Ovals in Desarguesian Planes of Even Order (*).

J. W. P. HIRSCHFELD (Brighton, England)

A Beniamino SEGRE per il settantesimo compleanno: con memorie felici d'Italia

Sunto. – Si dimostra con metodi semplici che gli ovali di traslazione sono tutti di un tipo noto. Un'ovale nuovo in PG(2, 128) è anche trovato.

1. - Introduction.

In PG(2, q), the projective plane over the Galois field GF(q) of q elements, the maximum number of points such that no three are collinear is q + 1 or q + 2 according as q is odd or even [1]. A set of points in the plane containing this number is an *oval*. For q odd, a non-singular conic is an oval and, conversely, every oval is a non-singular conic, [6] p. 270. For q even, a non-singular conic plus its nucleus (the meet of its tangents) is an oval: this type is called a *regular* oval. The converse problem of classifying ovals remains to be done.

For q = 2, 4 and 8, every oval is regular. For $q = 2^h$ with h = 4, 5 and $h \ge 7$, there exist irregular ovals. In fact, SEGRE showed that the set $\{(1, t, t^k) | t \in GF(2^h), k = 2^n\} \cup \{(0, 1, 0), (0, 0, 1)\}$ is an oval if and only if (n, h) = 1, [6] p. 286. Such an oval is irregular if $2 \le n \le h - 2$. This means that irregular ovals exist for h = 5 and $h \ge 7$. An irregular oval for h = 4 was found by computer, [4].

Let $\gamma = GF(q), \ \gamma^+ = \gamma \cup \{\infty\}, \ \gamma_0 = \gamma \setminus \{0\}$. Let $\gamma[t]$ be the ring of polynomials over γ in the indeterminate t. If $f(t) \in \gamma[t]$ and $f(0) = 0, \ f(1) = 1$, write

$$D(f) = \{(1, t, f(t)) | t \in \gamma^+\} \cup \{(0, 1, 0)\}.$$

If deg t > 1, then $t = \infty$ gives the point (0, 0, 1). If $f(t) = t^m$, write D(t) = D(m). Then Segre's result states that $D(2^n)$ is an oval in PG(2, 2^h) if and only if (n, h) = 1.

If D(f) is an oval and f(x + y) = f(x) + f(y) for all x, y in γ , then D(f) is called a *translation* oval, since it remains fixed under the translation $x_0 \to x_0, x_1 \to x_1 + cx_0, x_2 \to x_2 + f(c)x_0$ for any c in γ . Then $D(2^n)$ with (n, h) = 1 is a translation oval. Conversely, using the results of SEGRE and BARTOCCI [7], [8], PAYNE [5] showed

^(*) Entrata in Redazione il 14 maggio 1973.

that every translation oval is of the type $D(2^n)$. These papers all relied on circulants. Our main objective is prove this characterisation of translation ovals without the use of circulants.

2. - Permutation polynomials.

With $\gamma = \operatorname{GF}(q)$, let $\Gamma[t] = \gamma[t]/(t^{q}-t)$. Then any two polynomials in $\gamma[t]$ with the same image in $\Gamma[t]$ take the same value for all elements of γ . Let $G[t] = \{f \in \gamma[t] | \deg f < q\}$. Then there is a bijection $\varphi: G[t] \to \Gamma[t]$ given by $\varphi(f) = f(t) + (t^{q}-t)\gamma[t]$.

LEMMA 1. – Any function $f: \gamma \to \gamma$ is defined by an element of G[t].

PROOF. - By Lagrange's interpolation formula,

$$f(t) = -\sum_{\lambda \in \gamma} \left[f(\lambda)(t^a - t)/(t - \lambda) \right].$$

So f has degree at most q-1.

LEMMA 2. – If, in lemma 1, f is a bijection, then deg $f \leq q-2$.

PROOF. $-\sum_{\lambda \in \gamma} f(\lambda) = \sum_{\lambda \in \gamma} \lambda = 0$. So, by the above formula, deg $f \leq q-2$.

LEMMA 3. – If $f: \gamma \to \gamma$ is given by a polynomial f of degree less than q-1 and if $f|_{\gamma_0}$ is a bijection, then f(0) = 0 and f is a bijection.

PROOF. $-f(t) = f(0)(1 - t^{q-1}) - \sum_{\lambda \in \gamma_0} f(\lambda)(t^q - t)/(t - \lambda)$. Also, $\sum_{\lambda \in \gamma_0} f(\lambda) = \sum_{\lambda \in \gamma_0} \lambda = 0$. So, the coefficient of t^{q-1} in f(t) is -f(0). Since $\deg f < q-1$, f(0) = 0 and f is a bijection.

Write $\mathfrak{f}(q; t) = \{f \in G[t] | f \text{ gives a bijection of } \gamma\}$. The elements of $\mathfrak{f}(q; t)$ are called *permutation polynomials*. For any polynomial over γ , DICKSON [2], p. 59 gave the following useful criterion that it should be a permutation polynomial.

DICKSON'S THEOREM. - If $f(t) \in G[t]$, then $f(t) \in \mathcal{F}(q; t)$, $q = p^{h}$, if and only if

- a) for $r \not\equiv 0 \pmod{p}$ and $r \leq q-2$, the degree of $f(t)^r$ modulo $t^q t$ is at most q-2;
- b) f(t) = 0 has exactly one solution in γ .

In the particular case that p=2 and f(0)=0, these conditions become

- A) for r odd and $r \leq q-2$, the degree of $f(t)^r$ modulo $t^q t$ is at most q-2;
- B) $f(t) = 0 \Rightarrow t = 0$.

3. - Canonical form for an oval.

Let \mathcal{K} be a (q+1)-arc in $\mathrm{PG}(2,q)$ with q even. Let $X_0X_1X_2$ denote the triangle of reference and U the unit point of the coordinate system. Choose X_1 as the nucleus of \mathcal{K} and X_0 , X_2 and U as any three points of \mathcal{K} . Write $\mathcal{O} = \mathcal{K} \cup \{X_1\}$. Then \mathcal{O} contains X_1 and X_2 on $x_0 = 0$ and so no other points on this line. Each of the remaining points of \mathcal{O} can be written $(1, t_i, s_i)$. Since each line through X_2 contains exactly one other point of \mathcal{O} , so $t_i \neq t_j$ for $i \neq j$. Similarly, since each line through X_1 contains exactly one other point of \mathcal{O} , so $s_i \neq s_i$ for $i \neq j$. Therefore there exists a unique $f \in \mathfrak{f}(q; t)$ such that $\mathcal{O} \setminus \{X_1, X_2\} = \mathfrak{K} \setminus \{X_2\} =$ $= \{(1, t, f(t)) | t \in \gamma\}$. Equivalently, since deg f > 1, $\mathfrak{K} = \{(1, t, f(t)) | t \in \gamma^+\}$, where $t = \infty$ parametrizes X_2 . Since X_0 and U lie on \mathfrak{K} , f(0) = 0 and f(1) = 1. Since the set $\{(1, t, f(t)) | t \in \gamma^+\} \cup \{X_1\}$ where f(0) = 0 and f(1) = 1 has been named D(f), an oval \mathcal{O} can always be written in the form D(f) with $f \in \mathfrak{F}(q; t)$. The complete description of an oval is given by the following.

THEOREM 1. – In PG(2, q) with q even, D(f) is an oval if and only if

- a) $f(t) \in \mathfrak{T}(q; t);$
- b) $g(t;s) = [f(t+s) + f(s)]/t \in \mathfrak{I}(q;t)$ for each $s \in \gamma$ and g(0;s) = 0.

PROOF. - From the form of D(f), each line through X_2 is a chord of D(f). Condition (a) is exactly the condition that each line through X_1 is a chord of D(f).

It remains to show that (b) is necessary and sufficient for no three points of $D(f) \setminus \{X_1, X_2\}$ to be collinear. This is true if and only if

$$\begin{vmatrix} 1 & t_1 & f(t_1) \\ 1 & t_2 & f(t_2) \\ 1 & t_3 & f(t_3) \end{vmatrix} \neq 0$$

for all distinct $t_1, t_2, t_3 \in \gamma$. That is,

$$\frac{f(t_1)+f(t_2)}{t_1+t_2} \neq \frac{f(t_1)+f(t_3)}{t_1+t_3}.$$

Equivalently, for each $s \in \gamma$, [f(t) + f(s)]/(t + s) takes a different value in γ_0 for each $t \in \gamma \setminus \{s\}$; or, [f(t + s) + f(s)]/t takes a different value in γ_0 for each $t \in \gamma_0$; that is, for each $s \in \gamma$, g(t; s) = [f(t + s) + f(s)]/t defines a permutation of γ_0 . However, g(t; s) is a polynomial in t of degree less than q-1. So, by lemma 3, g(0; s) = 0 and $g(t; s) \in \mathcal{F}(q; t)$. Thus (b) is the condition that no three points of $D(f) \setminus \{X_1, X_2\}$ are collinear.

COROLLARY 1. - In PG(2, q) with q even, if $f(t) = \sum_{i=1}^{q-2} a_i t^i$ and D(f) is an oval, then $f(t) = a_2 t^2 + a_4 t^4 + \ldots + a_{q-2} t^{q-2}$.

PROOF. - Since g(t; s) = [f(t+s) + f(s)]/t, so

$$g(0; s) = a_1 + a_3 s^2 + a_5 s^4 + \ldots + a_{q-3} s^{q-3}.$$

Since g(0; s) = 0 for all s in γ , so $a_1 = a_3 = a_5 = ... = a_{a-3} = 0$.

When f is a monomial, the conditions of the theorem can be simplified.

COROLLARY 2. – In PG(2, q) with q even, D(k) is an oval if and only if

a) (k, q-1) = 1;

b)
$$(k-1, q-1) = 1;$$

c) $[(t+1)^k + 1]/t \in \mathfrak{J}(q; t).$

PROOF. $-t^m \in \mathfrak{f}(q; t) \Leftrightarrow t^m = c$ has a unique solution in γ for each c in $\gamma \Leftrightarrow (m, q-1)=1$. So condition (a) of the theorem becomes (a) here. Similarly, condition (b) of the theorem for s=0 becomes (b) here. For $s \neq 0$, $g(t; s) = [(t+s)^k + s^k]/t = s^k[(t/s+1)^k+1]/t$, which is in $\mathfrak{f}(q; t)$ if and only if $[(t+1)^k+1]/t$ is.

COROLLARY 3. - In $PG(2, 2^h)$, $D(2^n)$ is an oval if and only if (n, h) = 1.

PROOF. - If $k = 2^n$, then $[(t+1)^k + 1]/t = t^{k-1}$. So, in corollary 2, $(c) \Leftrightarrow (b)$ Now, $(2^n, 2^h - 1) = 1$; so (a) is satisfied. Also $(2^n - 1, 2^h - 1) = 2^{(n,h)} - 1$. Therefore (b) is satisfied if and only if (n, h) = 1.

COROLLARY 4. - In PG(2, 2^h), $D(2^n)$ is a regular oval if and only if n = 1 or h - 2.

COROLLARY 5. - In PG(2, 2^h), irregular ovals exist for h = 5 and $h \ge 7$.

For h = 1, 2 and 3, every oval is regular. For h = 4, all ovals can be computed [4] and, for example, D(f) with

$$f(t) = (\eta^5 t^7 + \eta^6 t^6 + \eta^{10} t^5 + \eta^2 t^4 + \eta^{12} t^3 + t^2 + \eta^5 t)^2,$$

where η is a primitive root of GF(16) satisfying $\eta^4 = \eta + 1$, is an irregular oval. For h = 6, the existence of an irregular oval is still an open question.

4. - Characterisation of translation ovals.

As defined in the introduction, D(f) is a translation oval if it is an oval and if f induces an endomorphism of γ as an additive group. Thus, from Theorem 1, the

necessary and sufficient conditions for D(f) to be a translation oval are

- T1) f(x+y) = f(x) + f(y) for all x, y in γ ;
- T2) $f(t) \in \mathfrak{T}(q; t);$
- T3) $f(t)/t \in \mathfrak{T}(q; t)$.

In fact, we would like to show that every translation oval D(f) has the form $D(2^n)$. Firstly, three lemmas are required.

LEMMA 4. – Every endomorphism of GF(q), $q = p^{h}$, as an additive group is given by a polynomial of the form

$$f(t) = a_0 t + a_1 t^p + \ldots + a_{h-1} t^{p^{n-1}}$$

PROOF. - GF(q) is a vector space over GF(p). So, let it have a basis $\{x_1, \ldots, x_h\}$. Then an endomorphism of GF(q) is determined once the images of all the x_i are given. As each x_i can have any element of GF(q) as its image, there are q^h endomorphisms of GF(q). However, each polynomial of the above form induces a distinct endomorphism of GF(q) and there are q^h such polynomials. Therefore, each endomorphism of GF(q) is given by such a polynomial.

LEMMA 5. - If $a_m a_n \neq 0$ and m < n < h, then $a_m t^{2^m - 1} + a_n t^{2^n - 1} \notin \mathcal{F}(2^h; t)$.

PROOF. – By Dickson's theorem, it suffices to show that there exists an odd integer $r \leq 2^{n} - 2$ such that $(a_{m}t^{2^{m}-1} + a_{n}t^{2^{n}-1})^{r}$ modulo $t^{2^{n}} - t$ contains a term in $t^{2^{n}-1}$. The power of the general term in this expression expanded is

$$r(2^m-1) + k(2^n-2^m)$$
.

Let $r = (2^{h} - 1) - z(2^{n} - 2^{m})$. Then, since we require that

$$r(2^m-1) + k(2^n-2^m) \equiv 0 \pmod{2^n-1},$$

80

$$k(2^n-2^m)-z(2^m-1)(2^n-2^m)\equiv 0\;.$$

Now, $k = z(2^m - 1)$ is a solution of this equation. Let $d = 2^{(n-m,h)} - 1$ and let $R = (2^h - 1)/d$. Then, as $(2^n - 2^m, 2^h - 1) = d$, there are d solutions given by

$$k \equiv z(2^m - 1) + RN$$
, $N = 0, 1, 2, ..., d - 1$

We require z such that there is a unique k with 0 < k < r. In particular, $r = 2^{h} - 1 - z(2^{n} - 2^{m})$ and $k = z(2^{m} - 1)$ fulfil our requirements if k < r < R.

Put $z = 2^{h-n}$. Then

$$\begin{split} k &= 2^{h-n+m} - 2^{h-n} < 2^{h-n+m} - 1 = r \\ &\leq (2^{h-n+m} - 1)(2^{n-m} - 1)/d \\ &< (2^h - 1)/d = R \:. \end{split}$$

So $r = 2^{h-n+m} - 1$ and $k = 2^{h-n+m} - 2^{h-n}$. Then $(1+x)^r = \sum_{0}^{r} x^i$; in particular, the coefficient of x^k is 1.

Thus it has been shown that $(a_m t^{2^m-1} + a_n t^{2^n-1})^{2^{h-n+m}-1}$ has exactly one term in $t^{2^{h}-1}$ and so, if $a_m a_n \neq 0$, $a_m t^{2^m-1} + a_n t^{2^n-1}$ is not in $\mathfrak{f}(2^h; t)$.

LEMMA 6. – If $a_m a_n \neq 0$ and m < n < h, then

$$a_m t^{2^m-1} + a_{m+1} t^{2^{m+1}-1} + \ldots + a_n t^{2^n-1} \notin \mathfrak{T}(q;t)$$

PROOF. - As in the last lemma, we use Dickson's theorem and, in fact, the same r to show that, if $r = 2^{h-n+m} - 1$, then

$$(a_m t^{2^m-1} + a_{m+1} t^{2^{m+1}-1} + \dots + a_n t^{2^n-1})^r \mod t^{2^n} - t$$

always contains a term in $t^{2^{h}-1}$.

The previous lemma used the identity

$$(2^{h-n+m}-1)(2^m-1) + (2^{h-n+m}-2^{h-n})(2^n-2^m) = (2^m-1)(2^h-1)$$

 \mathbf{or}

$$(2^{h-n}-1)2^m + (2^{h-n+m}-2^{h-m})2^n = 2^{h-n+m}-1 + (2^m-1)(2^h-1) \ .$$

It suffices to consider

$$(t^{2^{m}-1} + t^{2^{m+1}-1} + \dots + t^{2^{n}-1})^{2^{h-n+m}-1} =$$

$$= (t^{2^{m}} + t^{2^{m+1}} + \dots + t^{2^{n}})^{1+2+2^{2}+\dots+2^{h-n+m-1}}/t^{2^{h-n+m}-1} =$$

$$= (t^{2^{m}} + \dots + t^{2^{n}})(t^{2^{m+1}} + \dots + t^{2^{n+1}})\dots(t^{2^{h-n+2m-1}} + \dots + t^{2^{h+m-1}})/t^{2^{h-n+m}-1} =$$

$$= \sum t^{2^{m}0+2^{m}1+\dots+2^{m}-2^{h-n+m}+1}$$

where s = h - n + m - 1 and $m + i \le m_i \le n + i$ for i = 0, 1, ..., s. We require solutions for

$$2^{m_0} + 2^{m_1} + \ldots + 2^{m_s} \equiv 2^{h-n+m} - 1 \pmod{2^h - 1}.$$

From the previous lemma (or by the above identity), there is a solution

$$m_i = m + i$$
, $i = 0, 1, ..., h - n - 1$;
 $m_i = n + i$, $i = h - n, ..., s$.

It must be shown that this is the only solution.

Put $m_i = m + r_i$; then $i \leq r_i \leq n - m + i$, i = 0, 1, ..., s. The equation now becomes

$$2^{m}(2^{r_{0}} + \ldots + 2^{r_{s}}) \equiv 2^{h-n+m} - 1 \pmod{2^{h} - 1}$$

Since $(2^m, 2^h - 1) = 1$ and 2^{h-m} . $2^m - (2^h - 1) = 1$,

$$2^{r_0} + 2^{r_1} + \ldots + 2^{r_s} \equiv 2^{h-m}(2^{h-n+m}-1) \equiv 2^{2h-n}-2^{h-m}.$$

As $r_i \ge i$, so $\sum 2^{r_i} \ge 1 + 2 + \ldots + 2^s = 2^{h-n+m} - 1$. As $r_i \le n - m + i$, so $\sum 2^{r_i} \le 2^{n-m}(2^{h-n+m}-1) = 2^h - 2^{n-m}$. However, $(2^h - 2^{n-m}) - (2^{h-n+m}-1) < 2^h - 1$. Therefore, $\sum 2^{r_i}$ takes a definite value such that $2^{h-n+m} - 1 < \sum 2^{r_i} < 2^h - 2^{n-m}$. In fact, $(2^{2h-n} - 2^{h-m}) - (2^{h-n} - 1)(2^h - 1) = 2^h - 2^{h-m} + 2^{h-n} - 1$, which lies in the required range. Thus,

$$\sum 2^{r_i} = 2^{h} - 2^{h-m} + 2^{h-n} - 1 = 1 + 2 + \ldots + 2^{h-n-1} + 2^{h-m} + \ldots + 2^{h-1} \,.$$

Written in the binary scale, the number on the right has exactly h - n + m unit digits, which is the number of summands on the left. As $i \leq r_i \leq n - m + i$, the unique solution is

$$r_i = i$$
 for $i = 0, 1, ..., h - n - 1$

and

$$r_i = n - m + i$$
 for $i = h - n, ..., h - n + m - 1$.

So there is always a term in $t^{2^{h}-1}$ in the expansion of

$$(a_m t^{2^m-1} + \ldots + a_n t^{2^n-1})^{2^{n-n+m}-1}$$
 provided $a_m a_n \neq 0$.

THEOREM 2. – In PG(2, 2^{h}), D(f) is a translation oval if and only if $D(f) = D(2^{n})$ with (n, h) = 1.

PROOF. - If $D(f) = D(2^n)$ with (n, h) = 1, then by theorem 1, corollary 3, D(f) is an oval. Since $f(t) = t^{2^n}$ satisfies T1, D(f) is a translation oval.

Conversely, if D(f) is a translation oval, then by T1 and lemma 4

$$f(t) = a_0 t + a_1 t^2 + \ldots + a_{h-1} t^{2^{h-1}}$$

By theorem 1, corollary 1, $a_0 = 0$. By T3 and lemma 6, $f(t) = a_n t^{2^n}$ for some n in 0 < n < h. Since f(1) = 1, so $a_n = 1$. Finally, by theorem 1, corollary 3, for $D(2^n)$ to be an oval, it is necessary that (n, h) = 1. So $D(f) = D(2^n)$ with (n, h) = 1.

5. - Further examples of ovals.

If D(f) is an oval in PG(2, q) with q even, then by limiting the degree of f, the form of f or the size of q, further information can be obtained. Firstly, we limit the degree of f and then consider, for small q, f as a monomial.

THEOREM 3. – In PG (2, q) with q even,

- a) if deg f = 2, then D(f) is an oval if and only if D(f) = D(2);
- b) if deg f = 4, then D(f) is an oval if and only if h is odd and D(f) = D(4);
- c) if deg f = 6, then D(f) is an oval if and only if h is odd and $f(t) = (t^6 + \lambda t^4 + \lambda^2 t^2)/(1 + \lambda + \lambda^2)$ for some $\lambda \in \gamma$. In this case, D(f) is projectively equivalent to D(6).

PROOF. - See [3], p. 792.

In PG(2, 2), PG(2, 4) and PG(2, 8), every oval is regular. Although the problem of classifying ovals in general is difficult, there is a type that can be managed. When D(f) = D(m) for some integer m, then the problem can be attacked for small q. Write $D(m) \sim D(l)$ when these two sets are projectively equivalent.

THEOREM 4. – Suppose D(k) is an oval in PG(2, q) with q even. Then

$$D(k) \sim D(k_1) \sim D(k_2) \sim D(k_3)$$
,

where k_1, k_2, k_3 are defined by

$$kk_1 \equiv 1 \pmod{q-1}$$
 and $1 < k_1 < q-1$;
 $(k-1)(k_2-1) \equiv 1 \pmod{q-1}$ and $1 < k_2 < q-1$;
 $k+k_3 = q$.

PROOF. - See [3], p. 789.

COROLLARY 1. – In PG (2, q) for q = 16, 32 and 64, the only projectively distinct ovals of the form D(k) are

- a) for q = 16, D(2);
- b) for q = 32, D(2), D(4) and D(6);
- c) for q = 64, D(2).

PROOF. - See [3], p. 790.

THEOREM 5. – In PG(2, 128), there are five projectively distinct ovals of the form D(k): D(2), D(4), D(6), D(8), D(20).

PROOF. – By theorem 1, corollary 1, k is odd. By theorem 4, the following table can be calculated.

k	2	4	6	8	10	12	14	16	18	20	22	24	26	28	3 0	32
k_1	64	32	106	16	89	53	118	8	120	108	52	90	44	59	72	4
k_2	2	86	52	110	114	105	89	18	16	108	122	117	62	81	93	42
k_3	126	124	122	120	118	116	114	112	110	108	106	104	102	100	98	96
k	34	36	38	4 0	42	44	46	4 8	50	52	54	56	58	60	62	64
k_1	71	60	117	54	124	26	58	45	94	22	4 0	93	4 6	36	84	2
k_2	78	99	104	115	32	66	4 9	101	71	6	13	98	79	29	26	126
k_3	94	92	90	88	86	84	82	80	78	76	74	72	70	68	66	64

Therefore the only possible candidates for projectively distinct ovals are D(2), D(4), D(6), D(8), D(20) and D(26), where the D(k) with lowest k among several projectively equivalent D(k) has been chosen. By theorem 1, corollary 3, D(2), D(4) and D(8) are ovals. By theorem 3, D(6) is an oval. It remains to show that D(26) is not an oval but that D(20) is. Writing $g_m(t) = [(t+1)^m + 1]/t$, it must be shown that $g_{26}(t)$ is not in $\mathfrak{T}(128; t)$ but that $g_{20}(t)$ is.

Let β be a primitive root of GF(128) satisfying $\beta^{7} + \beta + 1 = 0$. The table below lists, for each *i* in $1 \le i \le 126$, the integers r(i) and s(i) where

$$eta^{r(i)} = 1 + eta^i \quad ext{ and } \quad eta^i = g_{\scriptscriptstyle 20}(eta^{s(i)}) \,.$$

Also $g_{20}(0) = 0$ and $g_{20}(1) = 1$. Thus, from the table, $g_{20}(t)$ is a permutation polynomial. On the other hand, $g_{26}(\beta^5) = g_{26}(\beta^9) = \beta^{123}$. So $g_{26}(t)$ is not a permutation polynomial. This completes the proof.

88	J.	W. P.	HIRSCHFELD:	Ovals	in	desarguesian	planes	of even	order	
i	r(i)	s(i)		i	r(i)	s(i)		i	r(i)	s(i)
1	7	15	4	43	17	57		85	72	92
2	14	30		14	94			86	34	114
3	63	79	4	£ 5	68	101		87	11	119
4	28	60	4	46	37	107		88	61	13
5	54	38	4	1 7	22	111		89	20	4
6	126	31	4	48	119			90	9	75
7	1	51	4	4 9	122	26		91	70	45
8	56	120	E	50	83			92	74	87
9	90	11	t	51	4 0	8		93	52	106
10	108	76		52	93			94	44	95
11	87	81	ł	53	18			95	65	3
12	125	62		54	5			96	111	115
13	55	83		55	13			97	32	108
14	2	102		56	8			98	117	52
15	31	110		57	21			99	103	91
16	112	113		58	38			100	39	17
17	43	49		59	104			101	84	61
18	53	22		30	124			102	80	16
19	29	68		31	88			103	99	80
20	89	25		32	3 0			104	59	29
21	57	56		33	3			105	25	37
22	47	35		34	67			106	36	46
23	82	117	6	35	95			107	69	123
24	123	124		36	27			108	10	2
25	105	36		37	64			109	35	86
26	110	39		38	45			110	26	53
27	66	64		39	107			111	96	65
28	4	77		70	91			112	16	54
29	19	84		71	79			113	115	109
30	62	93		72	85			114	42	94
31	15	66		73	78			115	113	40
32	97	99		74	92			116	76	82
33	77	73		75	41			117	98	125
34	86	98		76	116			118	81	43
35	109	116		77	33			119	48	96
36	106	44		78	73			120	121	118
37	46	14		79	71			121	120	20
38	58	9		30	102			122	49	126
39	100	21		31	118			123	24	48
40	51	50		82	23			124	60	10
41	75	67		33	50			125	12	24
42	114	112	8	34	101	97		126	6	12

BIBLIOGRAPHY

- [1] R. C. BOSE, Mathematical theory of the symmetrical factorial design, Sankhya, 8 (1947), рр. 107-166. [2] L. E. DICKSON, *Linear groups*, Dover, 1958.

- [3] J. W. P. HIRSCHFELD, Rational curves on quadrics over finite fields of characteristic two, Rend. Mat. e Appl., (6), 3 (1971), pp. 772-795.
- [4] L. LUNELLI M. SCE, K-archi completi nei piani proiettivi desarguesiani di rango 8 e 16, Centro calcoli numerici, Politecnico di Milano, 1958.
- [5] S. E. PAYNE, A complete determination of translation ovoids in finite Desarguian planes, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Natur., (8), 51 (1971), pp. 328-331.
- [6] B. SEGRE, Lectures on modern geometry, Cremonese, 1961.
- [7] B. SEGRE, Ovali e curve σ nei piani di Galois di caratteristica due, Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Natur., (8), 32 (1962), pp. 785-790.
- [8] B. SEGRE U. BARTOCCI, Ovali ed altre curve nei piani di Galois di caratteristica due, Acta Arith., 18 (1971), pp. 423-449.