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Abstract. It is shown that a regular polygon in R” with the ¢ -metric has at most
(2n)" vertices.

1. Introduction

Let R” be equipped with the /_-metric, ie., d(x,y) =max, ;. |x;,—yl. A
cyclically ordered set pg, Pys--.» P Of points in R" is called a regular m-gon if
d(p;, pj) = d(Pi 44 Pj+i) for all i, j, ke {0,...,m — 1} (where indices are computed
modulo m).

Nussbaum [2] has asked the question: for which m does there exist a regular
m-gon in R” (with the ¢ _-metric)? He has shown that necessarily m < f(n) for
some rapidly growing function of n, but he asks whether f(n) = 2" is the proper
bound. We obtain the same result for f(n) = (2n)". In fact we prove the following:
Let {4, d) be a (finite) metric space with a transitive automorphism group of
isometries acting on A and suppose that {4, d) is isometrically embeddable in
(R",d ). Then A has at most (2n)" points. Note that this result is essentially of the
right order of magnitude since there is a finite metric space 4 of size 2"-n! with
transitive group 2" Sym(n) that can be embedded, namely all points of the form
(+1, +£2,..., +n) with coordinates permuted in all possible ways. However, it is
still not known whether, in the more restrictive case that A4 is a regular m-gon, 4
contains at most 2" points.

2. The Result

Theorem. Let (A, d) be a (finite) metric space with a transitive group of isometries
and suppose that (A, d) is isometrically embeddable in (R", d ). Then A has at most
(2n)" points.
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Proof. Let (A,d) be a metric space, with transitive automorphism group G,
isometrically embedded in (R",d_) {note that we do not require G to act on
(R", d..)). We define a partial order <; on 4 by p <,q iff d(p, q) = q; — p; (note
that the relation <,is indeed transitive). Let r; be the length of the longest < -chain
and put r = max; r;. Let pe 4. Define the i-height of p to be the length of the
longest descending i-chain starting with p. Finally let the height-vector of p be the
vector whose ith coordinate is the i-height of p.

Claim. Different vectors in A have different height-vectors.

Proof. For p, qe A we have that, for some i, d(p, @) = |p; — ¢,l, i.e, either p <;q
or q <;p. It follows that p and q have different i-heights. Since the height-vector
has entries between 0 and r we immediately get (4] < (r + 1)". We proceed to
show that r < 2n. Choose i with r=r; and fix a maximal < -chain p°<;
p* <, --p". Let p be an arbitrary point and take ge G with p = g(p"). Such a g
exists since G is transitive on A. It follows that, for some j, g(p°), g(p"), ..., g(p") is

< j-chain. Indeed, for some j, d(g(p°), g(p") = |pY — p}| and, for each [, 0 <l<r,
we have that d(g(p°), 9(p")) = d(g(p°), 9(p") + d(g(p"), g(p")). From this it follows that
p has j-height k (if g(p°) <;g(p") or r — k (if g(p") <;9(p%). So of every pair
{k,r —k} (O <k <r/2)at least one element occurs somewhere in the weight-vector
of p. Since the weight-vector has only n coordinates we get r < 2n. 0

Note that we prove slightly more, in fact, in the “extremal” case, i.e., the case
r=2n—1 we get that the number of possible height-vectors is precisely 2" n!,
which is best possible but we do not see how to improve the general case further,
O0<r<2n
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Note added in proof. 1t was pointed out to the authors by Professor Krengel that

Nussbaum’s question goes back to Sine, and that similar results have been
obtained by Shih Kung Loo and Peter Martus.



