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Abstract. If a convex plane figure P can be decomposed into finitely many 
nonoverlapping convex figures such that one of these pieces is similar to P, then P 
is a polygon. Also, if P can be decomposed into infinitely many nonoverlapping 
sets such that each of the pieces is similar to P, then P is a polygon. 

By a convex figure we mean a compact  convex subset of the plane with nonempty 
interior. The following statement is mentioned,  without proof, on p. 1 of [1]. 

I f  a convex figure P is the union of  finitely many (but at least two) nonoverlapping 
and congruent sets similar to P, then P is a polygon. 

In this note we prove the following two generalizations of this result. 

Theorem 1. Suppose that the convex figure P is the union of  finitely many (but at least 
two) nonoverlapping convex figures such that one o f  them is similar to P. Then P is a 
polygon. 

Theorem 2. Suppose that the convex figure P is the union of  infinitely many nonover- 
lapping sets similar to P. Then P is a polygon. 

We use the following notation. The diameter,  interior, closure, boundary,  and 
derived set (set of points of accumulation) of a set A are denoted by diam A,  int A,  
cl A,  OA, and A'. If A is convex, then we denote the set of extremal points of A by 
E(A) .  The isolated points of  E ( A )  are called vertices, and the set of  vertices of A is 
denoted  by V(A) .  It is easy to see that p ~ V ( A )  if and only if p is the common 
endpoint  of two nonparal lel  segments contained in OA. The angle of these segments 
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is denoted  by aA(p). It is clear that V(A)  is always countable and for every e > 0 
the set {p ~ V(A): a.4(p) < 1r - e} is finite. Therefore,  if V(A)  is infinite and 
Pl ,  P2 . . . .  is an enumerat ion of  V(A), then O~A(pn) ~ 7r. 

We denote  the set (E (A) ) '  by K(A).  Thus E(A)  = V(A)  u K(A).  It  is easy to 
see that p ~ OA \ K ( A )  if and only if there is an open subarc I of 0A such that 
p ~ I and I consists of at most two line segments. Clearly, K ( A )  = 0 if and only if 
A is a polygon. 

To prove Theorem 1, suppose that P is a convex figure, P = U ~=1 Pi, where 
P1 . . . . .  Pn are nonoverlapping convex figures and P1 is similar to P. Then 

n 

OP 1 n i n t  P c U (P1  N Pi)- (1) 
i=2 

Indeed,  every x E 3P l N int P is a point  of accumulation of U in--2 Pi. Thus x 
P1 N P,' c P1 n Pi for at least one i _> 2. Since the sets P1 N Pi are line segments 
(or points), it follows from (1) that OP 1 n int P can be covered by finitely many 
lines. Therefore  the next lemma yields Theorem 1. 

Lemma 1. Let P and P1 ~ P be similar convex figures such that OP 1 n int P can be 
covered by finitely many lines. Then P is a polygon. 

Proof. First  we note that E(P 1) N int P is finite, as E(P 0 intersects every line in 
at most two points. Let  4, denote  the similarity transformation mapping P onto P1. 
We show that 4,(K(P)) c K(P).  Let p e K(P)  and P l  = 4,(P). Obviously, P l  ~ 
K(P 0 and hence Pl ~ E(P1)'. Since E(P~) n i n t  P is finite, it follows that P l  E 
(E(P~) n OP)'. We claim that Pl ~ K(P).  If this is not  true, then p l  E O P \ E ( P )  
or p E V(P). In both cases there are two line segments, I and J, in c)P having Pl  as 
a common endpoint.  Since p l  ~ ( E ( P  1) n OP)', one of  these line segment,  say I, 
contains at least two distinct elements q :/: p~ and r 4= P l  of E(P  0 n OP. Then Px, 
q, and r are collinear points of OP1 and hence there is a line segment I '  c I N OP~ 
containing Pl ,  q, and r. However,  in this case q and r cannot be both  extremal 
points of P1, a contradiction. Therefore  Pl ~ K(P)  as we stated. 

Consequently, K(P)  is a compact  subset of OP that is mapped  into itself by the 
contract ion 4,. If P is not a polygon, then K(P)  4= ~ and it follows that 4' has a fixed 
point  Po ~ K(P).  Let S denote  the angular  domain between the half-tangents of  P 
at P0 and containing P (S is a half-plane if P has a tangent at P0)- Since 
4 ' (P)  = P1 c P,  it is easy to see that ~b(S)=  S. This implies that ei ther  4' is a 
homothet ic  t ransformation or it is a homothet ic  t ransformation followed by a 
reflection. In both cases, q, 4'2(q), and P0 are collinear for every point q. 

Since Po ~ K(P),  we have P0 = q~(Po) ~ K(P1) = E(P1)'. Since E(P 1) N int P is 
finite, it follows that P0 E (E(P  0 n 0P) ' .  This implies, in particular, that  E ( P  x) n 
0P is infinite. Let ql ~ E(P1) n OP be arbitrary, and put q = 4 ' -1(q l )  and q2 = 

4'(q0.  Then q ~ E(P)  c OP and q2 E o~P1, since ql ~ OP. As we remarked above, 
the points q, q2, and P0 are collinear. Now we distinguish between two cases. If 
q2 E 3P, then q, q2, and P0 are collinear points of OP and thus the segment I with 
endpoints  q and P0 belongs to OP. In this case qa = 4' 1(q2) @ ~ b - l ( I ) '  Clearly, 
there  are at most two lines that intersect OP in a segment with endpoint  P0, and 
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hence those points q~ of E(P~) n OP for which q2 E OP, can be covered by at most 
two lines. 

If, on the other hand, q2 ~ int P, then ql = q~-l(q2) ~ ~b l ( O P  1 n i n t  P). Since, 
by assumption, OP~ n i n t  P can be covered by finitely many lines, we obtain that 
those points q~ of E ( P  1) n OP for which q2 ~ OP, can be covered by finitely many 
lines. Summing up, E ( P  a) n OP can be covered by finitely many lines. However, 
E(P~) contains at most two elements of every line and hence E ( P  0 N OP must be 
finite. This contradicts our previous statement that E(P~) n OP is infinite. There- 
fore K ( P )  = 0; that is, P is a polygon. []  

Now we turn to the proof of Theorem 2, and suppose that P = U~IPi, where 
P1, P2,- . .  are nonoverlapping sets similar to P. We say that a point p is critical, if 
ever?./neighborhood of p intersects infinitely" many of the sets Pr 

l_emma 2. Let G c P be open and suppose that G contains no critical points. Then 
E ( P  i) c3 G is finite for every i. 

Proof. If p ~ (OP i) n G, then there is a neighborhood U of p that intersects only 
a finite number of the sets Pj. This easily implies that every point of (OP i) n U is 
contained in a Pj with some j ~ i (see the proof of (1)), and hence (OP i) n U is 
covered by finitely many sets of the form P i n  Pj (i 4= j). Since these sets are line 
segments (or points), it follows that E ( P  i) n U is finite, and hence E ( P  i) n G = 
V(P  i) n G for every i. 

Suppose that E ( P  i) n G = V ( P  i) n G is infinite, and let Px, P2 . . . .  be an enu- 
meration of V(P).  As we remarked earlier, we have C~e(pn) ~ rr (n ~ ~), where 
ae(pn)  denotes the angle of the two line segments of OP with endpoint p~. If 
p E V ( P i ) N  G, then there is a neighborhood of p that intersects only a finite 
number of the sets Pj such that p is a common vertex of these ~ ' s .  If the angles at 
these vertices are c~e(p~ ,) (i = 1 . . . . .  k), then ae(p~ ~) + "" + c~e(pn k) = vTr, where 
v = 1 or 2 (we have v = 1 if p E d P i \ E ( ~ )  for some j). Since ~p(p~) > 0 and 
~p(p , )  ~ 7r, it is easy to see that the number of sets of indices {n I . . . . .  n k} 
satisfying these equations is finite. However, if V(Pi) n G is infinite, then infinitely 
many different angles must occur among these indices (namely, the angles of Pi at 
the points of V(P~) n G), which is a contradiction. [] 

Lemma 3. Suppose that P is not a polygon. Let G c P be an open set containing a 
critical point and let n be a positive integer. Then there is a closed disk D c G \ Pn such 
that int D also contains a critical point. 

Proof. First we assume that G \ Pn does not contain critical points. This implies, by 
Lemma 2, that E ( P  i) n (G \ Pn) is finite for every i. If i ~ n, then E ( P  i) n Pn is 
also finite, since Pi and Pn are nonoverlapping convex sets. That is, E ( P  i) n G is 
finite for every i 4= n. 

Since the sets Pi are similar and are contained in P, it follows that diam Pi ~ O. 
As every neighborhood of a critical point p ~ G intersects infinitely many Pi's, it 
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follows that G contains infinitely many of the sets Pi. If  Pi c G and i r n, then 
E ( P )  is finite; that is, Pi is a polygon. Then so is P, contradicting our assumption. 

Therefore G \ P~ must contain at least one critical point p. If D is a small closed 
disk around p such that D n P~ = ~, then D satisfies the requirements of the 
lemma. []  

Now we prove Theorem 2 assuming that int P contains a critical point. If P is not 
a polygon, then, by Lemma 3, there is a closed disk D 1 c int P such that O 1 N P1 = 

and int D 1 contains a critical point. Applying I_emma 3 again, we can choose a 
closed disk D 2 c i n t  D 1 such that D 2 n P2 = 0 and int D 2 contains a critical point. 
Continuing this process, we can define the nested sequence of closed disks D 1 D 
D 2 D - ' . .  If  p e n n = l D n ,  then p E P and p ~ U n = l P n ,  a contradiction. 

Therefore, in order to prove Theorem 2, we may assume that int P contains no 
critical points. In this case, by Lemma 2, the sets V i = E ( P  i) n i n t  P are finite for 
every i. 

Our  next aim is to show that, for at least one i, aP i n i n t  P can be covered by 
finitely many lines. For a given i, consider the components of the set 3P i \ (3P  O Vii). 
These components are open subarcs of c~Pi, and, as they do not contain extremal 
points of Pi, they are line segments. These line segments are of  two kinds: either 
their endpoints are in 0P; that is, they are chords of P,  or at least one of their 
endpoints is in int P. In the latter case these endpoints belong to V~ and hence the 
number of these line segments is finite (at most twice the cardinality of V/). That is, 
if aP i a int P cannot be covered by finitely many lines, then 3P i contains infinitely 
many chords of  P. It is easy to see that in this case 3P  \ Pi has infinitely many 
components. 

Suppose this happens for every i. Then cTP \ P1 has infinitely many components; 
let 11 be a component  with diam 11 < 1. Clearly, 11 is an open subarc of 3P. Let 
Pi2 n 11 ~ 0; then, as P1 and P,2 are nonoverlapping convex sets, it follows that Pi2 
is contained in the convex hull of 11. This implies that each component of  dP \ / ' , 2 '  
with at most one exception, is also a component of  11 \ Pi2. Let 12 be one of these 
components with cl 12 c 11 and diam 12 < 1/2.  Let Pi3 n 12 ~ 0; then Pi3 is con- 
tained in the convex hull of 12. Thus every component of  3P \ Pi,, except one, is 
also a component of 12 \ Pi~; let 13 be one of these components with cl 13 C 12 

and diam 13 < 1/3.  In this way we can define the nested sequence of subarcs 11 
12D . . . .  If p e  0~=1 clI~, then p cannot be covered by any of the sets Pi, 
which is impossible. 

Therefore at least one of  the sets 0P i n i n t  P must be contained in a finite system 
of lines. Then an application of Lemma 1 completes the proof  of Theorem 2. [] 

Problems and Remarks. 1. The analogue of  Theorem 1 in higher dimension is not 
true: every cone C can be decomposed into two nonoverlapping convex sets such 
that one of  them is similar to C. In connection with this example, T. Zamfirescu 
asked the following (personal communication, June 1994): 

Let P be a convex figure in R 3 and suppose that P is the union of finitely many 
nonoverlapping convex figures such that two of the pieces are similar to P. Does this 
imply that P is a polyhedron? 
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2. We do not know whether  or not the higher dimension analogue of Theorem 2 
is true. 

3. Not  every convex polygon P can be decomposed into infinitely many nonover- 
lapping sets similar to P. A necessary condition for the existence of such a 
decomposit ion is that  27r is a linear combination of the angles of P with nonnega- 
tive integer coefficients. Indeed,  suppose that this condition is not satisfied, and, still, 
there is a decomposit ion P = U ~ = 1Pn with the given properties.  This easily implies 
that whenever p E int P is the vertex of any of the polygons Pn, then each 
neighborhood of p contains infinitely many polygons Pk. Then we can find a 
sequence of closed disks D n such that int P D D 1 D D 2 D . . . .  the center of each 
D n is a vertex of one of the polygons Pk, and D n n P n  = ~  for every n. If  
p ~ n ~= 1D,, then p c P \ U ~ 1P~ which is impossible. 

This necessary condition is not sufficient. For  example, it can be shown that the 
regular hexagon cannot be decomposed into infinitely many nonoverlapping regular 
hexagons. 

4. It is easy to prove that if a polygon P can be decomposed into finitely many 
nonoverlapping sets similar to P, then it can also be decomposed into infinitely 

Fig. 3 
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many such sets. The converse, however, is not true, as the following simple example 
shows. 

Let P denote the pentagon with vertices A B C E F  on Fig. 1, where A B D F  is a 
square and C and E are the middle points of the sides B D  and DF. It is clear that 
P cannot be decomposed into finitely many nonoverlapping sets similar to P. For the 
sake of brevity we say that a set S has an infinite P-tiling if S can be decomposed 
into infinitely many nonoverlapping sets similar to P. We want to show that P has 
an infinite P-tiling. 

(i) As Fig. 2 shows, removing a Cantor-set from the hypotenuse of  an equilat- 
eral right triangle, the remaining set has an infinite P-tiling. 

(ii) Then it follows that every square has an infinite P-tiling (see Fig. 1). 
(iii) Finally, Fig. 3 shows an infinite P-tiling of P itself; the sets T 1 and T 2 have 

infinite P-tilings by (i), and the remaining three squares have infinite P-til- 
ings by (ii). 
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