* of the 
sequence X * ( s  m) exists. The matrix X* satisfies conditions (2.8.1)-(2.8.3). []  

3. General Position in the Space of Quadratic Forms 

In this section we recall some facts about quadratic forms "in general  position." We 
are interested in the "corank stratification" of the space of quadratic forms W,. 

(3.1) Proposi t ion (see, for example, the corollary of Lemma 2 from [1]). For any 
r = O , . . . , n  the set 

W [ = { A  ~ W . : r a n k A  = n - r }  

is a smooth analytic variety in W~ of  codimension (r" (r + 1))/2.  

Thus Wfl = {0} is the origin in W n whereas W ~ is a dense subset in I.V~. 
Proposit ion 3.1 is sometimes referred to as the "corank formula." 

(3.2) Definition. Let us fix symmetric n • n matrices Q1 . . . . .  Qk. We say that a 
symmetric n • n matrix F is regular if and only if the map ~0F: IR k ---, W~ given by 
the formula 

k 

I] IF(Z 1 . . . . .  Zk) = F - Y'~ z i �9 Oi 
i = 1  

intersects every variety Wf c W,, r = 0 , . . . ,  n, transversally. If it is not  clear from 
the context we specify that F is regular with respect to Q1 . . . . .  Qk. 

The following result justifies Definit ion 3.2. 

(3.3) Proposi t ion.  For given n • n symmetric matrices Q1 . . . . .  Q~ the set of  regular 
matrices F contains an open and dense subset o f  W~. 

Proof. Let us consider a linear map. 

k 

q~:R k ~  W n ~  Wn, q ~ ( z , F ) = F -  Y'~z i ' Q i ,  z =  (z  I . . . . .  z t  ) ~  ~k,  F ~  I'Ve. 
i = 1  

The map  q~ is surjective and therefore intersects every variety I,V~ r transversally. For  
r = 0 . . . . .  n let us put S r = q~- l (w[)  c R k ~ Wn. Let  us denote  by p the natural  
project ion p:  IRk ~ W, --* W n onto the second summand. It then follows (see, for 
example, Lemma 4.6 of [9]) that F is regular if it is a regular value of every 
restriction pr:Sr ~ W~ of p on S ,  Since the set of singular values of p~ is a 
semialgebraic set, by Sard's lemma (see [9]) we get the desired result. [ ]  

Below we prove the main result of this section. 
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(3.4) Corollary. Suppose that Q1 . . . . .  Qk are real symmetric n • n matrices. Then for  

a regular symmetric n • n matrix F and for  

d = 
2 

where [.] denotes the integer part, we have that 

rank F - Y'. z i �9 O i  ~___ n - d 
i = l  

for all z = ( z  1 . . . . .  Zk) E ~k. 

Proof. Let us consider the following affine subspace se" in the space W.: 

/ ) 5g = F - -  2 Zi" Qi: Zl . . . . .  Zk ~ ~ " 
i = 1  

Then the dimension of sg does not exceed k and by Proposition 3.1 and Definition 
3.2 it follows that sr does not intersect the set W~ provided r-  (r + 1) /2  > k. Hence 
for r -  (r  + 1) /2  > k we have that 

rank F -  Y ' . z i . Q  i > _ n - r +  1 
i = 1  

for all z 1 . . . . .  z k ~ ~. We choose r = d + 1 and the proof follows. [] 

4. Proofs and Final Remarks 

Proof o f  Theorem 1.3. We prove the Reformulation of Theorem 1.3 (see (2.2)). By 
Proposition 3.3 we can choose a positive definite matrix F which is regular with 
respect to Q~ . . . . .  Qk. Then, by Corollary 3.4 for all z = (z 1 . . . . .  z k) ~ Nk, 

( k )  rank F - ~ z i �9 Oi >__ n - d, 
i = 1  

where 
v ~ . k  + 1 - 1  

d = 
2 

~ 

Now we use Lemma 2.8. [] 

Proof o f  Theorem 1.5. Let Q p . . . ,  Qk ~ Wn be the matrices of the vectorial 
quadratic forms ql . . . . .  qk: ~n• __+ [~. By Proposition 3.3 we can choose a positive 

definite matrix F which is regular with respect to Q1 . . . . .  Qk. Let f :  R n• -~ E be 
the vectorial quadratic form with the matrix F. First, we prove that the image q(Ef) 
of the elipsoid 

Ef = {v e ~ .xd :  f ( v )  < 1} 
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is convex. Let  us prove that the image q(Ef) coincides with the image of a convex set 

A = { X ~  I , V ~ : X > 0 a n d ( F , X )  < 1} 

under a linear map 

,p: x ~  ((QI, X ) , - . . , ( Q ~ , X ) ) .  

Lemma 2.1 implies that q(Ef) c q~(A). Let us prove the opposite inclusion. Indeed,  
let us take an arbitrary point a = (a~ . . . . .  ak) ~ q~(A). Then a positive semidefinite 
matrix X exists such that (Qi, X )  = a i for i = 1 . . . . .  k and ( F ,  X )  < 1. Since F is 
regular, by Corollary 3.4 and Lemma 2.8 we conclude that a positive semidefinite 
matrix X* exists such that (Qi, X * ) = a  i for i =  1 . . . . .  k , (F,  X * ) <  1, and 
additionally rank X* < d. Now by Lemma 2.1 it follows that a v ~ ~,,• exists such 
that f ( v )  < 1 and q(v)  = a. Since the set q~(A) is convex the image Q(Ef)  is also 
convex. 

To conclude the proof, we observe that the identity matrix can be approximated 
by a regular matrix with an arbitrary small error  (see Proposit ion 3.3). This is, for 
any e > 0 a positive definite regular  matrix F exists such that the ellipsoid Ef  
approximates the unit ball B ~ R n• within the margin less than 6, 

(1 - e ) . E f c  B c (1 + e ) . E l .  

Hence we conclude that the image q(B) is convex. [ ]  

The crucial component  of  the above proofs is the observation that a certain affine 
subspace 

k 

F - E z i .  Q i ,  z 1 . . . . .  z k E ~ ,  
i = 1  

and does not intersect certain varieties W~ of singular forms in the space of  
quadratic forms W n. This allows us to improve the bound of d in Theorems 1.3 and 
1.5 if our matrices Q1 . . . . .  Qk have a special structure. A particular example of such 
a structure is given below. 

(4.1) Example. r-Diagonal Matrices. We say that a symmetric matrix Q = (qij), 
1 < i, j < n, is r-diagonal if and only if q# = 0 unless li - j l  < r. Suppose that 
Q1 . . . . .  Qk are symmetric n • n r-diagonal matrices. Let  us pick up an n x n 
symmetric positive definite matrix F = (f,7), 1 < i, j _< n, of the following type: 

i if i = j ,  
f i j  = ij  = ~Tji > 0 if li - j l  = r, 

elsewhere. 

Then, for all z = ( z l , . . . ,  z~) ~ R k, 

ran+  zO) n 



Problems of Distance Geometry and Convex Properties of Quadratic Maps 201 

since the (n - r) • (n - r) submatrix of this linear combination consisting of the 
(i, j)-entries with i = 1 . . . . .  n - r and j = r + 1 . . . . .  n is nondegenerate (as a lower 
triangular matrix with nonzero epsilons on the main diagonal). The proof of the 
following convexity result is completely analogous to the proof of Theorem 1.5. 

(4.1.1) Proposition. Let us fix r ~ N. Suppose that q l . . . . .  qk : R ~ • d _~ R are vecto- 

rial quadratic forms whose matrices are r-diagonaL Then the image q(B) of the unit ball 
B c ~n• under the quadratic map q: [~•  __> ~k, q(v) = (ql(V) . . . . .  qk(v)), is 

convex provided d > r. 

In particular, if d = r = 1, then q l , . . . ,  qk are diagonal forms. After the substitu- 
tion Yi = x2, i = 1 . . . . .  n, the unit ball B = {x = (xl . . . . .  xn): x~ z + . . .  +x  2 < 1} in 
[~n = Nnxl transforms into the simplex A = ((Yl . . . . .  Yn): Yi >- 0 for i = 1 . . . .  n and 
Yl + "'" +Yn < 1} whereas the quadratic forms qa(x) . . . . .  qk(x) transform into linear 
forms in Yl , . . . ,  Y~- Hence we may consider Proposition 4.1.1 as a generalization of 
the fact that the image of a convex polytope under a linear map is convex. In 
particular, we get the following "complex version" of this elementary fact. 

(4.1.2) Corollary. Let C ~ be a complex vector space and let ql . . . . .  qk: Cn -~ ~ be 

Hermitian forms whose matrices are real and 2-diagonal. Then the image q(B) of the 
unit ball B = {(z 1 . . . . .  zn): ~,l.Zl + . . .  +2 n . z  n < 1} under the map q: C n - ~  R k, 

q = (ql . . . . .  qk), is convex. 

Proof. Identifying C n and R n• we reduce Corollary 4.1.2 to Proposition 4.1.1 with 
r =  2. [] 

(4.2) Computational Questions. We have not discussed yet how to construct a 
realization in ~d of a given weighted graph even if we know that such a realization 
exists. If the dimension d satisfies the condition of Corollary 1.4, then such a 
realization can be obtained by solving the semidefinite program (2.3.1)with a regular 
positive definite matrix F. For a problem of this type either the ellipsoid method or 
an efficient interior point method can be applied (for computational aspects see [2], 
[3], and [12]). 

(4.3) Possible Applications to Rigidity. Connelly suggested that Theorem 1.3 can be 
applied not only to the problem of realization (that is, existence of a configuration 
with prescribed distances) but also to the problem of rigidity (that is, local or global 
uniqueness of the configuration). For example, second-order rigidity can be expressed 
in terms of vectorial quadratic equations. It seems that our matrix F plays a role 
similar to that of "stress" in [6]. 
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