
Some theorems on spinor- tensors .  

by J. D. ~UI~D (Raleigh~ :N. O.) 

Summary. - Some of the operators employed by A. Lichnerowicz in his study of spinet fields 
and propagators in general relativity are considered for arbitrary (r~ s).spinor (p, q). 
tensor fields. The general properties of  those operators are developed and applied to a 
Luplacian operator proposed by the author. 

INTRODUCTION 

Recently LIcI-n~ERowIcz [3], [4], (5], in his study of quantization in a 
curved space-t ime,  has introduced and established a number  of interest ing 
results concerning operators defined on certain simple familiar  quantum field 
theory spinor and spinor- tensor  fields [1]. For instance, in the theory of 
DIRAC (spin 1/2) one encounters  (1, 0) and (0, 1)-spinet fields; for the RAI~ITA- 
SCI:[WlNGER theory (spin (3/2), (1, 0}-spinor (0, 1)-tensor fields occur ;  and in 
the theory of PETiAU-DUFFI~-KEMMER (maximum spin 1), (1, 1)-spinor fields 
ace utilized. A comprehensive t rea tment  of these theories within the frame- 
work of general  relativity is given in [4]. In this paper, without reference to 
any par t icular  physical theory, the general  properties of these operators are 
developed for arbi t rary (r, s)-spinor (p, q)-tensor fields in a four dimensional  
RIEMAI~NIA~ manifold of hyperbolic normal signature. Conceivably, such 
spinor- tensor  fields might be employed in physical  theories considering par- 
ticles of arbi t rary spin. In §1 the basic notions about spinor-tensors are 
reviewed. The DII~aO adjoint, charge conjugation and related operators arc 
studied in §2, and in the final section these operators are applied to a 
LAPLACIAN for (r, s)-spinor (p, q)-tensors recent ly proposed by the author [8]. 

§ 1. - B a s i c  n o t i o n s  on s p i n o r - t e n s o r s .  

Let V~ be a four dimensional  differentiable manifold with a RIEMAI~NIA~r 
metric g~t~  ~} of hyperbolic normal signature, and a space- t ime orientation f~. 
The (1, 0)-spinets  (*) at a point x e V~ are elements of a complex vector space 
Sx and the (0, 1)-spinors at this point are elements of the complex vector 

space ~* which is the dual of Sx. By forming repeated tensor products of 
~x and S* one obtains the notion of an (r, s)-spinor, i.e., an element of the 

(*1 A spinor of type (1, 0), i.e., a eontravariant spinet, will be referred to as a (1,0). 
spinor. The "same convention will be used for spinor.tensors of arbitrary type. 
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product space ~ ~ ~ g * .  If, in addition, the tangent and dual tangent spaces 

at w e V4, denoted by Tx and T* respectively, are introduced into the tensor 
product  one is led to the notion of an {r, s)-spinor (p, q)-tensor, i.e., an ele- 

ment of the product  space @ S~ Q $* ® Tx ® . In  terms of its components  
a I . , ,  a ~ ~ d l  , , .  ¢o an (r, s)-spinor (p, q)-tensor may be writ ten as ~b~...@) ..... ~q~,, or more briefly 

as ~B;~ where A----{a~...a~), ..., A =  (~ . . . )@ are used as collective indices. 
The four (4 X 4) DIRAC matr ices  are defined on V4 by the equations 

(1) 

where eg is the (4 X 4t identity matrix. By adopting an orthonormal frame 
the metric tensor reduces  to the MI~KowsxI  metric ~%~ and (1) merely sum- 
marizes the we l l -known propert ies  of the DIRac matrices [1]. In this paper  
we will choose, as in [4], the following representat ion for the ~,~' : I ab  

(2) 

(ooo) (ooo1) 
0 i 0 0 0 0 - - 1  0 
0 0 - - i  0 ' 0 - -1  0 0 
0 0 0 - - i  1 0 0 0 

z b  

(oooi) o) 
0 0 i 0 0 0 0 - i  
0 - - i  0 0 ' " l ~ -  - - i  0 0 0 

- - i  0 0 0 0 i 0 0 

In addition to these matrices we introduce a pair of real (4X4)mat r i ces  

~ and ~ such that 

(3) = 

and 

(4) - -  

By vir tue of our choice of representat ion of the DIR•c matrices these 

conditions may be satisfied by choosing ~ - - 7 1 ~  and ~ " - -  ~Yob. The ant i -  
commutat ion relations (l) for the DIRAC matrices immediately yield 

(5) 

Let  A be an arbi trary matrix. We  denote by A* its complex conjugate,  
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~ d e f  

by A ~ its transpose, and by A - - A  ~* its adjoint. W e  state now two results  
which are proven in [4]: 

( 6 )  ~ a  r a ~" 

(7) ~ * ~ "* 

All the concepts and details indicated in the next two sections are pre- 
sented only for V~ with s ignature (-[- . . . .  ). They could immediately be 
extended to higher dimensional  V,, for instanee to the unified field theories 
of JOI~DA~-T~:[RY n - - 5  (~- . . . .  ) [7] and RE~AUDI:E n - - 6  ( - - - - + - - - - - - )  [6], 
provided one could find a representat ion of the DIn~C matrices such that 
equat ions (1)-(7)would be satisfied. The existence of such matrices for each 
n and signature is not considered in this paper. 

§ 2. - The Dirac Adjo int  and Charge conjugat ion.  

D]~II,~I~IO~.- The DI~AC adjoint ~ is the ant i - l inear  mapping of an 
(r, s)-spinor (p, q)-tensor onto an (s, r)-spinor-(p,  q)-tensor defined by 

(8) . . . .  r'bs ~di ds ' A~Ol " • ~Cr 

where ~ is the space- t ime orientation of 1/-4. 
The following theorem is a generalization of the results  of LIOHNERO- 

WI0Z [4] and summarizes the most important  propert ies  of the DIRAC adjoint. 

~A,  0 T~EOnE~t 1. - Let  ~B,A be an (r, s)-spinor (p, q)-tensor. Then we have 

(9) {~,, A) -- sB, A 

(10) 2 ° °  . . . . . . . . .  , o  , o ,  , o ,  
?~'~ B ~ , A ) = - -  t~ - ",A)Yo" 

(ll) ~b .... a . . . b , A T b j ) - - - -  ?bj i~b .... a...b,A) 
i =1 i=~ 

,=~ ~=1 . . .a . . .0~aTbj)-- ,=l  i=llb~ t~b .... a . . .b,A 

(13) ~ (  A .Q d A w ~ , ; . 0  = w (  [ , ;  ~). 
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PI~ooF. - Equa t ion  (9) is a direct  consequence  of (8) and (8). 

To establish (10) we note that  ~ and the summat ion  sign are permutable .  
Then  using (8) and (6) the resul t  .follows. For ins tance for a (2, s)-spinor 
(p, q)- tensor  one has 

Qdsi"~Clr~ d ~ ~2 ~xc~c~(~al ccs , 1"2 ~ ael ( ja lDa~ 

- -  % B ,  A ) " / e  ~ ~'-oB , A ) T c  

2 

- - - " -  ~ ~ { ~ B l ' " c ' " a r ;  A~Ye  ' .  

Equat ion  (11) is proven in the same way. 
Equat ion  (12) is a general izat ion of (10) and (1U which is obtained in 

the same manner .  We note only that  whereas  (10) and (11) requi red  the use 
of (6} once in each term, (12) by vir tue of the double summat ion  employs 
this re la t ion twice in each term. Hence  the negative sign appear ing  on the 
r i gh t -hand  side of (10) and (11) does not occur  in (12). 

Equat ion  (13) is proven for (1, 0)-spinor (0, q)-tensor in [4] and the same 
technique  immedia te ly  extends to (r, s}-spinor (p, q)-tensors. 

DEFINITIOSL - The charge conjugat ion ~ is the an t i - l inear  mapping  of 
an (r, s)-spinor  {p, q)- tensor onto an (r, s)-spinor IP, q)- tensor def ined by 

(14) s 
bl .., b s ,  A ) - -  O~cl "" O~c dl  .,. d s ,  A O~bl "'" b s " 

The following theorem is also a general izat ion of the resul ts  of LIOI-I~E- 
ROWIOZ [4], and contains  the basic proper t ies  of ~. 

THmOI~E~ 2. - Let  tAB: ~ be an (r, s ) -spinor  (p, q)-tensor. Then  we have 

(iG) 

117) 
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(18) @( E ~. ~ ~...~...%,a. Bd, 
~=1 i=~ "~ ~ .... d...b.~rR~'~ 

£ aa  i a~ ... c l l~.  ~d 
= Yo ~(~b~...~ . . . .  " '  ~=~ ] : ~  ... bs ,  A ~ b  i " 

(19) .4 A 

PROOf. - Equat ion  (15) follows immedia te ly  from (14) and (4). 

The proof of (16) is indicated by consider ing a (2, s)-spinor (p, q)-tensor 

which by (7) is 

aal c a2* clc2 aa~oal  c *clc~ ~ dl d 

- - -  y e  k.~I~B , A!  "~- ~'e t ~ B  , A]  

which completes  the proof. 
Equat ion  (17} is establ ished in the same way and Equat ion  (18) is an 

immedia te  general izat ion of (16) and (17). 
Equat ion  (19) is proven for (1, 0)-spinor (0, q}-tensors in [4] and the 

technique  obviously applies to (r, s)-spinor (P, q)-tensors. 

~*A, fl TEEORE~[ 3. - If  ~B,A is an (r, s)-spinor (p, q)-tensor then 

(20) 

PROOF. - It  suffices to consider the case of a (2, 1)-spinor (p, q)-tensor 
for which we find that  

T 
/ D ~ i r a i a ~ ,  f l~cl~.did~, ~2~el aiae2 a~ 
w I~bl  , ~) - "  pO:blp f l~c l  , A f d l a e ,  pd2ae~ 

T 
~ f ~ , ~ . . a l a e ,  ~.1 _~fls¢Cl~.dld~ , 12 el aa l  eef~a~ 

Ry us ing the an t i - commuta t ion  relat ion {5) for o:~ and ~ in each factor 
of ei ther  of these equat ions  we see that  they are identical  up to a factor 
of (--1). Hence  the general  formula  with (--1)*+ s occurs because of the appe- 
arance of r - b  s negat ive signs when {5) is used. 
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We note that in the theories of D~a.~c and R A ~ A - S C ~ W ~ E n ,  ~ and 
ant i -commute,  while in the PETIAu-DuY~I~-KEMMER theory they commute. 

For later  purposes it will be convenient  to denote 

clef 

DEF~I~O~.  - The l inear  differential  operator ~' which maps (r, 0)-spinor 
(p, q~-tensor fields onto (r, 0)-spinor (p, q)-tensor fields defined by 

( ~  3 ~ ;  ],=~e~ ~ ~o~' W ~  ' ° ' %',2 

is called the DIRAc operator. 
This definition is suggested by the familiar  operator appearing in the 

D~RAc equations for (1, 0)-spinors. It is easy to verify that the adjoint of $, 

denoted by ~, is the l inear  differential  operator which maps (0, s)-spinor 
(p, q)-tensors onto (0, s)-spinor (p, q)-tensors 

It is important to note that by definition ~ acts only on contravariant  
spinor indices and ~ acts only on covariant spinet  indices. 

~ 4 , ~  TItEORE~[ 3. - If ~B, .~ is an (r, S)-spinor (p, q)-tensor then 

(24) 
~c~A, ,~[ ~A, 

t25) 

(26) 

PROOF. - Equation (23) is a consequence of (10) and {13) since 

s,( ~ yo~a"w¢'° .... ° .... r', ~ = - -  ~ a I w ~  ~ . . . . . .  %', , ~ o '  

c ~L~ a a ,  
= -  Z w ( ~  "1 . . . . . .  %; A~Y~ ' .  

By noting that ~ maps (r, s)-spinors onto (s, r)-spinors ,this is precisely (25). 
Equations (25) and (26) follow similarly by virtue of (16) and (19). 
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The theory of PE~IAU-DUFEI~-KE~MER, together  with the pr inciple  of 
fusion of L. DE Bnoc~IE, suggests  the in t roduct ion of the following differen- 
tial operators  : 

D n ~ I o ~ .  - Let  ~ and ~5  be the l inear different ia l  operators,  called 
the PE~tAU operators,  which map  (r, s)-spinor {p, q)-tensors onto (r, s)-spinor 
(p~ q)-tensors 

dof 1 

{27) OIL = 2 (~ + ~) 

aot 1 
(2s) v'c = ~ (~ - -  9). 

Using the PE~IAU operators  one has the following as a direct  consequence 
of Theorem 3: 

THEORE]~'[ 4. - If  ~ :  ~ is an (r, s)-spinor (p, q)-tensor then 

(29) ,~A,  A, 

(30) = ~ t ~ B ,  At 

{31) 

(32) ~ ) ~  A __  

3. - Laplacians for sp inor - tensors .  

In  a recent  note, [8]. the au thor  proved the fol lowing:  

T~EOnEM 5. - Let  ~i; .~ and ~'~; ~ be (r, s)-spinor (p, q)-tensors and (s, r)- 
spinor  {q, p)- tensors  respectively,  which are defined on a compact  or ientable 
n -d imens iona l  RIEMA~IAN manifold V,~ with hyperbol ic  normal  signature.  

_ ~.tB, A If  the intersect ion of the supports  of ~ i  ~ and ~A, a iS compact  then 

(33) _ ~ A , a > = < ~ . , A ,  ~X~A,A> 

where  < ,  ~ is the global scalar product  V, and 

def  

r + s ,=~ 

8 

i = 1  ... b s ,  A i m ~ b j  ]. 
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The DIRAC matrices are defined as in (1). It was suggested that since A 
is l inear  and self-adjoint it might be an appropriate LAPLkC]AN operator for 
spinor-tensors.  In  fact 

TI4EO]~E~ 6. - Let ~A: 

(35) 

(36) 

(37) 

be an (r, s)-spinor (p, q)-tensor then 

P~ooF. - Equation (24) is established immediately by noting that 

+ a( V~V~b~.. d • ~'~'b~ p . . .  b s A 

and applying (10) and (ll) twice in the first and second terms respectively. 
Equat ion (36) follows in the same way by applying (16) and (17~ twice 

in the respective terms. 
Equat ion (37~ is clearly a consequence of the previous two equations. 
The properties indicated in Theorems 5 and 6 are precisely those poss- 

essed by the LAPLAClA~S dofined by LICI~NEROWICZ, [4], for the DIRAC, 
RARI~A-ScHwI~GER and PETIA[~-DuFFI~-KEMMER theories. The LAPLACIA~ 
defined in (34) reduced to those defined by LIOE~EnOWlCZ for the first two 
theories. Fur thermore ,  his LAPLACIANS, which we denote by 5z, have the 
interest ing properties that 

and since ~ L  = !~Y'U'JT5 --  0 

which are not shared by the generalization (~4). This is due pr imari ly  to the 

fact that for (r, s)-spinors squaring ~, ~ ~ or ~ c  iniroduecs cross terms 
which do not occur in the simpler cases studied by LIeHNE]~OWICZ. Thus 
it seems unl ikely to the author that the DIRAC and PE~IAU operators are 
real ly  intrinsic operators to employ in the general  study of (r, s)-spinor (p, q)- 
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tensors .  In  p a r t i c u l a r  the a u t h o r  has  b e e n  u n a b l e  to cons t ruc t  a LAPLACIAN 

for  (r, s}-spinor  (p, q}-tensors  which  is se l f -ad jo in t ,  c o m m u t e s  wi th  ~ ,  ~,  F, 

~)]L and ~ and is equa l  to $2, ~ and ~ z +  ~L2. An i n t e r e s t i n g  d i scuss ion  
of some of the p roposed  LAPLACrA~s (not i nc lud ing  (34})is g iven  by  COLLEAU 
[2]. He  commen t s  tha t  none  of the p roposed  LAPLAClA~S he cons iders  poss- 
esses all the  p rope r t i e s  su i tab le  for  the pu rposes  of m a t h e m a t i c a l  phys ics .  
Ho weve r ,  he does not  ind ica te  wha t  these  p rope r t i e s  might  be. 
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