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Abstract. Given a collection M of convex polytopes, let ~-(M) denote the set of all 
convex transversals of M. If M and ~ are two such collections, of finite cardinality, 
then there is a simple, arithmetical condition which holds precisely when r(M)= 
r(~). Another such condition, involving what we call the "Sallee-Shephard map- 
ping," characterizes those pairs M and ~ for which 7(~-(M)) = r(~). 

As these results are established, several distributive lattices involving convex sets 
are introduced, and relationships between their valuation modules are determined. 
In particular, it is proven that the Sallee-Shephard mapping is an isomorphism of 
the additive, abelian group of simple functions generated by the characteristic 
functions of the open, convex sets and that generated by those of the closed, convex 
sets. 

1. Introduction 

The writing of this paper began as an attempt to exploit the notion of  "polarity" 
of convex sets in the theory of valuations on convex polyhedra. In the first sections 
we give results without explicit reference to the connection with polarity; but in 
many cases a simpler proof (of a possibly weaker result) can be obtained by 
appealing to later results more directly concerned with polarity. The final section 
of  this paper is largely self-contained and the reader might wish to glance at this 
section early on. 

In Sections 2, 4, and 5 various distributive lattices are described. Among these 
are two familiar ones: Lo and Lc, the lattices of  finite unions of  open and closed, 
respectively, convex sets in ~a. Three tess-familiar ones are: qb, the lattice of 

A A 

"complete families of  convex transversals;" and Lo and Lc, the "polar lattices 
of  open (closed) convex sets." 

The valuation modules of Lo,/-~o, L¢, a n d / ~  are isomorphic. Indeed, we show 
that those of Lo and of /~o are isomorphic to Z~)So, where So is the group 
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(Z-module) of  simple functions generated by the characteristic functions of  open, 
convex sets. Similarly, those of  Lc and £¢ are isomorphic to ~ 'G S¢, where S~ is 
the group generated by the characteristic functions of  the closed, convex sets. In 
Section 6 it is shown that So and Sc are connected by an isomorphism, the 
"Sal lee-Shephard mapping."  

In Section 3 an arithmetical condition is given for two finite collections ~¢ and 
of convex sets to possess the same convex transversals. The Sallee-Shephard 

mapping is introduced and used in Section 6 to shed further light on this topic. 
The paper  makes use of  fundamental facts concerning convex sets and poly- 

topes, which may be found in [7], [15], and [19]. The inspirational papers of  
Hadwiger [8], Klee [ 11], and Rota [16] provide bacground on the Euler charac- 
teristic in a suitable setting, and on valuations, more generally. The paper  of  
McMullen and Schneider [14] provides a useful survey of the use of  valuations 
in convexity. The papers of  Geissinger [2] provide the basic facts concerning the 
valuation modules and valuation rings of  distributive lattices. The papers of  
Groemer  [3]-[6] contain more related material. 

2. Complete Families of Transversals 

Given a family X of convex subsets of  ~d, let ~-(X) denote the family of  convex 
transversals of  Y{, so that ~ (~)  = { T__ ~ d : T n X # Q for each K ~ X}. We will 
call sets of  the form ~-(SV) complete families of transversals, and we will denote 
by • the collection of all complete families of  transversals. 

It follows from the formula f~X~A Z(3'{~) = ~ '(U~A ~a)  that the intersection 
of  any collection of complete families of  transversals is again in ~.  The family 
of  all convex sets in ~d is ' / '(~), an element of  qb. It follows that d~, as a set 
partially ordered by inclusion, is a complete lattice. 

The meet operation on • is intersection. The join of  a collection 5~{~ (A ~ A) 
of  elements of  • is ~o(U~A 3V~), where for any collection ~( of  convex sets, 

4 , ( x )  = ~ , ( r ( ~ ) )  = n e r .  
,~7cdp, 
5£cc ~r 

Note that ~, when restricted to ~ ,  is a dual automorphism of qb. It is worthwhile 
to observe that a criterion for inclusion of  a family ~r in ~ is that for each convex 
set K ~ if, there is a convex transversal T of f f  such that K n T = Q. 

The foregoing paragraphs describe some essential pieces of  the structure one 
obtains by considering the binary relation " K  has nonempty intersection with 
T"  on the family of  convex sets in ~ d  and using this relation to obtain a 
"polari ty,"  as in pp. 122-125 of [1]. 

In this section we study the structure of  ~ .  In particular we show that it is 
distributive. 

We call a set H __q ~ d  a half-space if both H and its complement,  ~ d  -- H, are 
convex. (Note that a half-space may be neither closed nor open. Our half-spaces 
are called "hemispaces"  by Jamison [10].) Let ~ denote the collection of all 
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half-spaces in ~d, partially ordered by inclusion. Let ~e denote the collection of 
all upper  semi-ideals of  ~ ;  i.e., a subset ~ _~ ~ is an element of  ~ if, for half-spaces 
H~ and H~, H I ~  and H 2 ~ H I  imply H 2 ~ .  Clearly, ~e is a completely 
distributive lattice. Its operations are intersection and union. 

For f f e O ,  let y ( s r ) =  ~-c~ ~.  This is a function T: ~ ,  since elements 5r 
of  qb are upper  simi-ideais in the lattice of  all subsets of  the set of  convex sets 
in ~d,  ordered by inclusion. 

Theorem 1. The function T: ~b-~ ~ is an isomorphism of partially ordered sets 
(and, therefore, of  complete lattices). 

Proof. We first show that for complete families of  transversals 5rl and S2, 
J-~ --- J2  if and only if y( ~rl ) ___ y(J2) .  I f  3-~ c 3-2, it is immediate that y(~-~) = 9-~ n 
~ c  ff2c~ ~ =  y(S-2). Suppose ff~ ~ if2. Let K be an element of  3~ ~ ~r2. Since 
K ~ 3-2, there is a transversal T of ~-2 such that K c~ T = ~ .  By a result of  Hammer  
[9] there is a half-space H such that K ~_ H and T ~  ~ d  ~ H. Then H ~ ~-~ ~ ~2, 
so ~(~-,)  ~ ~ ( Y g .  

It remains to show that T is surjective. Suppose ~ 6  ~. Let 3 =  {K ~ ~ d :  K 
is convex, and for each transversal T o f ~  it is true that T c~ K ~ ~}; i.e., ~- = ~p(~). 
Then ~ ~  O. We need only show that T(~-) = ~ .  Clearly, ~ _~ ~, so ~ ~_ ,7c~ ~ =  
y ( ~ ) .  We verify the reverse inclusion. Suppose that H is a half-space which is 
not in ~. We must show that H is not in 5 r. Let T = ~ d  ~ H. Then T is a transversal 
o f ~ ,  for if J 6 ~  then, since H ~ ,  J ~ t H ,  so Jc~T~Q3.  Since T c ~ H = ~  it 
follows that H ~ S-. [] 

Corollary. The lattice dp is completely distributive. 

Let ~p denote that subset ofd~ consisting of all complete families of  transversals 
which are of  the form r ( ~ ) ,  where Y[ is a finite family of convex polytopes. 

Theorem 2. The subset d;,pC_O is a sublattice of d~ (in the finitary sense). The 
restriction of  r to ~o is a dual automorphism of  ¢Po. 

Proof. Temporarily denote by alp' the sublattice of  • generated by elements of  
the form r({p}), where p E ~d. Note that such elements are fixed by % so that r 
maps qb' to itself. It remains only to show that qb'= ~p. 

Suppose { v l , . . . ,  v~}___ ~ d  and P = c o n v { v l , . . . ,  vn}. Then r ({{vl} , . . . ,  {v,}}) 
consists of  precisely those convex sets which contain P; clearly, this is ~({P}). 
From the equality ~ ( { P } ) = z ( { { v j } , . . . , { v , } } )  follows r ( { P } ) = r ( ~ ( { P } ) ) =  
~({{v l} , . . . ,  {vn}}). We see that (i) the join ~({{vl} , . . . ,  {vn}}) of  the elements 
~({{vi}}) = r({{vi}}) (for i~ In])  is r({P}), and (ii) r ({P})~ ~ '  (for any convex 
polytope P). 

I f  Y( = { P ~ , . . . ,  P,,} is a finite collection of convex polytopes, so that ~'(Y{) e Op, 
then r ( ~ ) =  r({Pt})c~. • • c~ r({P,,}), which, utilizing (ii) above, is in O'. Then 
qbp___ ~ ' .  The reverse inclusion follows easily from the fact that, since qb is 
distributive, each element of the lattice O' can be written (finitarily) as an inter- 
section of joins of  elements of  the form r({p}), so it is of  the form r(5~). [] 
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3. A Consequence of the Equality T(~CI) = z(~2) 

Our main objective in this section is the proof  of Theorem 3, below. In case KI 
and ~2 are finite families of  convex sets and z ( K l ) =  ~r(~2), this result describes 
an equality involving ~ and ~c2 which must hold in the valuation ring of the 
lattice of  finite unions of  convex sets. The proof  roughly mimics (through polarity) 
part of  an argument used by Groemer in his proof  of the existence of an Euler 
characteristic. (See [3].) 

A consequence of Theorem 3 for "clustered families" of convex sets, introduced 
in [12], is also described. 

If  K and G are convex sets, let 8(K, G) = {ag + (1 - a)x: 0 <- a < 1, g e G, and 
x e K}. Clearly, this is also a convex set, and K _ 8(K, G) ~_ conv(K c7 G). 

It is not difficult to establish that, if  K and ~d are families of  convex sets, then 

8 (conv  r~cU K, conv ~ J  G )  =conv  Kc~U 8(K,G) .  

Gc~d 

Also, if K, G1, and G2 are convex, then 8(8(/( ,  GO, G2) = 8(K, conv(Gi u G2)); 
if K~, K2, and G are convex, then 8(K1,8(K2,  G ) ) =  8(conv(K~ u K2), G). 

Lemma 1. Suppose if{ is a family of convex sets, K e t#(9~'), and G is also a convex 
set. Then 

8(K, G ) e  ~({8(W, G):  We ~C}). 

Proof. Suppose T e z ( { 8 ( W ,  G): W e ~ } ) .  For each element W e ~ ,  let pw = 
a w g w + ( 1 - a w ) x w  be an element of  TInS(W,  G), where 0 - < a w < l ,  g w e G ,  
and xw e W. Let T ' =  conv{xw: W e  ~c}. Clearly, T ' e  r ( ~ ) ,  so T'c7 K ~ O. Let 
w be an element of T ' o K .  Since we  T', we may write w=~,w~cBwxw,  where 
/3w = 0  except for finitely many W e  ~, flw>-O for W e ~ ,  and ~ w ~ v f l w  = 1 (so 
that the sum is a convex combination of  the xw's). Let o" = ~, w~c [#w/(1 - a w) ] .  
Then t r>  1. Let y w = f l w / [ ( 1 - a w ) o  "] for W e ~  r. Then 

E 3'wPw = ~, y w ( a w g w + ( 1 - a w ) x w )  

~waw Bw 
w ~ c ( 1 - a w ) o  "gw w~c tr 

From the first expression we see that this point is in T. From the last we see that 
it is in 8(K, G). Then T o  8(K, G) ~ O. Since this is true of  each such transversal 
T, it follows that 8(K, G) e ~({8( W, G): W e  ~r}). [] 

Suppose ~c = {K~ : A e A} is a finite collection of convex sets indexed by A, 
and suppose p e ~d. Let 

f l ( ~ , P ) = { A c - - A : p ' c o n v ( ~ U A K ~ ) } .  
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Lemma 2. Suppose ~f is a nonempty collection of convex sets in ~d indexed by A, 
a and b are distinct point o f ~  d, and p is a point of the relative interior of  the line 
segment connecting a and b. Let 

X, = {6(K~, {a}): A ~ A}, 

Y{2 = {8(Kx, {b}): a ~ A}, 

and 

Then 

and 

Yf3 = {$(K~, conv{a, b}): A ~ A}. 

fl (~ft, p) u/3 (~r2, p) =/3 (Y~, p) 

t3(~,,  p) n t3 (~2, p) = t3(~3, p). 

Proof We establish the first equality. Suppose A c fl(~fl,P) u fl(~2,P).  Then 

p ~ conv(~?A 6(KA, {a}))c~ conv(AUA $(KA, {b})) 

-~ conv(~?A KA), 

SO A ~ fl(Yf, p). Suppose A~ f l (~l ,  p )w  fl(Yf2, p). Then pc  8(conv([...JA~A KA), 
{a})c~6(conv([..J~AKA), {b}), so there exist x, y~conv([.3~AK~) such 
that p c  6({x}, {a})c~6({y}, {b}). Since p is strictly between a and b it is 
clear that x, y, a, b, and p are colinear, and that p ~ conv({x, y}). Therefore 
p ~ conv([...JA ~ A K~ ), so that A ~ fl (St f, p). 

Now we establish the second equality. Suppose A~ fl(Yf3, P). Then 

p ~ cony( [..3 6(KA,conv{a,b})) 
\ A ~ A  

so A~f l (Y f l ,p )n f l (Y(2 ,p ) .  Suppose Ac~fl(Y(3,p). Then 
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so there is X E conv(~_Jxe A K,~) such that p c  ~({x}, conv{a, b}). Since p is on the 
line through a and b, it is clear that x must be, as well. Then 

p e  (cony{a, b})~{a,  b}~_ ~5({x}, {a})w ~({x}, {b}) 

_~ tS(conv(aUA Ka) ,  {a})~8(conv(xUAKa)  , {b}) 

so A~ f l (~ ,p )c~  fl(Y[2, p). [] 

If ~ is finite, indexed by the finite set A = [ m], then f l (~,  p) is a finite simplicial 
complex. Let X be the function which assigns to each (finite) simplicial complex 
its Euler characteristic. 

Theorem 3. Let ~'f={Ki: i t [ m ] }  and ~f'={K~:jc[n]} be nonempty, finite, 
indexed collections of convex sets, and let p be a point of ~d. Suppose that 
z ( ~ )  = r (X' )  (or, equivalently, that ~(~)  = ~(5~')). Then X(fl(X, P)) = 
x( ,e(  ~C', p ) ). 

Proof. Suppose that this is not the case. Choose K, ~ ' ,  and p so that the 
hypotheses are satisfied but g([3(5~,p))~X(~(~{',p)), in such a way that 
l / 3 ( ~ , p ) l + l / 3 ( ~ ' , p ) l  is as small as possible. 

Clearly, {p}~-(5~u{{p}}) (=~-(5~'w{{p}})), for otherwise f l ( ~ , p ) =  
/3(~',  p ) =  {~}, and the Euler characteristics would be 0. Also, it cannot be the 
case that there are sets Ac_ [m] and A'c_ [n] such that 

and 

fl(~f,p)={Sc_[m]: Sc~A=;~} 

fl(~r',p)={T~_[n]: T ~ A ' = Q } ,  

for then (since we have seen that neither A = [m] nor A' = [n]) the Euler charac- 
teristics would both be 1. 

It follows that, for at least one of the two complexes, there is a subset B of  
the index set which (i) is not in the complex, (ii) has the property that each 
proper  subset is in the complex, and (iii) has cardinality at least 2. For definiteness, 
we assume that this is true of  the complex/3(~(, p), so that B _  [m]. Let j be an 
element of B. Let Bo-- B ~ {j}. We may choose a s Kj and b ~ conv(Ui~ Bo Ki) 
such that peconv{a ,  b}. Notice that, since both {j} and Bo are in /3(5~f,p), 
p ~ {a, b}. For ~/', a, b, and p, the situation is that of Lemma 2. Let K~, 5r{2, and 
5~3 be as in Lemma 2. Also it is clear that Lemma 2 applies to X', a, b, and p. 
Let ~ ,  X~, and 5~ be the corresponding collections in this case. 

By Lemma 2 and the modular property of  the Euler characteristic, 

x(/3 (yc, p))  = x ( /3 (~ , ,  p)) + x(/3 (~c=, p)) - x(/3 (~c~, p)) 
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and 

x(/~ (~c',, p)) + x ( / 3 ( ~ ,  p)) - x(/3 ( )~,  p)) = x(/3 (~", p)). 

The complexes appearing on the right in the first equation are properly contained 
in/3 (~c, p). 

Since ¢ ( ~ ) =  ¢(fff'), Lemma 1 yields ¢(~)=¢(~( '1) ,  ¢ ( ~ : ) = ¢ ( ~ ) ,  and 
¢(~f3) = ¢(~/'~). It follows, considering the minimality criterion for our choice of 
~( and 5~', that X(/~(~, p )=  X(/3(~', p), a contradiction. [] 

Recall from [12] that a family of convex sets is clustered if ~'(~)= 
r({r"lr ~x K}). 

Corollary. I f  ~f is a finite, clustered family of  convex sets indexed by [rn] then 

1 if  pc~"~K~: K, 
X(fl(~'(, p)) = 0 otherwise. 

4. Valuations and the Transversal Characteristic 

In this section we utilize facts about valuation modules to produce a partial 
converse to Theorem 3. 

If ~ is a finite family of convex sets in ~d then the function f:  ~d _~ Z given 
by the formula f ( p )  = 1 - X(fl (5~, p)) is an element of the additive group of simple 
functions generated by the characteristic functions of convex sets. Indeed, 

f (P )=  ~ ( - l ) l ' ~ l - I C ( c o n v ( U  K ) , p ) ,  
L~'~ ~c, \ \ K ~ . ~  

where 

W ,p )=S l  if peW,  
C( L0 otherwise. 

(We shall usually designate this function simply by C(W), and write C ( W ) ( p )  
instead of C(W, p).) We denote the function f by ~o~c or w(X), and call it the 
transversal characteristic of ~. 

Suppose ~ is a distributive lattice of subsets of ~d, and •c  ~. Let S(~) 
denote the group of simple functions generated by the characteristic functions 
of elements of ~. Let C: ~ S ( ~ )  be the mapping which takes De  ~ to its 
characteristic function. Then each valuation v on ~, having values in an abelian 
group A, such that v(O)=0, induces a homorphism ~3: S ( ~ ) ~ A ,  the unique 
homomorphism such that v ( D ) = O ( C ( D ) )  for D c ~ .  (See [2, I and III].) 
Obviously, given any homomorphism fi: S(~) ~ A, the composition ~3 o C is a 
valuation on ~. 
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Theorem 4. Suppose ~r and ~ '  are finite, nonempty families o f  convex sets and 
that -~( ff{)= ~'( J('). Suppose that ~ is a distributive lattice o f  sets which contains 
c o n v ( U r ~  K ) , f o r  each subset ~t o f f f {w Y~'. I f  v: ~ ~ A is a valuation on ~,  then 

.~t_~ ~, . ~ '  

Proof. Suppose, first, that v ( ~ ) = 0 .  Let ~3 be the corresponding group 
homomorphism,  t3: S ( ~ )  ~ A. If  ~'(~) = r(SY') then, by Theorem 3, o;(~0 = to(~ ') ,  
so that tT(to(~)) = ~7(to(~')). This immediately yields the desired equality. 

The result now follows in general by noting that (i) any valuation is the sum 
of a constant valuation and one which maps ~ to zero, and (ii) the result holds 
for constant valuations. [] 

Corollary. Suppose ~r is a finite, clustered fami ly  o f  convex sets, and that ~ is a 
distributive lattice o f  sets such that conv(U r ~ ~ K ) ~ ~ ,  for  each collection ~l ~_ ~.  
Let v: ~--> A be a valuation on @. Then 

~x (-1)l~l-'v(conv(ry~ K))= v(~c K ). 
~t~O 

Proof. This follows at once from Theorem 4 by setting ~ ' =  { n r ~ c  K}. [] 

Next we have, essentially, the converse to Theorem 3, when the sets are open. 

Theorem 5. Suppose ~{ and if{' are finite, nonempty families o f  open, convex sets 
in ~d.  Then ~.(~r)= r ( ~ ' )  i f  and on ly / f t o (~ ( )  = to(~ ') .  

Proof. I f  ~'(~) = r(SY') then to(~)  = to(~('), by Theorem 3. 
Suppose t o ( ~ ) =  to(~ ' ) .  Let Xo be the Euler characteristic for the lattice of 

finite unions of  open, convex sets in ~d. Let T be an element of  ~'(~). I f  T~  z(~(') 
then there is an element K e ~ '  and a closed half-space H such that T _  H and 
K n . H  = 0 .  Let H '  be the interior of  H. The function v ( G ) = X o ( G  n H ' )  is a 
valuation on the lattice of  finite unions of  open convex sets. It induces a 
homomorphism,  t3: So ~ Z, where So is the group generated by the characteristic 
functions of  open convex sets. 

Since H ~ ~'(~/'), H = cl H ' ,  and all elements of  ~ are open, it follows that 
H'e~-(5'/'). Then for each nonempty subset M of  ~ it is clear that 
(conv(UAc.a A) n H ' )  is a nonempty,  open, convex set, so its Euler characteristic 
is 1. It follows that ~( to(~))  = 1. 

Let ~ = { U e ~/": U n H '  = 0}. Clearly, K e ~ ,  so ~ ~ •. For nonempty ~ c_ 
~c,, ( c o n v ( U v c ~  u )  n H ' )  is an open, convex set which is empty if and only if 

___ ~.  It follows that ~( to(~ ' ) )  = 0. This is a contradiction, since to(SY) = to(~ ' ) ;  
so it must be the case that T e ~'(~'). 

We have shown that 7-(~)___ ~-(Yf'). The reverse inclusion becomes apparent 
upon reversing the roles of  ~r and ~ '  in the foregoing. [] 



V a l u a t i o n s  a n d  Po la r i t y  315 

In Section 6 we consider  another  converse to Theo rem 3, when the sets involved 
are assumed to be closed. 

5. The Open, Polar Lattice 

Let M be an additive,  abel ian group. Let S be a set endowed with a binary 
operat ion,  A, under  which it is a semilattice. Suppose ,  further,  that  there is an 
injection e: S ~ M. For T ~ S of  finite cardinali ty and nonempty ,  let 

/ ~ ( T ) =  Y. (-1)lul-~ ( u )  e ~ . 
U ~ T ,  u c U  
U ~  

We say that  the semigroup  (S, ^ ) is conforming (relative to e) if, given any finite 
sets T~, T'~, 7"2, and  T~ conta ined  in S such that/~(T~) = p.(T~) and/~(T2)  =/~(T~) ,  
one has /~(T1 u T2) =/~(  T~ u T~). 

Suppose  (S, ^ ) is conforming.  Let L denote  the image of/~, so that  L = {/~(T): 
Tc_S,  0 < [ T [ < o o } _ _ _ ~ .  We define a binary opera t ion  v on L by the rule 
a v b = t ~ ( T i u  T2), where  a = / ~ ( T i )  and b =/~(T2).  This is well defined, since 
(S, ^ ) is conforming.  For  a, b e L we define a ^ b = a + b - a v b. Then,  for  s, t e S, 
one has e ( s n t ) = e ( s ) n e ( t ) ,  since by definition e ( s ) v e ( t ) = / z ( { s , t } ) =  
e ( s ) +  e (t) - e (s ^ t). We use this fo rmula  to extend this opera t ion to L. Presently, 
we shall see that  if  a and  b are in L then a ^ b is, as well. We shall call the 
opera t ions  ^ and  v " m e e t "  and " jo in" .  

Theorem 6. I f  ( S, ^ ) is a conforming semilattice, and L, ^ ,  and v are as above, 
then (L, ^ ,  v ) is a distributive lattice. The inclusion c: L ~ ~I is a valuation on L. 

Proof. The  opera t ion  v on L is clearly commuta t ive ,  associative,  and idem- 
potent ,  so (L, v ) is a semilattice. It is easily verified that  

e(a~)v  . . .  v e ( a k ) = p ~ ( { a , , . . . , a k } )  for  a , , . . . , a k c S .  

In part icular ,  L is genera ted under  v by the image,  e (S) ,  of  S. 
Suppose  a, b l , . . . ,  bk are in e(S) .  Then 

a A ( b l v  ' ' '  v b k ) = a + ( b l v  " ' "  V b k ) - ( a v b t v  ' ' "  vbk)  

= - ~ ( - 1 ) ' ( a  A b i l  ^ " " " ^ bi,) 
I ~ i 1 ~ ,  • . ~ i , ~ k  

= ( a A b l ) v  ' ' '  v ( a ^ b k ) .  

It fol lows that  

( a , v  . . .  v a k ) A ( b l v  ' ' '  v b l ) =  V (a,^bj), 
i ~ [ k ] ,  

J ~ U ]  

(*) 
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whenever a~, bg ~ e(S) (i ~ [k], j e [l]). Since, as we have seen, L is precisely the 
set of joins of  elements of e(S) ,  L is closed under ^. 

It is not difficult to verify by using (*) that ^ is associative, commutative, and 
idempotent, and that ^ distributes over v.  

The identity a ^ b = a + b -  (a v b) establishes the final statement of the 
theorem. [] 

For example, suppose ~¢ is the abelian group generated, under addition, by 
the characteristic functions of  sets in a family S which is closed under finite 
intersection. There is the obvious injection e: S-~ M, sending each element of S 
to its characteristic function. If  ^ denotes intersection (making S into a semilat- 
tice), then S is conforming. The lattice L is isomorphic to the lattice of finite 
unions of  elements of  $. 

Let So denote the abelian group generated by the characteristic functions of  
open, convex sets in ~d. We utilize the mapping taking each convex, open set 
to its characteristic function. 

Theorem 7. The semilattice of  open, convex sets in ~ d under the operation U ^ V = 
conv( U w V) is conforming in So. 

Proof. In this case, the function/z described above coincides with the transversal 
characteristic, ¢o. 

By Theorem 5, if X and X' are finite, nonempty families of open, convex sets 
such that ~o(5f) = o)(Yf'), then ~-(Y/') = r(~/'). If  ~o(Yfl) = co(X~) and ¢o(X2) = o)(X~) 
then "r(Xl) = ~'(~i'~) and ~-(5r{2) = ~,(Yf~). From these equalities follows 

= r ( s q  u 5r~), 

so that to(X, w ~2) = ~o(X~ w ~[) ,  as required. [] 

We denote by /~o the distributive lattice corresponding to L, of Theorem 7. 
We call it the polar lattice generated by the open, convex sets, or, briefly, the open, 
polar lattice. The extension of the convex hull operation is the meet operation 
on Lo. We shall, therefore, denote the meet of elements A and B by A conv B. 

A 

Lemma 3. The zero function is the maximal element of  Lo. It is irreducible. 

Proof. Suppose Y~/~o. We must show that C(Q)  cony Y = Y. (Here, C(Q)  
denotes the characteristic function of  ~ u t h e  zero function. This function is 
certainly an element of/~o, since C(O)  = to({O}).) Since Ys/~o, there is a family 
~/" of  open, convex sets such that Y = t o ( X ) .  Then C(Q)  cony Y =  
C(O)  + Y - t o ( * u  { 0 } ) =  Y. It follows that C(O)  is the maximal element of/~o. 
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Suppose X,=~o(Y, )  and X2= to(Y/2). Then the join of Xl and X2 in /~o is 
¢o(Y~ w Y~2). It remains only to show that if Y( is any finite, nonempty collection 
of open, nonempty convex sets then to(YC) is not identically 0. Let )?o denote the 
homomorphism,  )?o : So--> Z, induced by the Euler characteristic. Then we have 
,~o(to(~)) = 1, under the stated conditions on Y{. It follows that to(Y{) is not the 
zero function. [] 

We denote by £" the lattice Lo with the irreducible, maximal element, C(Q) ,  
removed. It follows from Theorems 6 and 7 that the natural injection Lo~  So, A! 
as well as its restriction to Lo, is a valuation. It follows that it extends to a 
homomorphism,  rl: V ( L ' ) ~  So, where V(/~') denotes the valuation ring o f /~ ' .  
Our next objective is to show that this mapping is an isomorphism. First, we 
develop a useful criterion for determining if an element X e So is the zero function. 

By an elementary valuation on a distributive lattice L, we mean a valuation 
e: L ~ Z ,  whose image is {0, 1}, such that if a, b e  L and a ~ b ,  then e(a)<-e(b). 
Given a valuation v: L ~  Z, let ~ denote its unique extension to a homomorphism,  
~: V(L) ~ 2£. 

[,emma 4. Let L be a distributive lattice. Let W be a set of elementary valuations 
on L which distinguish points of L. Let eo be the valuation which is identically 1 on 
L. Finally, let 17v'= {~: e e W}. Then the elements of I7¢U{~o} distinguish points of  
V( L). I f  L has no least element, then the elements of  (V distinguish points of V( L). 

Proof. For x ~ L ,  let 6 ( x ) = { e ~  Wu{eo}: e ( x ) = l } .  Then 3 is a lattice 
monomorphism of  L into the lattice of  subsets of W w  {eo}. Let 8(L) denote its 
image, so that L - 6 ( L ) .  Notice that eo~ ~(x), for each x in L. Then 3(L) is a 
lattice of  nonempty sets. (Notice that, if L has no least element, then 3(x) - {eo} 
is nonempty.) Let S denote the group of simple functions on W generated (under 
addition) by the characteristic functions of  sets 3(x). According to [2, I II] ,  the 
unique extension to V(~(L)) of  the valuation on 8(L) taking ~(x) to its charac- 
teristic function is an isomorphism. Composing, we have a valuation qJ: L ~  S 
whose extension ~: V ( L ) ~  S is an isomorphism. Suppose v~ and v2 are distinct 
elements of  V(L). Then q~(v~- v2)~ 0, and we may choose e~  W on which it is 
nonzero; but its value on e is, clearly, g(v~) - ~(v2), so ~ distinguishes v~ and v2. 

The final statement in the lemma is clear, considering the parenthetical 
comment  above. [] 

Let H be an open half-space. Then the function K ~ xo(K c~ H)  is a valuation 
on Lo, the lattice of finite unions of  open, convex sets. Its value on the empty 
set is 0, so it extends uniquely to a homomorphism ~Sn : So-~ L Also, let )(o: So ~ Z 
be the extension of Xo to So. 

Theorem 8. The function 7q : V ( £ ' )  --> So is an isomorphism. 

Proof I f  H is an open half-space, let v'u(F) = 1 - ~ , ( F ) ,  for Fe /~o .  We show, 
first, that the restriction of  vh to Lo is an elementary valuation. Clearly, it is a 
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valuation. Suppose F = ~o(~/'), where ~: is a finite, nonempty collection of open, 
convex sets. Then 

10 if H ~ ¢ ( ~ ) ,  
v'u(F) = if H ~ r(Y/). 

It is clear from this that if ~ ,  ___ Re2 then v~(o)(~,))  - v~(o~(~2)), which implies 
that v~ is monotone on Lo. 

A 

Next, we establish that elements of  Lo are distinguished by valuations of the 
A 

form v~. Suppose that F1 = ~o(~1) and/72 = o9(~:2) are elements of  Lo, and that 
F l # F 2. Then ~ ' ( ~ ) #  "/'(~2)" Suppose, for instance, that r ( ~ l ) ¢  ~'(~2)- Let T 
be an element of r(Y/0 - r(~[2). Let K be an element of  K2 such that T n K = 0 .  
There is a closed half-space H '  such that To_ H '  and K n H ' =  0 .  Let H = int H'. 
Since To_ H' ,  H ' e  r(~ri). Since H ' = c l  H and all the elements of  ~/1 are open, 
H ~ z ( ~ ) .  However, H ~ z(~2), since K n H = O. It follows that v'u(FO = 0 # 1 = 
v'u( F:). 

^ 

The lemma now yields that the extensions 6~ to V(Lo) of the functions v~, 
tog~her  with that of the function identically 1 on /~o, distinguish elements of 
V(Lo). Let the extension of the function identically 1 on Lo be t~o: V(Lo)--> Z. 

Consider the homomorphism rl: V(/~ ')~ So. Clearly, it is surjective. We need 
only establish that its kernel is {0}. Suppose x c V(/~ g) and x ~ 0. If  there is an 
open half-space H such that ~ 'u (x )#O then we have that 0 #  tT~(x)= 
~?o(r/(x)) - ~ , (~ (x ) ) .  Clearly, we must have r/(x) ~ 0. Likewise, if ~o(X) # 0, then 
we have 0 #  ~o(x) =)?o(rl(x)). (This equality holds in V(/~ g) since it holds for 

At  
elements of  Lo.) Again it follows that rl(x) # 0. [] 

We observe the following useful by-product of the proof of Theorem 8. 

Theorem 9. Let F be an element of  So. I f  F # 0 then there is an open half-space, 
H, such that ¢H(F) ~ O. 

Proof. It is clear from the proof of  Theorem 8 that the functions ~n are 
elementary valuations on the dual of /~ ' .  This lattice has no least element, so, 
according to the lemma, they distinguish points of So. [] 

Theorem 10. The binary operation conv on L" has a unique extension to a binary 
operation on So which distributes over addition. With this multiplication, So becomes 
a ring. 

Proof. Since So is isomorphic to the valuation module of  £" and conv is.the 
meet operation of  L ' ,  the multiplication o f  the valuation ring yields such an 
extension. Uniqueness is not hard to verify. [] 

Reference [4] contains a result analogous to Theorem 10, but with conv 
replaced by Minkowski addition. See also [13]. 
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6. The Sallee-Shephard Mapping and the Closed, Polar Lattice 

In this section we will describe a lattice. £c, related to the closed, convex sets in 
roughly the same way that £o is related to the open, convex sets. We discuss its 
valuation module and show, in fact, that V(Lc) is isomorphic to V(£o). The 
isomorphism is what we call the "Sallee-Shephard mapping." Sallee and 
Shephard studied a function which is essentially an adjoint of  this mapping. (See 
[17] and [18], and, in particular, Theorem 4.2 of  [17].) 

The section closes with another application of the Sallee-Shephard mapping. 
We use it to characterize those finite families ~ and ~ of  convex polytopes which 
are dually related in the lattice q~p of  Section 1; i.e., for which r ( ~ )  = ¢ (~ ) .  

To begin, we describe a homomorphism cl: So~ S¢, where Sc is the group of  
simple functions generated by the closed, convex sets. Given the characteristic 
function F = C ( U )  of an open convex set U, let cl F denote the characteristic 
function of its closure. ( I f  W is a set, we also denote its closure by cl W. Hopefully, 
this will not cause confusion.) 

Lemma 5. The function cl extends uniquely to a homomorphism cl: So ~ So. 

Proof. Recall that ,fo: So ~ 7/is the homomorphism induced by the Euler charac- 
teristic Xo: Lo ~ 7/. The desired homomorphism maps F c So to the function whose 
value at x is $o(F n C(B)), where B is the characteristic function of a sufficiently 
small, open ball centered at x. (Here, F n C(B)  denotes pointwise multiplication 
of  the functions. The reader will recognize this as the multiplication in an 
isomorphic copy of  the augmentation ideal of  the valuation ring of  the lattice/~o-) 

To be more precise, we let F = ~ , ~ , j  a,F~, where the functions F~ are charac- 
teristic functions of  open, convex sets, U,  I f  B is the characteristic function of  
any open ball centered at x so small that it does not meet any of  the sets U~ for 
which x ~ cl Ui, then cl F has the value 

~ o ( F n  B) = Y ,~,. 
ie[n], 

xccl U~ 

This function is the characteristic function of ci U, if F is the characteristic 
function of U. It is well defined: it is clear from the left-hand side of the above 
equation that the number  does not depend on the decomposition of the function 
F, and it is clear from the right-hand side that it does not depend on which small 
bali is chosen. 

Uniqueness is clear. [] 

Next, we show that cl is, in fact, an isomorphism. We shall make use of  X~, 
the Euler characteristic on the lattice Lc, or, rather, of  the induced homomorphism 
~?~: So-, 7/. 

Theorem l l .  The homomorphism cl: So-~ S~ is an isomorphism. 

Proof. First we verify that cl is monomorphic.  Suppose F E So and F ~ 0. By 
Theorem 9 there is an open half-space, H, such that $o(C(H)n  F ) ~  O. We may 



320 J. Lawrence 

suppose F = ~¢~.~ ct~F~, where F~ is the characteristic function of  the open, convex 
set U~ (for i e [n] ) .  Let H'  be a closed half-space contained in H such that 
U~ c~ H '  ~ O for each i for which U~ n H ~ Q. Then 

O ¢ $ o ( C ( H ) n F ) =  ~, a,~o(C(H)nF~) 
i~[,1 

= ~, a~2~(C(H')ncl(E))=2~(cl F). 
ie[n] 

Therefore cl F # 0. 
It remains to show that cl is surjective. For this it is clear that it suffices to 

show that the characteristic functions of  closed, convex sets are in the image. 
Let K be such a set. I f  K is d-dimensional then C ( K ) = c l  F, where F is the 
characteristic function of  its interior. We may proceed by induction on the 
codimension of  K. Suppose K is lower-dimensional, and that the characteristic 
functions of  all closed sets of  dimension one more are in the image. It is clear 
that we may write K as the intersection, K = Kt n K2, of  two closed, convex sets 
of  dimension one more than that of  K, and such that Kt u K2 is also convex. 
Since C ( K )  = C(K~)+ C(K2) - C(K~ w K2), it follows that C(K)  is also in the 
image. [] 

Let cl-~: Sc-~ So denote the inverse of  cl. We call the function tr = ( - 1 )  d c1-1 

the Sallee-Shephard mapping. 
For elements F and G of  Sc we define F cl conv G = c l (c l - t (F)  conv ci-~(G)),  

so that cl conv is a multiplication on So. Note that if F and G are d-dimensional, 
closed, convex sets then this is the closure of  the convex hull of F and G. We 
de f ine /~  to be the image of/~o under cl, a lattice with operations induced from 
/~o. We call it the polar lattice generated by the closed, convex sets. I f  we let 
/ ~ ' c = / ~ -  {C(O)}, then it is clear that V(L') ~- Sc. 

An easy argument (used, already, in the proof  of Theorem 11, and to be used 
again in that of  Theorem I3) shows that L~ contains the characteristic functions 
of  all closed, convex sets, and that, if K is such a set, then 

c l - l ( C ( K ) )  = (_l)d.~dim r C(relint K).  

We include another useful theorem. 

Theorem 12. Let F be a nonzero element of So. Then there is a closed half-space 
H such that ~c(C(H) n F) ~ O. 

Proof Since F#O, G=cl-~(F)#O. Then, by Theorem 9, there is an open 
half-space, H ' ,  such that A~o(C(H')n G ) #  0. The result follows, with H = cl H ' .  

[]  

Next we see that F cl cony G is what it should be, whenever F and G are 
characteristic functions of  closed, convex sets. 
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Theorem 13. I f  K~ and K 2 a r e  closed, convex sets then C( K~) cl conv C(K:) = 
C(cl conv(K~ u K2)). 

Proof. Suppose not. Choose K~ and K2 for which the identity fails, in such a 
way that dim K~ + dim K2 is as large as possible, and so that dim Kt -< dim K2. 
Then dim K~ -< d; we have already observed that the identity holds when both 
K~ and K2 are of  dimension d, so dim K~ -< d - 1. We may write KI = W t n  W2, 
where Wt, W2, and W~ w W2 are closed, convex, and of dimension one more 
than that of  K~. 

Since C(K~) cl conv C(K2) ~ C(cl conv(K~ u K2)) there is x e ~ d  on which 
these functions differ. Suppose x ~ cl conv(Kl w K2), so that the right-hand side 
has value 1. The left-hand side is 

C(Wl)  el conv C(K2) + C(W2) cl conv C(K2) 

- C(Wl)  cl conv C(W2) cl conv C(K2) 

= C(cl conv( W1 u K2)) + C(cl  conv( W2 w K2)) 

- C(cl conv( W I u Wzu K2)). 

Since W~ and W2 contain K~, this expression has value 1 on x. 
We may now suppose that x ~ ci conv(K~ u K2), so that, at x, the right-hand 

side has value 0. Then there is a closed half-space H such that x e  H and 
H n cl conv(K~ w K2) = O. Since H n W~ n W2 = O and { W~, W2} is clustered, it 
follows that one of these, say W~, also fails to intersect H nontrivially. It is clear 
that the left-hand side must also have value 0, a contradiction. [] 

IfYf is a finite, nonempty collection of closed, convex sets, the closed, transversal 
characteristic of Yf is the function: 

o , ~ ( ~ c )  = Y. ( - 1 ) l < - ~ C ( c l c o n v  U K ) .  
Mcg'f, K~t~ 
M ~ D  

Clearly, to~(~ r) ~ S¢. 

Theorem 14. Suppose ~ and Y{2 are finite, nonempty collections of closed, convex 
sets. Then z( Y{~ ) = r(~2)  if and only/ftoc(~l) = ~oc(bY2). 

Proof. We observe that if H is a closed half-space, then 

01 if H ~ z ( ~ r ) ,  
'~c(C(H) n t°c(~c)) = if H ~ ~-(~c). 

A simple argument shows that z(~fl) and ~'(5r{2) are distinct if and only if there 
is a closed half-space in one of  these sets which is not in the other. [] 
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This theorem enables one to construct an injection of  £¢ into the lattice of 
complete families of transversals. 

We consider next the sublattice, ~p,  of the lattice of complete families of  
transversals. If  ;3- = z ( { P l , . . . ,  P,,}) e ~p,  where P ~ , . . . ,  and Pm are convex poly- 
topes, let B(3- )=  w~({Pt , . . . ,  Pro}). This is a well-defined injection from ~p into 
L¢, by Theorem 14. It is clear that the image of/3 is a sublattice/~o of Lc, and 
/~p is generated by the characteristic functions of  the closed, convex polytopes. 
In fact,/3: ~ o ~  L o is a (lattice) dual isomorphism. 

Recall that, according~ to Theorem 2, the restriction of z to D 0 is a dual 
automorphism. For F e Lp, let q(F)=/3z/3- t (F) .  This is a dual automorphism 
of  L o. 

Let S o denote the group generated by the characteristic functions of the convex 
polytopes, so that Sp is a subgroup of  S~. Since So contains the characteristic 
function of  the relative interior of  each convex polytope, and since each nonempty 
polytope is the disjoint union of  the relative interiors of its nonempty faces, it is 
clear that S O ~_ So, as well. 

We use Euler's relation to obtain the connection between )?o and 27¢. If F is 
the characteristic function of  a convex, k-dimensional polytope then F =  
~K C ( K ) ,  where the summation extends over all relative interiors of  faces of  F. 
Applying ,~o to both sides yields 

,~o(F) = Y~ $o (C (K ) )  = Y~ ( - - 1 )  a -d im K 
K K 

= ( -1 )  a = (-1)a)~¢(F). 

Since such functions generate Sp, we have that $ol Sp= (-1)a~¢J S o. 

Lemma 6. Let if{= {{v~}: 1 <- i < - n}. Then ¢a(~) = (-1)dimKC(relint K),  where 

K = convIvi : i ~ [n]}. 

Proof. Let H be a closed half-space. Then 

, ~ ( C ( H ) n t o ( ~ ( ) ) =  E ( - 1 ) l A l - l x ~ ( C ( H ) n c o n v { v i : i 6 A } )  
A G [ n ] ,  
A ~ O  

= E ( -1 )  IAf-~, 
A 

where this last summation extends over nonempty sets A~_[n] such that A n  
{i: vi e H} ~ Q. This is 1, if {i: vi e H} = In], and 0, otherwise. 

Also we have 

AT~(C(H) n ( -  1 )dim K C (relint K )) 

= (--l)dim K,~ (C(H n relint K))  

= ( - - 1 )  alto K,f¢(C(int H n relint K))  +)~c(C(bd H n relint K)),  
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which is 1, if relint K c  H, and 0, otherwise. By Theorem 12, the result 
follows. [] 

Theorem 15. The function ~" is the restriction of  the Sallee-Shephard mapping, o', 
to Lp. 

Proof If K = conv{v~: i c [n]}, then ~ ( C ( K ) )  = (~-({K})) = w({{v,}: i e In]}) = 
t r (C(K) ) .  Since ~ is a lattice dual isomorphism, q: Lp~ Lp, we may view it as 

A 

a valuation ~: Lp--> Sp; it induces a group homomorphism, ~': Sp~ Sp. We have 
seen that ~' and tr agree on the characteristic functions of convex polytopes, 
which generate Sp as a group. []  

Corollary. If  ~ and ~ are finite, nonempty collections of  convex polytopes, then 
7 ( ~ ) =  r ( ~ )  if  an on l y / f t o (~ )  = to(~). 

7. Polarity as a Homomorphism 

In this section we make the easy observation that the normal cone mapping 
induces an automorphism of the group Sc generated by characteristic functions 
of closed cones. Analogous results hold for other polarities, e.g., the polar 
reciprocal mapping. 

For K c_ ~ a, let 

norm(K)  = { y c  ~d:  (X, y)--< 0 for each x~ K}. 

Theorem 16. The mapping po: C(K) -~  C(norm(K)) ,  for closed, convex sets K, 
has an extension p: Sc~ Sc, which is a homomorphism. 

Proof For f = ~  a~C(K~)eSc and x ¢ ~  d, define p ( f ) ( x )  as follows. Choose 
e > 0 sutficiently small that if there is y ~ Ki such that (x, y ) >  0, then K i n  Hx # ~), 
where Hx = {y e ~d :  (X, y)--  --e}. Then the function defined by 

p( f ) (x )  = "~(f) -~(H:,  n f )  = E ai 
K, nH~=~ 

is clearly a well-defined homomorphism, p: Sc-->S~; and, since K~n H ~ = Q  if 
and only i fx  e norm(K~) (by our choice of e), it is indeed the case that p ( C ( K ) )  = 
po(C(K))  for closed, convex sets K. [] 

Consider the subgroup M of Sc generated by the characteristic functions of 
closed cones. This is isomorphic to the valuation module of the lattice of finite 
unions of  such cones; intersection induces a multiplication such that the resulting 
ring is isomorphic to the valuation ring of this lattice. 

The restriction o fp  to this group is an isomorphism of  the ring with intersection 
A 

as multiplication and the ring with cl conv as multiplication. The image of Lc n M 
under this mapping is the set of  characteristic functions of finite unions of  closed 
cones; we find that /~cc7 M is dually isomorphic, as a lattice, to the lattice of  
finite unions of closed cones. For a related result, see Theorem l(a) of [12]. 
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