Skip to main content
Log in

Rate coherence and event coherence in the visual cortex: a neuronal model of object recognition

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We propose a function-oriented model of the visual cortex. The model addresses an essential task of the visual system: to detect and represent objects. These are defined as sets, which reappear in the input with invariant inner relations. A network, incorporating an idealized description of anatomical and physiological data, is presented with a movie showing various moving objects. In the course of time, as a result of Hebbian plasticity, a connection scheme develops which embodies in its forward and lateral connections the information necessary to perform the operations involved in object recognition. We demonstrate that coherent neural activity can exploit this information. Two types of coherence have to be distinguished in this respect. Rate coherence performs invariance operations and association, while event coherence accomplishes segmentation tasks. The model reproduces and explains experimental findings made both in physiological recordings from the visual cortex and in psychophysical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1982) Local cortical circuits. An electrophysiological study. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Abeles M (1991) Corticonics. Neural circuits in the cerebral cortex. University Press, Cambridge

    Google Scholar 

  • Abeles M, Gerstein GL (1988) Detecting spatiotemporal firing palterns among simultaneously recorded single neurons. J Neurophys 60:909–924

    CAS  Google Scholar 

  • Aertsen A, Bonhoeffer T, Krüger J (1987) Coherent activity in neuronal populations: analysis and interpretation. In: Caianiello ER (ed) Physics of cognitive processes. World Scientific, Singapore, pp 1–34

    Google Scholar 

  • Aertsen AMHJ, Gerstein GL (1991) Dynamic aspects of neuronal cooperativity: fast stimulus-locked modulations of ‘effective connectivity’. In: Krüger J (ed) Neuronal cooperativity. Springer, Berlin Heidelberg New York, pp 52–67

    Google Scholar 

  • Aertsen A, Preissl H (1991) Dynamics of activity and connectivity in physiological neuronal networks. In: Schuster H (ed) Nonlinear dynamics and neuronal networks. Verlag Chemie, Weinheim pp 281–301

    Google Scholar 

  • Aertsen A, Vaadia E, Abeles M, Ahissar E, Bergman H, Karmon B, Lavner Y, Margalit E, Nelken I, Rotter S (1992) Neural interactions in the frontal cortex of a behaving monkey: signs of dependence on stimulus context and behavioral state. J f Hirnforschung 32:735–743

    Google Scholar 

  • Amit DJ (1989) Modeling brain function. The world of attractor neural networks. University Press, Cambridge

    Google Scholar 

  • Barnard E, Casasent D (1990) Shift invariance and the neocognitron. Neural Networks 3:403–410

    Article  Google Scholar 

  • Bauer M, Martienssen (1991) Coupled circle maps as a tool to model synchronisation in neural networks. Network 2:345–351

    Article  Google Scholar 

  • Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431

    Article  CAS  PubMed  Google Scholar 

  • Boven K-H, Aertsen A (1990) Dynamics of activity give rise to fast modulations of functional connectivity. In: Eckmiller R et al. (eds) Parallel processing in neural systems and computers. Elsevier, New York Amsterdam, Oxford, pp 53–56

    Google Scholar 

  • Braitenberg V (1978) Cell assemblies in the cerebral cortex. In: Heim R, Palm G (eds) Theoretical approaches to complex systems. Springer, Berlin Heidelberg New York, pp 171–188

    Google Scholar 

  • Braitenberg V (1985) Charting the visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex, Vol. 3. Plenum Press, New York London, pp 379–414

    Google Scholar 

  • Braintenberg B (1986) Two views of the cerebral cortex. In: Palm G, Aertsen A (eds) Brain theory. Springer, Berlin Heidelberg New York, pp 81–96

    Google Scholar 

  • Braitenberg V, Schüz A (1991) Anatomy of the cortex. Statistics and geometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biol Cybern 60:121–130

    Article  CAS  PubMed  Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comp 2:293–307

    Google Scholar 

  • Eckhorn R (1991) Stimulus-specific synchronisations in visual cortex: linking features into global figures? In: Krüger J (ed) Neural cooperativity. Springer, Berlin Heidelberg New York, pp 184–219

    Google Scholar 

  • Erb M, Aertsen A (1992) Dynamics of activity in biology-oriented neural network models: stability at low firing rates. In: Aertsen A, Braitenberg V (eds) Information processing in the cortex: experiments and theory. Springer, Berlin Heidelberg New York, pp 201–223

    Google Scholar 

  • Frégnac Y, Imbert M (1984) Development of neural selectivity in primary visual cortex of cat. Physiol Rev 64:325–434

    PubMed  Google Scholar 

  • Fukushima K (1988) Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks 1:119–130

    Article  Google Scholar 

  • Gerstein GL (1970) Functional association of neurons: detection and interpretation. In: Schmitt FO (ed) The neurosciences: second study program. Rockefeller University Press, New York, pp 648–661

    Google Scholar 

  • Gerstein GL, Bloom MJ, Espinosa IE, Evanczuk S, Turner MR (1988) Design of a laboratory for multi-neuron studies. IEEE Trans Systems Man Cyb SMC-13:668–676

    Google Scholar 

  • Gerstein GL (1988) Information flow and state in cortical neural networks: Interpreting multi-neuron experiments. In: von Seelen W, Shaw G, Leinhos UM (eds) Organization of neural networks, Verlag Chemie, Weinheim, pp 53–75

    Google Scholar 

  • Gerstein GL, Bedenbaugh P, Aertsen AMHJ (1989) Neuronal assemblies. IEEE Trans Biomed Engin BME-36:4–14

    Article  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1990) The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30:1689–1701

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN (1991) Short and long term changes in receptive field size and position following focal retinal lesions. Neurosci Abstr 17:1090

    Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    CAS  PubMed  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronisation which reflects global stimulus properties. Nature 388:334–337

    Article  Google Scholar 

  • Hebb DO (1949) The organisation of behavior Wiley, New York

    Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28:229–289

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex (Ferrier Lecture). Proc Roy Soc London B 198:1–59

    Article  CAS  Google Scholar 

  • Johannesma P, Aertsen A, van den Boogaard H, Eggermont J, Epping W (1986) From synchrony to harmony: Ideas on the function of neural assemblies and on the interpretation of neural synchrony. In: Palm G, Aertsen A (eds) Brain theory. Springer, Berlin Heidelberg New York, pp 25–47

    Google Scholar 

  • Kandel ER, Schwartz JH (1985) Principles in neural science. Elsevier, New York Amsterdam Oxford

    Google Scholar 

  • Kaneko K (1990) Clustering, coding, switching, hierarchical ordering and control in a network of chaotic elements. Physica D41:137–172

    Article  Google Scholar 

  • Kanizsa G (1979) Organization in vision. Essays on Gestalt perception. Praeger, New York

    Google Scholar 

  • Klein F (1921) Zum Erlanger Programm (1872). In: Fricke and Ostrowski (eds) Gesammele mathematische Abbhandlungen, vol. 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koenderink JJ (1984a) The concept of local sign. In: van Doorn AJ, van der Grind WA, Koenderink JJ (eds) Limits in perception. VNU Science Press, Ultrecht, pp 495–547

    Google Scholar 

  • Koenderink JJ (1984b) Simultaneous order in nervous nets from a functional standpoint. Biol Cybern 50:35–41

    Article  CAS  PubMed  Google Scholar 

  • Koenderink JJ (1984c) Geometrical structures determined by the functional order in nervous nets. Biol Cybern 50:43–50

    Article  CAS  PubMed  Google Scholar 

  • König P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses. 1: Synchronisation. Neural Comp 3:155–167

    Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  • Krüger J (1983) Simultaneous individual recordings from many cerebral neurons: techniques and results. Rev Physiol Biochem Pharmacol 98:177–233

    Article  PubMed  Google Scholar 

  • Krüger J, Mayer M (1991) Two types of neural synchrony in monkey striate cortex. Biol Cybern 64:135–140

    Article  Google Scholar 

  • Kuramoto Y (1984) Cooperative dynamics of oscillator community. Progress of theoretical physics, [Suppl 79], 223–240

    Google Scholar 

  • Lamport L (1978) Time, clocks and the ordering of events in a distributed system. Comm ACM 21:558–565

    Article  Google Scholar 

  • Mattern F (1989) Virtual time and global states of distributed systems. In: Cosnard M, Robert I, Quinton P, Raynal H (eds) Parallel and distributed algorithms. Elsevier, New York Amsterdam Oxford, pp 215–226

    Google Scholar 

  • Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  • Marr D, Ullmann S (1981) Directional selectivity and its use in early visual processing. Proc R Soc London B 211:151–180

    Article  CAS  Google Scholar 

  • Menon MM, Heinemann KG (1988) Classification of patterns using a self-organising neural network. Neural Networks 1:201–215

    Article  Google Scholar 

  • Minsky M, Papert S (1988) Perceptrons (expanded edition). MIT Press, Cambridge

    Google Scholar 

  • Oja E (1989) Neural networks: principal components and subspaces. Int J Neural Systems 1:61–68

    Article  Google Scholar 

  • Orban GA (1984) Neural operations in the visual cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Palm G (1980) On associative memory. Biol Cybern 36:19–31

    Article  CAS  PubMed  Google Scholar 

  • Pettet MW, Gilbert CD (1991) Contextual stimuli influence receptive field size of single neurons in cat primary visual cortex. Neurosci Abstr 17:1090

    Google Scholar 

  • Rumelhart DE, Zipser D (1986) Feature discovery by competitive learning. In: Rumelhart D, McClelland J (eds) and the PDP research group. Parallel distributed processing. MIT Press, Cambridge, pp 151–193

    Google Scholar 

  • Sagi D, Julesz B (1985) ‘Where’ and ‘what’ in vision. Science 228:1217–1219

    CAS  PubMed  Google Scholar 

  • Schillen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses. 2: Desynchronisation. Neural Comp 3:167–178

    Google Scholar 

  • Schuster HG (1991) Nonlinear dynamics and neural oscillations. In: Schuster HG (ed) Nonlinear dynamics and neural networks. Verlag Chemie, Weinheim, pp 131–151

    Google Scholar 

  • Schwartz EL (1977) Spatial mapping in primate visual sensory projection and relevance to perception. Biol Cybern 25:181–195

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Bolz J (1991) Functional specificity of the long-range horizontal connections in cat visual cortex: a cross-correlation study. J Neurosci 11:2995–3007

    CAS  PubMed  Google Scholar 

  • Sompolinsky H, Golomb D, Kleinfeld D (1990) Global processing of visual stimuli in a network of coupled oscillators. Proc Natl Acad Sci. USA 87:7200–7204

    CAS  PubMed  Google Scholar 

  • Sompolinsky H, Golomb D, Kleinfeld D (1991) Cooperative dynamics in visual processing. Physical Rev A 43:6990–7011

    Article  Google Scholar 

  • Spelke ES (1990) Origins of visual knowledge. In: Osherson DN, Kosslyn SM, Hollerbach JM (eds) Visual cognition and action. An invitation to cognitive science, vol. 2. MIT Press, Cambridge, pp 99–127

    Google Scholar 

  • Sporns O, Gally JA, Reeke GN Jr, Edelman GM (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci USA 86:7265–7269

    CAS  PubMed  Google Scholar 

  • Treisman A (1986) Features and objects in visual processing. Sci Am 225:106–115

    Google Scholar 

  • Ts'o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6:1160–1170

    PubMed  Google Scholar 

  • Ts'o DY (1991) Connectivity and functional organisation in the mammalian visual cortex. In: Krüger J (ed) Neural cooperativity. Springer, Berlin Heidelberg New York, pp 133–164

    Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1981) Multiple cortical visual areas: visual field topography in the cat. In: Woolsey CN (ed) Cortical sensory organisation vol. 2. Humana Press, Clifton, pp 1–29

    Google Scholar 

  • Vaadia E, Ahissar E, Bergman H, Lavner Y (1991) Correlated activity of neurons: a neural code for higher brain functions? In: Krüger J (ed) Neuronal cooperativity. Springer, Berlin Heidelberg New York, pp 249–279

    Google Scholar 

  • Vaadia E, Aertsen A (1992) Coding and computation in the cortex: single neuron activity and cooperative phenomena. In: Aertsen A, Braitenberg V (eds) Information processing in the cortex: experiments and theory. Springer, Berlin Heidelberg New York, pp 81–121

    Google Scholar 

  • van Essen DC (1985) Functional organisation in primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex vol. 3, Plenum Press, New York, pp 259–320

    Google Scholar 

  • von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224:1260–1262

    PubMed  Google Scholar 

  • von der Malsburg C (1981) The correlation theory of brain function. Internal report 81-2. MPI for Biophys Chem, Göttingen

    Google Scholar 

  • von der Malsburg C (1986) Am I thinking assemblies? In: Palm G, Aertsen A (eds) Brain theory. Springer, Berlin Heidelberg New York, pp 161–176

    Google Scholar 

  • von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54:29–40

    Article  PubMed  Google Scholar 

  • von der Malsburg C, Singer W (1988) Principles of cortical network organization. In: von Seelen W, Shaw G, Leinhos UM (eds) Organization of neural networks. Verlag Chemie, Weinheim, pp 109–126

    Google Scholar 

  • Wertheimer M (1923) Principles of perceptual organization. Psychologische Forschungen 4:301–350 (Edited and translated by Wertheimer M) in: Beardslee DC and Wertheimer M (eds) Readings in perception. Van Nostrand, Princeton

    Article  Google Scholar 

  • Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. (Nobel lecture) Nature 299:583–591

    Article  CAS  PubMed  Google Scholar 

  • Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222:960–962

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neven, H., Aertsen, A. Rate coherence and event coherence in the visual cortex: a neuronal model of object recognition. Biol. Cybern. 67, 309–322 (1992). https://doi.org/10.1007/BF02414887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02414887

Keywords

Navigation