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A Beniamino SEGRE per il settantesimo compleanno: 
con memorie felici d'Italia 

Stmto. - Si dimostra con metodi ser, v21ici che gti ovali di traslazione sono tutti di un tipo noto. 
Un'ovale nuovo in PG(2, 128) ~ anche trovato. 

1 . -  Introduction. 

In  PG(2, q), the projective plane over the Galois field GF(q) of q elements, the 
max imum number  of points such tha t  no three are collinear is q ÷ 1 or q ÷ 2 ac- 
cording as q is odd or even [1]. A set of points in the plane containing this number  
is an oval. For q odd, a non-singular conic is an oval and, conversely, every oval 
is a non-singular conic, [6] p. 270. For  q even, a non-singular conic plus its nucleus 
(the meet  of its tangents) is an oval: this type  is called a regular oval. The converse 
problem of classifying ovals remains to be done. 

For  q = 2 ,  4 and 8, every oval is regular. For  q = 2  ~ with h = 4 ,  5 and h>~7, 

there exist irregular ovals. In  fact, SEGnE showed tha t  the set {(1, t, t~)It ~ GF(2~), 
k : 2  n} w {(0,1, 0), (0,0,1)} is an oval if and only if ( n , h ) : l ,  [6] p. 286. Such 
an oval is irregular if 2 < n < h - - 2 .  This means tha t  irregular ovals exist for h = 5 
and h~> 7. An irregular oval for h = 4 was found by computer, [4]. 

Le t  y =-GF(q), y+ = y w {c~}, Yo = y\{0}.  Le t  y[t] be the ring of polynomials 
over y in the indeterminate  t. I f  f ( t )ey[t]  and ](0)-~ 0, ] ( 1 ) =  1, write 

D(I) = {(1 ,  t ,  ](t))lt ey+} U {(0, 1, 0)}. 

I f  deg]  > 1, then  t = c~ gives the point (0, 0, 1). I f  /(t) ~- t'*, write D(/) = D(m). 
Then Segre's result states tha t  D(2 ~) is an oval in PG(2, 2 ~) if and only if (n, h) ~-- 1. 

I f  D(]) is an oval and ](x ~ y) = ](x) Jr ](y) for all x, y in y, then  D(]) is called 
a translation oval, since it remains fixed under the translat ion xo -~ xo, xl  --> xt ÷ exo, 

x2--->x~ Jr ](e)xo for any e in y. Then D(2 n) with (% h)~-1  is a translat ion oval. 
Conversely, using the results of SEG]~]~ and BA~ToccI [7], [8], PAYEE [5] showed 

(*) Entrat~ in Redazione il 14 maggio 1973. 
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t ha t  every  t ranslat ion oval is of the  type  D(2"). These papers M1 relied on eirculants. 
Our main objective is prove this characterisation of translat ion ovals without  the 
use ef circulants. 

2. - Permuta t i o n  po lynomia l s .  

With y =  GF(q), let  F [ t ] =  ~[t]/(t~--t). Then any two polynomials in y[t] with 
the  same image in Fit] take the same value for all elements of y. Le t  G[t] = 
= { / ey [ t ] ldeg /<  q}. Then there  is a bijeetion ~: G[t] --->F[t] given by  ~(/) = / ( t )  + 
+ (t~--t)y[t]. 

LE~'~A 1. - Any function / :  y - ->?  is defined by  an element  of G[t]. 

PaooF.  - By  Lagrange's  interpolat ien formula,  

/(t) = - ~ [ / ( ~ ) ( t o -  t ) / ( t -  x)]. 

So / has degree at  most  q - - 1 .  

LEPTA 2. - If ,  in l emma 1, / is a bijeetion, then  d e g f < q - - 2 .  

P~ooF. - ~ ](2) = ~ A = 0. So, by  the above formula,  deg ] < q - -  2. 
hey ~e~, 

LE~a~A 3. - I f  ]:  y--> ? is given by  a polynomial  ] of degree less than  q - - 1  

and if ]]yo is a bijeetion, then  1 (0 )=  0 and / is a bijeetion. 

P ~ o o F .  - / ( t )  = 1(o)(1 - t~-~) - ~ . / ( z ) ( t ~ -  t ) / ( t -  2). mso,  5/(~,) = ~ z = o. So, 

the  coefficient of t ~-~ in ](t) is - - / (0) .  Since d e g ] <  q - - 1 ,  / ( 0 ) =  0 and / is a bi- 
jection. 

Wri te  if(q; t) : {]eG[t]l ] gives a bijection of y}. The elements of if(q; t) are called 
permutation polynomials. For  any  polynomiM over 7, DIO](soN [2], p. 59 gave the 
following useful criterion tha t  it  should be a permuta t ion  polynomiM. 

DICKSO~'S ~:~O~E:~L - I f  ](t) e G[t], t hen  ](t) e if(q; t), ~-~ p~, if  a.nd only if 

a) for r ~ 0  (modp)  and r 4 q - - 2 ,  the  degree of f ( ty  modulo t~-- t  is at 
most  q - -  2 ; 

b) ] ( t )= 0 has exact ly  one solution in y. 

In  the  par t icular  e~se t ha t  p = 2 and ](0) = 0, these conditions become 

A) for r odd and r<~q--2,  the  degree of ](t)" modulo tq - - t  is at  most  q - - 2 ;  

B)  / ( t ) =  0 ~ t  = 0. 
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3.  - Canonica l  f o r m  for an  oval .  

Let  J5 be a (q + 1)-arc in PG(2, q) with q even. Let  XoX1X~ denote the tri- 
angle of reference and U the unit  point of the coordinate system. Choose X~ as the 
nucleus oi JC and Xo, X2 and U as any  three points of J~. Write 0----J~ W {X~}. 
Then 0 contains X~ a:nd X~ on xo ~ 0 ~nd so no other points on this line. Each 
of the remaining points of 0 can be wri t ten (1, t~, s~). Since each line through X~ 
contains exactly one other point of 0, so t~ ¢ t~ for i ~: j. Similarly, since each 
line through X~ contains exactly one other point of O, so s~=/= ss for i=/= j. 
Therefore there exists a unique / e f t (q ;  t) such tha t  O \ ( X ~ , X ~ } = J ~ \ ( X ~ } =  
= {(1, t,/(t)) It e y}. Equivalently,  since deg ] > 1, J~ ----- {(1, t, f(t))It e ~+}, where t -= c~ 
parametrizes X~. Since Xo and U lie on J~, ] (0)~-0 and ](1)-~ 1. Since the set 
{(1, t , /( t))t tey+ } w {X~} where ] ( 0 ) =  0 and ](1)---- 1 has been named D(]), an oval 0 
can always be wri t ten in the  form D(]) with ] e  ff(~/; t). The complete description 
of an oval is given by  the following. 

THE0~]~ 1. - In  PG(2, q) with q even, D(]) is an oval if and only if 

a) ]( t)e $(q; t); 

b) g(t; s) -~ [](t + s) + ](s)]/t e ~(q; t) for each s e 7 and g(0; s) = 0. 

t~ooF .  - F rom the form of D(]), each line through X2 is a chord of D(]). Con- 
dition (a) is exactly the condition tha t  each line through X~ is a chord of D(]). 

I t  remains to show tha t  (b) is necessary and sufficient for no three points of 
D(])'\{X1, X~} to be collinear. This is t rue if and only if 

1 tl ](tl) 

1 t~ ](t2) :/:0 

1 t~ ](t3) 

for all distinct tl, t~, t3 e y. That  is, 

¢(t~) + ](t~) ¢/ ( tO + ](t~) 
tl + t~ tl + t~ 

:Equivalently, for each s e y ,  [ ] ( t )+ ] ( s ) ] / ( t+  s) takes a different value in Yo for 
each t e y \ { s } ;  or, []( t+s)+](s)] / t  takes a different value in Yo for each teTo; 
tha t  is, for each s e y ,  g(t; s) -~ [](t + s) + ](s)]/t defines a permutat ion of 7o. How- 
ever, g(t;s) is a polynomial in t of degree less than  q J l .  So, by  lemma 3, 
g ( 0 ; s ) - - 0  and g(t; s)eff(q;  t). Thus (b) is the condition tha t  no three points of 
.D(])\{Xs, X~} are colt/near. 
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q~2  

COROLLARY 1. - In  PG(2, q) with q even, if ] ( t ) =  ~ a~t ~ and D(]) is an oval, 
then  f(t) = a~t ~ -t- a~t ~ -~ ... ÷ a~_2t q-~. i=~ 

P~OOF. - Since g(t; s) -= [](t + s) -~ /(s)]/t, so 

g(0; s) = a~ d- a~s ~ ÷ azs ~ + ... + aq_as ~-~ • 

Since g(0; s ) =  0 for all s in y, so a~ = a3 = a~ . . . . .  a~_3 = 0. 
When ] is a monomiM, the conditions of the theorem can be simplified. 

Co~onI,A~Y 2. - In  PG(2, q) with q even, D(k)  is an oval if and only if 

a) ( k , q - - 1 )  = 1 ;  

b) (k--1, q - - 1 ) = 1 ;  

e) [(t + z)~ + 1]/tE ~'(q; t). 

P ~ o o F . -  t " e ~ ( q ; t ) < = > t ~ = e  has ~ unique solution in ~ for each v in y<=> 
¢. - (m,  q--I)-----1. So condition (a) of the theorem becomes (a) here. Similarly, condi- 
t ion (b) of the theorem for s =  0 becomes (b) here. For  s ¢  O, g(t; s) ~- [(t ÷ s)~÷ s~]/t= 

= s~[( t /s~- l )kd-1]/ t ,  which is in if(q; t) if and only if [(t ÷ 1) ~ + 1]/t is. 

C0~O~LARY 3. - In  PG(2, 2~), D(2 ~) is an oval if and only if (n, h ) =  1. 

PI~OOF. - I f  k ~- 2 ", then  [(t ÷ 1) ~ ÷ 1]/t = t ~ .  So, in corollary 2, (e) ¢:> (b) 
Iqow~ (2", 2 h - - 1 ) = 1 ;  so (a) is satisfied. Also (2~- -1~2~--1) :=2¢= '~- -1 .  There- 
Yore (b) is satisfied if and only if (n, h ) =  1. 

C o ~ o ~ y  4. - In  PG(2, 2h), D(2 ~) is a regular ovM if and only if n~-  1 or h - - 2 .  

CO]~OLLA]~¥ 5. - - I n  PG(2,2h), irregular ovals exist  for h =  5 and h~>7. 
For  h = l ,  2 and 3, every  oval is regular. For  h : 4 ,  all ovals can be com- 

pu ted  [4] and, for example,  D(]) with 

](t) = ( ~ t  7 ÷ v~t ~ + vlot~ ÷ ~ t  ~ ÷ ~12t~ ÷ t ~ ÷ v~t)~, 

where ~ is a pr imit ive root  of GF(16) satisfying ~ 4 _ ~  ÷ 1, is an irregular oval. 
For  h---= 6, the  existence of an irregular oval is still an open question. 

4. - Characterisat ion o f  trans lat ion ovals.  

As defined in the introduction,  D(]) is a t ranslat ion oval if it is an oval and if ] 
induces an endomerphism of y as an additive group. Thus, f rom Theorem 1, the 
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necessary and sufficient conditions for D(]) to  be a translat ion oval are 

T1) ](x ~ - y ) =  ] (x )÷/ (y )  for all x, y in y; 

T2) f(t) e ~(q; t); 

T3) ](t)/te ~(q; t). 

I n  fact, we would like to show tha t  every translation oval D(]) has the form D(2~). 

First ly,  three lemmas are required. 

LEntiL( 4. - Every  endomorphism of GF(q), q ~-p~, as an additive group is given 

by  a polynomial  of the form 

](t) -~ aot ~- a~t~ -~ ... ~- a~_~t ~ - '  . 

P]~ooF. - GF(q) is a vector space over GF(p). So, let it have a basis {x~,..., x~}. 

Then an endomorphism of GF(q) is determined once the images of all the x, ~re given. 

As e~ch x~ can have any  element of GF(q) as its image, there are q~ endomorphisms 

of GF(~/). However,  each polynomial  of the above form induces a distinct endo- 

morphism of GF(q) and there are q~ such polynomials. Therefore, each endomorphism 

of GF(q) is given by  such a polynomial. 

L E n A  5. - I f  a~a~V=O and m <  n <  h, then  a,~t~'~-~q-a~t2"-~ff(2~;t). 

PI~OOF. - By  Dickson's  theorem, it suffices to show tha t  there exists an odd 

integer r < 2 ~ -  2 such tha t  (a,,t ~'-~ q- a~t~"-~) ~ modulo t ~ -  t contains a te rm in t 2~-~. 

The power of the general t e rm in this expression expanded is 

r(2~--1)  + k ( 2 ~ - 2 ~ ) .  

Let  r =  (2~ - - 1 )  - -  z(2~ - -  2~). Then, since we require tha t  

SO 

r(2 ~* - -  1) q- k(2 ~ -  2"*) ~ 0 (mod 2 ~ - -  1),  

:Now, / ~ - z ( 2 ~ - - l )  is a solution of this equation. Let  d =  2(~-~.~)--1 and let 

R-~  (2~--1)/d. Then, as (2" - -  2~', 2~ - - 1 )  -~ d, there are d solutions given by  

k ~ z(2 ~ - -  1) q- R 2 / ,  2 / :  0, 1, 2, ..., d - -  1 .  

We require z such tha t  there is a unique /~ with 0 <  k <  r. I n  particular,  

r = 2 ~ - -  1 - -  z(2" - -  2 ~) and k -~ z(2,' - -  1) fulfil our requirements  if k < r < R. 
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Put z = 2 ~-~. T h e n  

k = 2 h - ' + ~  - -  2 h-" < 2 h- '+ '*  - -  1 = r 

< (2 ~-~+~ - -  1)(2 ~-~ - -  1) /d  

< (2 ~ -  1) /d  = R .  

r 

So r =  2 ~ - " + ~ - - 1  a n d  k = 2~ -~+~- -2  ~-~. T h e n  (1 ÷ x ) ~ =  ~ x ~ ;  in  p a r t i c u l a r ,  t h e  

eoeffieien~ of x ~ is 1. o 

T h u s  i t  has  b e e n  s h o w n  t h a t  (a~t  2~-~ + a~t2~-~) ?- '+~-~ has  e x a c t l y  one t e r m  in  

t ~ a n d  so, if  a ~ , a ~ O ,  a ~ t ~ - ~ +  a~t :'-~ is n o t  in  ~(2~;t) .  

LE~'~fA 6. - I f  a m a z e  0 a n d  m <  n <  h, t h e n  

a,~t ~ - :  ~- a~+~t ~=+'-: + ... + a, t  ~'--: ~ 9~(q; t ) .  

P ~ o o F .  - As  in  t h e  l~st  l e m m a ,  we  use D i c k s o n ' s  t h e o r e m  und,  in  fuct ,  t h e  s a m e  r 

to  show t h a t ,  if  r =  2 ~ - " + " - - 1 ,  t h e n  

(a,~t ~'~-~ + a,,+~ t ~÷'-~ + ... + a~ t~"-l) ~ m o d u l o  t ~ ' -  t 

~ iways  c o n t a i n s  a t e r m  in  t 2~-~. 

T h e  p r e v i o u s  l e m m a  used  t h e  i d e n t i t y  

or 

(2~-~-- I)2 m + (2a-~+~-- 2a-~)2~ = 2h-~+~_ 1 + (2~-- 1)(2a--I) • 

I t  suffices to  cons ide r  

( t2~-1  ÷ t ~ . . . .  1 ÷ . . .  + t : " - l ) ~  ~ . . . .  - 1  = 

= ( t  2m ~-~- t 2m+l _J[_ . , ,  --~- t2 n)l-~2-~22~'''+2h'n+m-1/t 2h-r~+m~-I ---- 

= (t 2~ ÷ . . .  ÷ t ~ ) ( t  ~'~÷~ -l- . . .  + t ~"÷~) . . .  ( t ~  . . . . . . .  ÷ . . .  + t2~ . . . .  ) / t2~-~÷~-~= 

w h e r e  s =  h - - n  ÷ m - - 1  a n d  m~-  i < m ~ < n  ~ i for  i =  0, 1, . . . ,  s. 

l u t i ons  for  

2 m + 2 ~1 ÷ ... + 2 ~' ~ 2 a-'+m - -  1 (rood 2 ~ - -  1 ) .  

W e  r e q u i r e  so- 
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F r o m  the  prev ious  l e m m a  (or b y  the  above  iden t i t y ) ,  the re  is a so lu t ion  

m ~ : m ~ - i ,  i : O ,  1 , . . . , h - - n - - t ;  

m ~ - ~ n ~ - i ,  i - ~ h - - n , . . . , s .  

I t  m u s t  be  shown  t h a t  th i s  is t he  on ly  solut ion.  

P u t  m ~ =  m ÷ r~; t h e n  i 4 r ~ < n - - m  ~- i, i -~ O, 1, ..., s. The  e q u a t i o n  now be-  

comes 

2~(2 ~* ~- ... -~- 2 ~') ---- 2 ~-~+~ - -  1 (rood 2 ~ - -  1 ) .  

S ince  ( 2 ~ , 2 a - - 1 ) ~ - 1  a n d  2~-% 2 ~ - - ( 2 h - - 1 ) - - - - 1 ,  

2 ~° + 2 ~ + . . .  + 2 ~" ~ -  2 ~ - " ( 2  ~ - ~ + ~  - -  1 )  ~ -  2 ~h-" - -  2 h - ~  . 

As r~>i, so ~ 2 ~ ' > 1 + 2 - } - . . . - ~ 2 ~ = 2 h - ' + ~ - - 1 .  As r ~ < n - - m ~ - i ,  so ~ 2 ~ ' <  

<2~-~(2  h-~+~ - -  1) = 2 ~ - -  2~-% However ,  (2 a - -  2 ~-~) - -  (2 ~-~+~ - -  1) < 2 h - -  1. There-  

fore, ~ 2 "  t akes  a def ini te  va lue  such t h a t  2 ~ - ~ + ~ - - 1 < ~ 2 " < 2 h - - 2  ~-~. I n  fact ,  

(2 ~-~ - -  2 ~-~) - -  (2 a-~ - -  1)(2 ~ - -  1) = 2 a - -  2 ~-~ -~ 2 a-" - -  1 ,  which  lies i n  t h e  r e q u i r e d  

range .  Thus ,  

2 ~' = 2 ~ - -  2 ~-~ ÷ 2 a-" - -  1 ~- 1 ÷ 2 ÷ ... + 2 h - ' - t  ÷ 2 ~-~ ÷ ... ÷ 2 ~-1 . 

W r i t t e n  in  t he  b i n a r y  scale, t he  n u m b e r  on the  r igh t  has exac t ly  h - - n  ~ - m  u n i t  

digits~ which  is t he  n u m b e r  of s u m m a n d s  on t he  left .  As i < ~ r ~ < n - - m - ~ i ,  t h e  

u n i q u e  so lu t ion  is 

r ~  i for i =  0~ 1~ . . . ,  h - - n - - 1  

a n d  

r ~ - n - - m ~ - i  for i : h - - n , . . . , h - - n ~ - m - - 1 .  

So the re  is a lways a t e r m  in  t 2~-~ in  the  e xpa ns i on  of 

(a,~t 2~-1 ~, ... -~ a=t~-~) ~-~+~-~ p r o v i d e d  a~a~ =~ O . 

T~Eo~v.~  2. - I n  PG(2~ 2h), D(]) is a t r a n s l a t i o n  oval  if a n d  on ly  if D(/) ~-- D(2 ~) 

w i t h  (n, h ) =  1. 

PI~OOF. - I f  D ( / ) =  D(2 ~) wi th  (n, h)----1, t h e n  b y  t h e o r e m  1, corol lary  3, D(/) 
is a n  oval .  S ince  / ( t ) =  t ~~ satisfies T1,  D(/) is a t r a n s l a t i o n  ovM. 
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Conversely, if D(]) is a. translation oval, then by T1 and lemma 4 

l(t) = ao t  + a~t  ~ + . . .  + aa_~t ~-~ . 

By theorem 1, corollary 1, n o =  0. By  T3 and lemma 6, ](t)= a,t ~" for some n 
in 0 <  n <  h. Since ] ( 1 ) =  1, so a . =  1. Finally, by  theorem 1, corollary 3, for D(2") 
t~) be an oval, i t  is necessary t ha t  (n, h) ~ 1. So D(]) = / ) ( 2  ~) with (n, h) = 1. 

5.  - F u r t h e r  e x a m p l e s  o f  ova l s .  

I f  D(]) is an oval in PG(2, q) with q even, then by limiting the degree of ], the form 
of ] or the size of q, fur ther  information can be obtained. Firstly,  we limit the degree 
of ] ~nd then consider, for small q, ] as a monomi~l. 

THEOtCE~ 3. - In  PG (2, q) with q even, 

a) if deg]----2, then  D(]) is an oval ii and only if D(])-~ D(2); 

b) if deg ] = 4, then  D(]) is an oval if and only if h is odd and D(])-~ D(4); 

c) if deg ]---- 6, then  D(]) is an oval if and only if h is odd and ](t) = (t ~ + 2t 4 ÷ 
+ %2t2)/(1 + ~ + %2) for some 2 e y. In  this ease, D(/) is projeetively equiv- 
alent to D(6). 

P ~ o o F .  - S e e  [3],  p.  792. 
In  PG(2, 2), PG(2, 4) and PG(2, 8), every oval is regular. Although the  problem 

of classifying ovals in general is difficult, there is a type tha t  can be managed. When 
D(]) --~ D(m) for some integer m, then the problem can be at tacked for small q. Write 
D(m)-.~D(l) when these two sets are projectively equivalent. 

Tn~EO~E~ 4. - Suppose D(k) is an oval in PG(2, q) with q even. Then 

D(k) ~ D(k~) -.~ D(k~) ..~ D(k3), 

where k~, k2, k3 are defined by 

kkl ~ t (mod q --  1) and 1 < kl < q --  1 ; 

(k--1)(k2--1)  ~-1 ( m o d q - - 1 )  and 1 <  k2< q - - 1  ; 

k ÷ k 3 ~ - q .  

PI~OOF. - See [3], p. 789. 
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Co]~oI~A~¥ 1. - I n  P G  (2, q) for q ~- 16, 32 and 64, the  only project ively dist inct  
ovals of the  fo rm D(k) are 

a) for q----16, D(2);  

b) for q =  32, D(2), D(4) and  D(6);  

c) for q =  64, D(2). 

P~ooF.  - See [3], p. 790. 

TEE0~E~ 5. - I n  PG(2,128) ,  there  are five project ively dist inct  ovals of the  
fo rm D(k):  D(2), D(4), D(6), D(8), D(20). 

P]~OOF. - B y  theorem 1, corollary 1, k is odd. B y  theorem 4, the  following table  
can be calculated.  

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 
k~ 64 32 106 16 89 53 118 8 120 108 52 90 44 59 72 4 
k 2 2 86 52 110 114 105 89 18 16 108 122 117 62 81 93 42 

k s 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 

k 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 

k~ 71 60 117 54 124 26 58 45 94 22 40 93 46 36 84 2 
k s 78 99 104 115 32 66 49 101 71 6 13 98 79 29 26 126 

k~ 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 

Therefore  the  only possible candidates  for project ively  dist inct  ovals are D(2), D(4), 
D(6), D(8), D(20) and D(26), where the  D(k) with lowest k among  several  project ively 
equivalent  /)(k) has been  chosen. B y  theo rem 1, corollary 3, D(2), D(4) and  D(8) 

are ovals. B y  theorem 3, D(6) is an oval. I t  remains  to show t h a t  D(26) is not  an 
oval bu t  t h a t  D(20) is. Wri t ing  g~(t) = [(t + 1) ~ + 1]/t, i t  m ~ s t  be  shown t h a t  g26(t) 
is not  in ff(128; t) b a t  t h a t  gso(t) is. 

Le t  fi be  a p r imi t ive  root  of GF(128) sat isfying f17 + fl q_ 1 = 0. The table  
below lists, for each i in 1<i~<126,  the  integers r(i) and s(i) where 

/T(~) = 1 + fl' and ~-= g~o(fl'(~)). 

Also gso(0)-----0 and  g~o(1)----1. Thus,  f rom the table,  gso(t) is a p e r m u t a t i o n  poly- 

nomial.  On the  e ther  hand,  g2~(fi 5) : g2e(fl")-~ fll~,. So g~(t) is not  a pe rmu ta t i on  
polynomial .  This completes  the  proof. 
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