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Abstract. We design polynomial-time algorithms for some particular cases of the 
volume computat ion problem and the integral points counting problem for convex 
polytopes. The basic idea is a reduction to the computation of certain exponential 
sums and integrals. We give elementary proofs of some known identities between 
these sums and integrals and prove some new identities. 

1. Introduction 

Let P c R" be a convex n-dimensional polytope. We consider the problem of 
computation of the volume of P and counting the integral points in P. To do this 
we introduce the following main objects. 

(1.1) Exponential Integral. We consider the following expression: 

p exp{(c, x)} dx, 

where c~ R', (., .) is the scalar product in R ~, and dx is the Lebesgue measure 
on R n. 

(1.2) Exponential Sum. We consider the following discrete sum: 

E exp{(c, x)}, 
x e P n Z "  

where Z ~ is the standard integral lattice in R'. 
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We also consider integrals and sums over a convex polytopal cone K c Rn: 

fx e x p { ( c ,  x ) }  dx  and ~ exp{(c, x)~}. 
x e K  n Z n 

Exponential sums and integrals satisfy certain nontrivial algebraic relations which 
make it possible to compute them efficiently in some particular cases. Although 
the identities usually degenerate when c = 0, the computation at a point c close 
to 0 enables polynomial-time algorithms for computation of the volume and 
counting the integral points for some classes of polytopes to be designed. 

In Section 2 we prove some identities for the exponential integrals. Then we use 
them to design algorithms for computation of the volume (Section 3). In Section 
4 we prove certain identities for the exponential sums. Then we apply these 
identities for counting the integral points in integral polytopes (Section 5). In 
Section 6 we prove an anologue of identities for nonrational polytopes. 

2. Exponential Integrals 

We begin with three examples of exponential integrals over polytopes and cones. 

(2.1) Example (Simple Cone). Let K = R~. be the nonnegative orthant, R~. = 
{x = (x~ . . . . .  Xn)~Rn: Xi > 0 for all i}. Choose c e l n t  ~_ ,  where R ~_ := -R%.  
Then we have 

fx  exp{(c, x)} d x  = ffI ( - c ? 1 )  �9 
i = 1  

Moreover, let K be the conic hull of linearly independent vectors ul . . . . .  u n, so 
K = co{u1 . . . . .  un}. Denote by K* = {x~R':  ( x , y )  < 0 for all y E K }  the polar 
of K. Then for all c e Int K* we have 

L exp{(c, x)} dx  = lul A "'" ^ UnIFI ( - -C ,  Ul) -1 
i = 1  

To obtain the last formula we have to apply a suitable linear transformation to 
the previous integral. 

(2.2) Example (Cube). Let I n = [0, 1] n be an n-dimensional unit cube. Then 

f exp{(c, x)} d x  = f i  c i - ' ( exp{c , }  - 1) 
. i = 1  

for all c = (cl . . . . .  c.). If ct = O, then the corresponding factor is equal to 1. 
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(2.3) Example (Simplex). Let L = {x: x = (xl . . . . .  x,), xl + "'" + x, = 1} be the 
hyperplane in R" and let A = L c~ R"+ be the standard simplex. Denote by # the 
Lebesgue measure on L induced from R". Then 

fA exp{(c, x)} d/z= x/n ~ exp{cj} ~ ( c j -  Ck)-' 
j = l  k=l ,k~: j  

for all c ~ R" with pairwise distinct coordinates. 

Proof. It is enough to prove this identity only for c in Int R"_, since by adding 
a suitable multiple of (1 . . . . .  1) we can always put c in the negative orthant. Let 
us introduce the function 

@ ( x ) = { ~ x p { ( c , x ) }  if otherwise.XeR%' 

The desired integral has the form SR~ ~k d#, where/~ is considered as a measure in 
R" concentrated on L. If we apply the Fourier transform : tp(x)~--~dp(y)= 
~R~ tp(x) exp{-2ni(y ,  x ) }  dx, we obtain 

f c, 
n n 

Here ~(x) = 1--~= 1 (2nix~ - c j)-  1, and # is the measure on the orthogonal comple- 
ment L • with the density exp{-2ni(a ,  x)} where a = (1/n . . . . .  1/n). 

So the desired integral is equal to 

x//n f a  exp{2rciy} f i  (2rciy - c j)-1. 
j = l  

If c has pairwise distinct coordinates, then the function has only simple poles 
y j = (1/2ni)c j with the residues (exp{ c y 2 n i )  l-I~,= 1.k ~ 1 ( C j -- Ck). Since c ~ Int R"_, all 
yj belong to the upper half-plane. Choosing the contour consisting of the upper 
semicircle R(cos q~ + / s i n  tp), 0 < tp < n, and of the interval i - R ,  R-I, where 
R --* + oo, by the Residue Theorem we obtain the desired value. [] 

This formula was obtained in [11]. Podkorytov uses [1 I] induction on n instead 
of the Fourier transform. 

Now we can describe the general form of the integrals SK exp{(c, x)} dx, where 
K is a cone. 

(2.4) Proposition. Let  K be a polytopal convex n-dimensional cone in R" without 
straight lines and let K* = { x ~ R": (x, y)  < O for  all y ~ K} be the polar o f  K. Then 
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for all c ~ Int K* the integral 

~x exp{<c, x>} dx 

exists, and determines a function s(K; c) which is rational in ce  C". Let u~ . . . . .  u, 
be unit vectors on the extreme rays o f  K. Then the set of  singular points of  s(K; c) 
is the union of hyperplanes H = ~ = ~  Hj, where Hj = {ce C": <c, uj) = 0}. 

Proof. By Example 2.1 it follows that the statement is true when K is a simple 
cone. The cone K can be subdivided into the union of simple cones K = Uj~ ~ Kj 
so that Int K~nIn t  Kj = ~ when i #  j, and the set of extreme rays of Kj, 
j = 1 . . . .  , m, coincides with the set of extreme rays of K (see, for example, Lemma 
4.6.1 of [12]). It follows that 

s(K; c) = ~ s(Kfi c) 
j = l  

and that each singular point of s(K; c) is contained in H. Since s(K; c)--, oo 
when c ~ c o ~ H, c ~ K*, we conclude that the set of singular points coincides with 
H. [] 

If K +v ,  veR",  is a shift of the cone K, then the integral ~x+v exp{(c, x)} dx 
determines the meromorphic function exp{(c,v)}s(K;c).  We denote it by 
s(K + v; c). 

The following result provides a decomposition of an exponential integral over 
the whole polytope into a linear combination of the integrals over facets. 

(2.5) Lemma. Let P c R" be a convex n-dimensional polytope and let Fi, 
i = 1 . . . . .  m, be the set of  its facets. Let #~ be the Lebesoue measure on the affine 
hull of  Fi. Denote by ai the outer unit normal to Fi. Then 

fp 1 ~ <2, n,) f r  exp{<c, x>} d/~, exp{<c, x)} dx - <2, c) i=l 

for  all ccC",  2eR", such that <c, 2) # 0. 

Proof. Without loss of generality we may assume that 
introduce the following differential form on R": 

~ x )  = exp{<c, X>}U 1 A ' ' "  A Un_l,  

<2,2) = 1. Let us 

where (2, u i ) = 0 f o r a l l i = l  . . . . .  n - - l a n d 2 A u l  A ' ' ' A U . _ l = e l  A ' ' ' A e . .  
Here e x , . . . , e ,  is assumed to be the standard basis of R ". Note that dto = 
exp{(c, x)}e~ A "'" A e.. Applying the Stokes formula to P and to, we obtain the 
desired result. []  
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Now we are able to prove the main result of this section. 

(2.6) Theorem. Let  P ~ R ~ be a convex n-dimensional polytope. For each vertex 
v ~ Vert P o f  P, let us define the cone K~ as the smallest convex cone with the vertex 
v which contains P. Then 

fv exp{(c, x)} dx = ~ s(Ko; c) 
v e V e r t P  

for  all c ~ C A such that c is a regular point o f  all functions s(Ko; c). 

Proof. Let us choose 2 e R n, 2 # 0, such that 2 is not orthogonal to any edge of 
P. Consecutively applying Lemma 2.5 to P, then to its facets, to faces of 
codimension 2 and so on, finally we obtain a decomposition 

fe exp{(c ,  x)} dx = ~, exp{(c, v)}qv(c), 
v~VertP 

where qv(c) are homogeneous rational functions, qo(tc) = t-nq~(c) for all t e C. Now 
we have to prove that in fact q~(c) = s(K~ - v; c). 

Let us choose w e Vert P. Consider an open set Uw ~ R n such that for all c e Uw 

(c, w) > (c, v) if v e V e r t P  and v # w  

and Uw does not contain any singular point ofs(Kv; c), v e Vert P. Then we have 

lim t" e x p { - t ( c ,  w)} f e  exp{t(c, x)} dx 
t ~  -I- oO 

= lim t ~ exp{--t(c,  w)} fK exp{t(c, x)} dx 
t ~ -t- oO w 

= f exp{(c, x ) )  dx for all c e U ~ .  
d K w - w  

The first equality holds since the integrals outside an arbitrary small neighbor- 
hood of the vertex w are asymptotically negligible when t tends to infinity. The 
second equality holds since s(Kw - w; c) is a homogeneous function. Similarly, we 
have 

lim t ~ e x p { - t ( c ,  w)}  ~ exp{t(c, v)}qv(tc) = qw(c) 
t - ~  + ov  v c V � 9  

for all c e  Uw. So qw(c) and s(Kw; c) coincide on a certain open set in R n. Since 
these functions are rational they coincide everywhere. []  
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This theorem was first proved by Brion [3] in the case of a rational polytope 
P. This restriction arose because Brion obtained the result as a limit case of his 
theorem on integral points in convex integral polytopes (see Section 4). Later 
elementary proofs were given by A. G. Khovanskii and A. V. Puhlikov (1989) and 
independently by the author [2]. These proofs are essentially different, here we 
have given a modified version of the proof from [2]. Note that Theorem 2.6 follows 
from Example 2.3 and the observation that each polytope can be subdivided into 
simplices without new vertices. We gave here a different proof based on certain 
asymptotics since this method also appears to be useful in the case of discrete 
exponential sums. 

3. Computing the Volume of a Polytope 

We turn to the application of exponential integrals to computation of the volume 
of a convex polytope. It is known that this problem is 41: P-complete if the polytope 
is given by its vertices or by its facets (see [8] and [4]). Nevertheless, there exist 
a probabilistic approximative algorithm which, for any given ~ > 0, computes the 
volume of a convex body given by its oracle with relative error less than t, in a 
time which is polynomial in e-1 !5-1, and a deterministic polynomial-time algo- 
rithm which computes the volume of an n-dimensional convex body given by its 
oracle, with a relative error bounded by n ~3/2J~ (see [-6]). The volume of an 
n-dimensional convex body given by its oracle with relative error less than 
(const .(n/log n)) ~ cannot be computed in polynomial time (see I-1]). 

If we put c = 0, then the Exponential Integral 1.1 transforms into the volume 
of P. However, the point c = 0 is singular for all functions s(Kv; c). So to compute 
vol P approximately, we have to calculate Integral 1.1 at a nonzero point c which 
is close to 0. 

By arithmetic operations we mean addition, subtraction, division, multiplica- 
tion, and comparison of real numbers. We begin with the computation of s(K; c). 

(3.1) Lemma. Assume that a convex polytopal n-dimensional cone K c R ~ without 
straight lines is given as convex hull o f  its extreme rays, so K = co{u 1 . . . . .  Urn} for  
some given vectors u I . . . . .  um~ R ~. Then, fo r  any given c~ C n, we can compute the 

/ / \ x  

s (K;c)  (or decide that c i s a s i n g u l a r  point)using O ( n a ' m ' ( m ) )  value arithmetic 

operations. 

Proo f  If K is a simple cone we can use Example 2.1 to compute s(K, c). In 
general, we have to reduce the problem to the case of simple cones. To do this, 
we use the so-called "regular" subdivision. We consecutively move the points 
ui~-*vt = ti'u~, ti > 1, i = 1 . . . . .  m, so that the following condition of general 
position holds: if dim co{nil, ui 2 . . . . .  u~.+l} = n, then the points vi,l vi2 ' " " " ' vin+l are 

/ / \ \  

affinely independent. To construct the points v I . . . . .  v,n we need O ~ m . n 3 . ~ m ~  
\ \ , / ]  n 

arithmetic operations. 
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/ , , , \  
Put  P = conv{vl . . . . .  v=}. Now we have to check for each of [ ' n ' ) co l l ec t ion  of 

\ . - /  

vertices l = {vl . . . . . .  v~,} whether  their convex hull is a facet of  P, such that  
K l = co{u~ . . . . . .  ui~} is an n-dimensional convex cone. For  a given collection this 
procedure requires O(n 3. m) ari thmetic operations. The set of such facets gives us 
a covering of K by simple cones K~ = co{ui,, . . . .  u~} such that  each point  in K, 
except points in a set of measure  zero, belongs exactly to two such cones. (If we 
choose facets which are "visible" f rom the point 0, then we obtain the regular 
subdivision ment ioned above,  but it is enough to use the constructed covering.) 
Now we have s(k; c) = �89 ~ i  s(Kt; c). [] 

Since we are interested in complexi ty theory, let us restrict ourselves to 
integral polytopes  given by their vertices vl . . . . .  vmeT?". We use the not ion of 
input size (see, for example,  I-6]). So for a given v = (vl . . . . .  v , )eZ",  size v ~, 
n + log(Ivll + 1) + �9 .. + log(lv, I + 1). 

(3.2) Theorem. There ex&ts an algorithm which, for any given integral vertices 
v I . . . . .  v.,e 7/" and any number ~ > O, computes the volume o f  the polytope P = 
conv{vl . . . . .  Vm} with relative error less than ~ using a number o f  arithmetic 
operations which is polynomial in max{size v 1 . . . . .  size vm}, log e, and linear in 

(e(v) I, 
v e V e r t P \  n / 

where e(v) denotes the number of  edges containing v. 

Proof. We have to choose sufficiently small c e R" and then compute  Integral  1.1 
using Theorem 2.6 and L e m m a  3.1. First, let us determine the set of edges of  P. 
For two given vertices v~, vj the prob lem of finding whether  [v~, vii is an edge of 
P is a linear p rogramming  problem which can be solved in a t ime which is 
polynomial  in n, max{size v l , . . . ,  size v,}. This is the only case where size v~ is 
involved. So we have determined the sets of  extreme rays of  Kv,. 

N o w  we have to construct  a point c which is separated from the sets of singular 
points ofs(Kv,; c) with some guarantee.  Let {Hi = {x: (x,  uj)  = 0 } , j e J }  be the set 
of all hyperplanes  or thogona l  to some edge of P. Put  c(t) = (1, t, t 2 . . . . .  t " -  1)e Z n 
for t e 7?. Now {p~t) = (u j, c(t)), j e J} is a family of nonzero polynomials.  Using 
known bounds  on the roots  of  a polynomial  we can choose sufficiently large to 
(but bounded  by a polynomial  in the input size) such that  I (C(to), u~)t > 1 for all 
j e J. The  complexi ty of  this a lgori thm is linear in the number  of hyperplanes.  

Without  loss of  generality we may  assume that  e < �89 Put  

~" C(to) 
C 

3" II C(to)I]" max{ II v, II . . . . .  ]l v.  II}" 
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N o w  we can compute  Sl, exp{(c ,x)}dx using Theorem 2.6. No te  that  
s(Kv,; c) = exp{(c,  vl)}s(Kv, -- vi; c). To compute  s(Kv, - vi; c) we can use 
L e m m a  3.1. Since exp{(c,  vi)} can be compu ted  with er ror  less than to using 
O((log ~o) 2) ar i thmetic  operat ions,  the p roof  follows. [ ]  

I f  e(v) < n + const  for all v ~ Vert(P), then the a lgor i thm has a po lynomia l  
complexity.  In the case when e (v )=  n for all r eVer t (P) ,  i.e., the polytope  P is 
simple, a po lynomia l  a lgor i thm of  the compu ta t ion  of  vol(P) was presented in I-9]. 
Lawrence  used G r a m ' s  relation, which is in a sense a limit case of  our  Theorem 
2.6 when c = t .c  o and t ~ 0. A polynomia l  a lgor i thm for computa t ion  of the 
volume of  a simple poly tope  was also constructed in 1131. This a lgor i thm is based 
on a certain decomposi t ion  of a simple poly tope  into the al ternat ing sum of 
simplices. 

Theorem 2.6 allows us to reduce computa t ion  of  the volume to computa t ion  of 
s(Kv, c). L e m m a  3.1 gives an est imation of  the complexi ty of  computa t ion  s(K; c) 
for a po ly topa l  cone given as the convex hull of its extreme rays. In the following 
example  we consider the dual  situation, namely  a cone is given as the intersection 
of  half-spaces. 

(3.3) Example .  Let  K c R" be an n-dimensional  convex poly topa l  cone without  
straight lines, which is given as the intersection K = N~': 1 Hj  of m half-spaces 
Hj  = {xe  R*, (a~, x )  > 0}, where a~eR*. We shall prove that  s(K; c) is a linear 

combina t ion  of not  more  than  ( m )  simplest rat ional  functions of  the type 

I-I~=l ((bj, c)) -1 for  some b i e r  n, j = 1 . . . . .  n. We  shall show how to construct  
this decomposi t ion.  

Let us consider the inclusion ~0: K ~ R m, tp(x) = ( (a l ,  x )  . . . . .  (am, x)).  Denote  
L = q~(R"). Then we have tp(K) = R~+ n L. Let # be the Lebesgue measure  on L. 
Fo r  c e R ~ _ define O(x) as in Example  2.3. Then we have 

s(K; Ac) = det-1/2(AA~) fn-  d/ dlz, 

where the matr ix  A consists of  the co lumns  al  . . . .  , am. Pu t  k = m - n. Applying 
the Four ier  t ransform,  we finally obtain  

s(K; Ac) = fR f i  (2rri<aj, y) - cj)-I dy, 
k j = l  

(3.1) 

where c = (ct . . . .  , cO. 
Let  us consider the set H of  complex hyperplanes  

H j  = {x~C~: 27ri(x, a j )  - c~ = 0} , j  = 1 . . . . .  m. 
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Assume that c e R ~ is "generic," namely that there is no point in C k which belongs 
to more than k hyperplanes in the set H. For J c {1 . . . . .  m}, card J = k, let us 
denote by xj  the common point (if one exists) of the hyperplanes Hi, j e J. Put 

Rj(c) = [ ~ aj - ~ 1-I (2hi(a j, x j )  - c~)-1. 
j,J 

Note that Rj(c) is a rational function having the desired type. Using the decomposi- 
tion R k = R k- ~ ~9 R, we represent the integral (3.1) as an iterated one. We success- 
ively apply the Residue Theorem to the integral with c chosen from a small 
neighborhood of the generic point Co. Finally we obtain a linear combination 

I I  \ k  

containing o ( ( m ) ) s u m m a n d s  of the form R~(c). Since s(K; Ac, is an analytic 
\ \  J / 

function in c, this decomposition holds for all c ~ C ~. The algorithm presented for 
the construction of this decomposition has a complexity which is polynomial in n k. 

/ /  \ \  

There exists a decomposition of K into a linear combination of o ( ( m ) )  simple 
\ \ ' - /  / 

cones 1-14] (see also Section 6). Therefore our result also follows from the existence 
of this geometric decomposition. However, the author does not know how to 
construct the decomposition effectively. 

By Example 3.3 it follows that for an n-dimensional polytope P, such that for 
all v~Vert(P) the cone Kv contains not more than n + const facets, we can 
compute its volume in polynomial time. 

Now we consider other methods of volume computation by means of expo- 
nential integrals. 

(3.4) Laplace's Asymptotic Formula and the Volume of a Section. Assume that 
for a given polytope P c R n, we can compute Sv exp{(c, x)} dx for all cE R n. Let 
c ~  ~ be a vector such that ( c , x )  > O for all x~P.  Put 

P1 = P n { x :  (c, x ) = l } .  

Then 

v o l P l =  lim /~m exp{m} fp ( c , x ) = e x p { - m ' ( c , x ) } d x .  
=_. + ~N/2n 

Proof. Let us denote g(z) = In z - z, z > 0, P~ = {xeP:  ( c , x )  = z}, and tp(z) = 
vol P~. Then the integral is equal to So + on ~k(z) exp{m" g(z)} dz. Since g(z) has the 
unique maximum z = 1 and g"(1) = - 1, then by Laplace's asymptotic formula we 
obtain the desired result. []  

An analogous formula holds for the intersection of a polytope with a space of 
larger codimension. 
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TO compute the integral we can use the formula 

(c, x )  m e x p { - m  . ( c ,  x ) }  dx = dt ~ exp{t- (c, x ) }  dx , :  -m 

and then replace the differential operator dm/dt ~ by the finite difference operator 
( A t ) - m ( T -  I) m, where T: t~--~t + At is a shift operator  and I is the identity 
operator. So we can reduce the computation of the integral to the computation 
of m + 1 exponential integrals over polytope P. Some examples and error estima- 
tions are given in [2]. In particular, we can compute approximately the volume 
of a section of the cube by a hyperplane. 

(3.5) Decomposition into Facets and Stokes Formula. We can use Lemma 2.5 to 
obtain an expression of the exponential integral over P as the sum of exponential 
integrals over facets. We can choose 2 ~ R" orthogonal to some normal vector nl 
in order to exclude "bad"  facets from the sum. An example is given in [2]. 

4. Exponential Sums 

We begin with three examples of exponential sums over integral polytopes and 
rational cones. 

(4.1) Example (Simple Rational Cone). Let K = co{u~,...,Um} c R" be a 
rational simple convex cone given as the conic hull of its extreme rays. So, 
d i m K = m  and Ul . . . . .  u,,eT/n. Without loss of generality we assume that 
u~ , . . . ,  u,, are integral points on extreme rays of K closest to 0. Let us denote by 
H the following parallelepiped: 

H = {x~ R": x = ctl ul + ~2 u2 + " "  + ~t,, urn, where 0 < ~t i < 1 for all i = 1 . . . . .  m}. 

Then we have (see, for example, Corollary 4.6.8 of [12]) 

E exp{(c,x)}= E e x p { ( c , x ) } - f l  ( 1 - e x p ( ( c , u , ) } )  -~ 
xEZnc~K x e l l c ~ Z "  i= 1 

for all c ~ I n t  K*. 

Let us denote by L the integral lattice generated by K c~ Z" and by L o the 
integral lattice generated by u I . . . . .  urn. Then card FI c~ Z" is equal to the index 
L : Lo of the subgroup Lo in L. 

(4.2) Example (Cube). Let I" = [0, m] n be an n-dimensional cube. Then 

exp{(c, x)} = f i  exp{c~m + 1 ) } -  1 
~z-~ l ,  i=1 exp{c~} 
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for all c = (cl . . . . .  c~). If cl = 0 for some i, then the corresponding factor is equal 
t o m +  1. 

(4.3) Example (Regular Simplex). Let 

A = { x = ( x l  . . . . .  x . ) e R ' + , x l  + x2 + ' " +  x . = m } ,  

where m ~ N is a regular simplex. Then it is easy to see that 

exp{(c, x ) )  = h.(C, . . . . .  C~), 
x e A ~ Z  ~ 

where h m is the full symmetric function of degree m (see [10]), and Ct = exp{cl}. 
Now we describe the general form of the function ~_~x~z.  exp{(c, x)} for a 

rational cone K. 

(4.4) Proposition. Let K be a rational polytopal convex cone in R ~ without straight 
lines. Then for all c ~ Int K* the series 

E exp{(c, x)} 
x c K ~ Z  ~ 

converges and determines a function a(K; c) which is rational in Ct = exp{ci}, 
i = 1 . . . . .  n. There exists a representation 

a(K; c) = 
P(c) 

I-I7'= 1 (1 - exp{(c, ui)})' 

where P(c) is a l_aurent polynomial in Ci. f f  K belongs to the half-space x~ >_ O, 
then the degree of  the numerator in Ci does not exceed the degree of  denominator. 
The set of  singular points of  tr(K; c) is the union of  hyperplanes 

Hi, k = {ceC~: (c + 2rrik, uj) = 0}, 

where j = 1 . . . . .  m and k ~ 7/~. 

Proof. By Example 4.1 it follows that the theorem is true when K is a simple 
cone. Since K can be subdivided into the union of simple rational cones K = 
~)j~ 1 Kj it follows that the theorem is true in general (see Proposition 2.4). []  

If K + v, vE ~", is a shift of the cone K, then the series ,~,~r+wz.  exp{(c, x)} 
determines the rational in Ci function exp{(c, v))a(K; c). We denote it by 
~ K  + v; c). Proposition 4.4 in different terms is kfiown (see, for example Theorem 
4.6.11 of [12]). We give its precise reformulation here in order to prove the 
following main result. 
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(4.5) Theorem. Let P = conv{v 1 . . . . .  Urn) be a convex integral polytope with the 
vertices vt . . . . .  Vme Z n. For each veVer t  P, let us define the cone K~ as the smallest 
convex cone with the vertex v which contains P. Then 

exp{(c, x)} = ~ a(Kv; c) 
x~_pt~2~n vc Ver tP  

for  all cE C" such that c is a regular point o f  all functions cr(K~; c). 

Proof. Let us consider an inclusion R " ~  R" + 1, x~--~(x, 1). Let ~ff = co{0, P} 
be the conic hull of the polytope P. Putting d = (c, t) where c ~ ~" and t < 0, we 
obtain 

tr(J~ff;d)=l + ~ T m exp{(c ,x  , 
ra= 1 \ x E m P c ~ Z  n 

where we denote T = exp{t}. Using Proposition 4.4 we conclude that tr(K; ~) is 
the rational generating function for the exponential sums over raP. The denomina- 
tor of this function is equal to l-Io~VertP (1 -- T exp{(c, v)}) and the degree of the 
numerator  is not larger than the degree of the denominator. Then by Theorem 
4.1.1. of [12] we conclude that for all me  

exp{(c, x )}  = ~, exp{m(c, v)}Qv(m; c), (4.1) 
x e r n P  n Z n v e V e r t  P 

where Qv(m; c) = q~,n(c)m" + "'" + qo.o(C) is a polynomial in m, whose coefficients 
are rational in exp{cl} . . . . .  exp{c,}. 

Now we have to prove that actually qo.i(c) = 0 if i > 0 and qo,o = tr(Kv - v; c). 
Then setting m = 1 we obtain the desired result. We use the same ideas as in 
Theorem 2.6. Let us choose w e Vert P. Consider an open set Uw c ~" such that 
for all c e Uw. 

(c, w) > (c, v) if v ~ V e r t P  and y e w  

and Uw does not contain any singular point of tr(Kv; c), v e Vert P. Then we have 

lim e x p { - m ( c ,  w)} E e x p ( ( c , x ) }  
m - *  + o0 x E m P n Z  n 

= lim exp{--m(c,  w)} E exp{(c, x)} 
m'-* + oo x E r a K w n Z  n 

= a(Kw -- w; c). 

The first equality holds since for an arbitrary small neighborhood W of the vertex 
w the sums outside the neighborhood m W  are asymptotically negligible when m 
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tends to infinity. The second equality is obvious. Applying the same construction 
to the right-hand side of decomposition (4.1), we conclude that the functions qo,~ 
have the desired type. []  

This theorem was first proved by Brion [3] using the theory of toric varieties. 
Elementary proofs were given by A. G. Khovanskii and A. V. Puhlikov (1989) and 
later independently by the author. These proofs are different, here the author's 
proof is presented. Note that if c = 0, then ~xE,,P~z, exp{(c, x)} transforms into 
the Ehrhart polynomial (see, for example, [12]). The point c = 0 is singular for 
all functions qv.o(C) and we can consider the Ehrhart polynomial as the value of 
)-~oeVerte a(Kv; mc) at the point c = 0. A result analogous to Theorem 4.5 holds for 
the integral points in the relative interior of P (see [3]). It can be proved using 
similar arguments. 

A. G. Khovanskii and A. V. Puhlikov also proved other remarkable identities 
between exponential sums and integrals. 

5. Counting Integral Points 

Now we turn to the application of exponential sums to the problem of counting 
the integral points in convex integral polytopes. This problem is more complicated 
than the problem of volume computation. It is ~: P-complete even in the case of 
integral simplex. It is not known whether a polynomial algorithm exists for 
counting integral points even if the dimension is fixed. Unlike the case of 
exponential integrals it seems to be ditficult to compute tr(K; c) even for simple 
cones. 

(5.1) Definition. Let K = c o { u  1 . . . . .  Urn} be a simple cone. Assume that ui . . . . .  Um 
are the integral points on extreme rays of K closest to the origin. Let us denote 
by I(K) the index of the sublattice L o generated by u~ . . . . .  us in the lattice L 
generated by K c~ 77 ~ (see Example 4.1). 

It is known that I(K) is equal to the g.c.d, of m x m minors of the matrix 
consisting of the columns ul . . . . .  u s (see, for example, [12]). 

(5.2) Lemma. Let K = co{u1 . . . . .  urn} c R n be a simple cone given by its vectors 
ul . . . . .  UmE Z ~. Then for all c EC" we can compute the value of  it(K; c) (or decide 
that c is a singular point) in a number of  arithmetic operations which is polynomial 
in n, II c [t, max{size u~, i = 1 , . . . ,  m} and linear in I(K).  

Proof. By Example 4.1 we have 

o-(K; c) = E exp{(c, x)}" f i  (1 -- exp{(c, u,)})- ' .  
x~Fl  r~ Z n i = 1 

So to compute o'(K; c) we have to find all integral points in the parallelepiped II. 
We assume that u~ . . . . .  um are closest to the origin integral points on extreme 
rays of K. As we have mentioned earlier (see Example 4.1) card H c~ Z ' =  
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L : Lo = I(K). Note  that  it is enough to find a certain representatives of  the cosets 
L/Lo, since if y = ~ ' =  1 fliui, f l~  R, represents a coset in L/L o, then the point  

= ~7'=l{fl~}u'ieH represents the same coset. We can construct  in polynomial  
time a basis e~ . . . . .  e ,  of  L and a basis d~ . . . . .  d ,  of Lo such that d~ = ~fie~ for all 
i and for some ~q e N (see, for example, [7]). Then it is clear that  vectors ~7'= 1 fl~e~, 
0 _< fli < aq, fl~ e Z, are the desired representatives of  L/Lo. [] 

N o w  we are able to prove the main theorem of this section. 

(5.3) Theorem. There exists an algorithm which, for any given integral vertices 
v I . . . . .  v , , e7  ~ such that P = cony{v1 , . . . ,  vm} is a simple polytope, computes the 
number o f  integral points in P using a number o f  arithmetic operations which is 
polynomial in n, max{size v 1 . . . . .  size vm} and linear in ~v~vc~P I(Kv - v). 

Proof. The reasoning is essentially the same as in Theorem 3.1. We have 
to choose a sufficiently small c which is a regular point  for all functions tr(Kv; c) 
and  then compute  ,~_.a~e~z. exp{(c,  x)} using Theorem 4.2 and Lemma 5.2. It is 
enough to choose c e R" such that  

Ilcll-< 
3-(2" max{l[ va II . . . . .  I[ v ,  It})" 

and then round  the Exponential  Sum 1.2 to the nearest integer. [ ]  

N o w  we give an example of  the computa t ion  of  tr(K; c) for the cone K given by 
its facets. 

(5.4) Example. Let a = (a I . . . . .  an)e~". We assume that  a~ < 0 for some i. Put  
K = {x e R~ : (a,  x )  = 0}. Choose  c = (c I . . . . .  c~) e Int  R ~_ with the pairwise 
distinct coordinates.  Let us consider the following series: 

F(z) = ~ exp{(c, x )}z  <~x>. 
x c Z  n 

This series converges to l-I~= 111/( 1 - exp{cl}z~J)] for all z in the circular annulus 

f fc t t f t max exp - -  , aj < 0 < I zl < m m  exp - -  , a l > 0 . 
~ a~ ~ ~ ~ aj 

By Cauchy 's  formula we have 

I 
f '  

F(z) 
tr(K; c) = - -  d~ 

2 n i . l  t~=l z 
- - d z .  
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Applying the Residue Theorem to this integral, we finally obtain 

o(K; c) E exp{--c~} lajlx'-- - "  --I1 1 
= Z j ,  k 

j : a j<O - - ( l j  k : 0  m : l , m : g j  1 - e x p { c . } z ~ . ~ '  

where we put Zj,k = exp{(2nik -- c])/aj}. 

Now it is clear that the complexity of the computation of a(K; c) is linear in 

~j:ai< o lajl �9 
Exponential sums can also be applied to counting integral points in the 

intersection of a polytope with a hyperplane. 

(5.5) Integral Points in Hyperplane Section. Let P c R" be a convex polytope and 
let a~7/". Assume that I(a,x)l < L for all x~P nT/" and for some L ~ .  Put 
P1 = e n  { x ~ " :  (a ,x)  = 0}. Then we have 

~ 1  t2rci, k(a, x) } c a r d P n 7 / " = L - 1  ~. exp 
k = o x~e,~Z. ~ L 

Proof. For all x e P n Z" we have 

{1 ~ 
L-1 ~ exp = 

k=O 

if (a, x )  = O, 
[] 

otherwise. 

Using Theorem 5.3 and Integral Points 5.5 we can define a class of polytopes 
for each of them the number of integral points inside can be easily computed. 
Using a similar approach we can also design algorithms for counting integral 
points which belong to the relative interior of an integral polytope. 

6. Integral Points in Nonrational Polytopes 

In this section we prove an analogue of Theorem 4.5 for nonrational polytopes. 
Let P ~ R" be an n-dimensional convex polytope, let K + v be an n-dimensional 

polytopal cone with the vertex v, and let p: R" ~ ~ be a polynomial. Let us consider 
an exponential sum with polynomial density: 

exp{ (c ,  x) }p(x). 
x ~ P n Z  n 

Together with this sum we can consider the series analogous to one which 
determines tr(K + v; c): 

exp{(c, x)}p(x). (6.1) 
x r ~ K + v n Z  n 
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Let us construct  the following differential opera tor :  

D p = p  , . . . ,  . 

For  a poly topal  n-dimensional  cone K + v with the vertex v let us define 

s(K + v, p; c) = Dps(K + v; c). 

I t  is clear that  s(K + v, p; c) = Sx+w exp{(c,  x)}p(x)  dx for all c e Int  K*. Applying 
the opera to r  Dp we obtain  a p-analogue of Theorem 2.6: 

fp  exp{(c,  x)}p(x)  dx = ~ s(K~, p; c). 
veV�9  

I t  turns out  that  for special po lynomia l  densities p we can prove a result 
ana logous  to Theorem 4.5. 

(6.1) Proposition. Assume that p(x) = O for  all x e d K  + v. Then for all c e l n t  K* 
the series (6.1) converges and determines a function a(K + v, p, c). This function has 
the representation 

a(K + v, p; c) = ~. s(K + v, p; c + 2~zik). (6.2) 
k e Z  ~ 

The series (6.2) converges uniformly on any compact set which lies in 

C~\US~j,k~zn(Hj + 2nik), 

where Hi, j e J, is a certain finite set o f  hyperplanes in C ~. In particular, tr( K + v, p; c) 
is an analytic function on C~\Uj~j.k~Z ~ (Hi + 27zik). 

Proof. First we prove the s ta tement  for a simple cone. Let K = co{u~ . . . . .  un}. 
Let  u* . . . . .  u* be the dual  basis, so ( u ,  u*)  = 6i,j. Set ~p(x) = I-IT=i (u*, x) .  Then 
we have p(x) = tp(x - v)~k(x) where ~,(x) is a certain polynomial .  Let us consider 
the differential opera to r  

D~, = , . . . ,  . 

Then  the series (6.2) can be writ ten as follows: 

~, D , s (K  + v, tp(x -- v); c + 2nik) 
k~Zn 

= [ul ^ " "  ^ u~[ ~ D ,  exp{(c  + 2nik, v)} f i  1 
k~Z" j= 1 ((--C -- 2nik, U j ) )  2 "  
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(Here we use the precise formula for the integral Sx exp{(c,  x)}~p(x)dx which 
reduces to the integral Sn~ exp{(c,  x ) } x l . x  z . . .  x ,  dx, see Example  2.1). When 

- 1 the series converges uniformly on each compact  set in C"\Uj~s.k~z, ( H  
j + 2nik), where Hj  = {x e C": (x ,  u j)  = 0}. If ~ ~ 1, we can apply the known result 
on differentiating a convergent  series of analytic functions. Then by Poisson 
summat ion  formula  we have that  the sum of this series cannot  differ from the sum 
(6.1) if c e I n t  K*. So, for a simple cone K we obtain 

n 
cr(K + v , p ; c ) =  [ul A "'" /x u, ID, ~ exp{(c  + 2xik, v)}j~= x 1 

kEZ" .= ( ( - c  - 2rcik, uj)) 2' 

Let us assume now that  K is not simple. Let A j, j ~ J ,  be the support ing 
hyperplanes  of its facets. Let  us choose an affine hyperplane B in •" such that  
Q = K c~ B is a convex polytope and B intersects with all affine subspaces of the 
form A = A~, c~ A j2 c~. . .  c~ Aj~, dim A > 0. By [14] it follows that there exists a 
representat ion 

Q = ~ raA, 
A~-@ 

where A e ~ are simplices separated in B by hyperplanes from the set {A j}. 
Here rA are integral numbers  and the equality should be considered as an identity 
between characteristic functions ZQ, Xa which holds everywhere except on a set of 
Lebesgue measure  zero in B. Put  Ka  = v + co{A - v}. Then 

K = ~ r A K  A. 
AE~ 

Since the desired s ta tement  is already proved for simple cones K a the p roof  
follows. [ ]  

Now we can prove the main  result of this section. 

(6.2) Theorem. Let  P c R" be a convex n-dimensional convex polytope and let 
p: R" -* R be a polynomial such that p(x) = 0 for all x ~ OP. Then 

exp{(c,  x)}p(x)  = ~. a(Kv, p; c) 
xePnZn v c V e r t P  

for  all c ~ C" which are regular points o f  the functions a(K v, p; c). 

Proof. Let us consider the series 

~" f e  exp{(c  + 2nik, x ) }  dx. 
keZ" 

(6.3) 
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W e  h a v e  

fe eXp{(c + 2nik, x)}p(x) dx = ~, s(K v, p; c + 2nik). 
v~ Vert P 

By proposition 6.1 we conclude that the series (6.3) converges to 

a(K~, p; c). 
v E Vert 

A.I. Ba~inok 

Furthermore, by the Poisson summation formula, we conclude that this sum 
cannot differ from 

and the proof  follows. [] 

exp{(c, x )  }p(x) 
xePc~" 

It seems that to compute a(K, p; c) is much more difficult than to compute 
tr(K; c) for a rational cone K. One way to do this is to use (6.2). 
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