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Abstract. Let f , , . . . , f , , ,  be (partially defined) piecewise linear functions of d 
variables whose graphs consist of n d-simplices altogether. We show that the maximal 
number of d-faces comprising the upper envelope (i.e., the pointwise maximum) of 
these functions is O(nda(n)), where a(n) denotes the inverse of the Ackermann 
function, and that this bound is tight in the worst case. If, instead of the upper 
envelope, we consider any single connected component C enclosed by n d-simplices 
(or, more generally, (d-1)-d imensional  compact convex sets) in R d+~, then we 
show that the overall combinatorial complexity of the boundary of C is at most 
O(n d+l-e(d+l)) for some fixed constant e(d + 1) > O. 

1. Introduction, Results 

Given a collect ion of  con t inuous  funct ions  f ~ : R ~  R, 1 - < i -  < n, let their upper 
envelope be defined as the pointwise max imum  of the f~'s. Assume that the graphs 
of any two dist inct  funct ions  of  our collection intersect in at most  s points,  for 
some fixed integer s. Then  the graph of their upper  envelope consists of a finite 
number  of arcs separated by some intersection points of the f~'s, i.e., by points  
belonging to the graph of more than one funct ion.  Let As(n) denote  the m a x i m u m  
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number of  such intersection points which lie on the upper  envelope. It is known 
that: 

(i) hE(n) = n(trivial). 
(ii) h2(n) = 2n - 1 [At]. 

(iii) A3(n)= O(na(n)), where a(n) is the (extremely slowly growing) inverse 
of  the Ackermann function [HS]. 

(iv) A4(n) = O ( n -  2 ~"))  [ASS]. 
A2s(n) = O(n .  2 °(~{"~*-l)) for s > 2 [ASS]. 
a2,+l(n) = O(n. a(n) °t~"r-')) for s-> 2 [ASS]. 
a2s(n) = f l (n .  2 g~(~(nr-')) for s > 2  [ASS]. 
(See also [Shl] and [Sh2] for earlier bounds.) 

Note that all of  these functions are about an order of  magnitude smaller than 
the naive bound O(sn 2) on the number of  all intersection points of the functions. 

An important corollary of (iii) is that the upper  envelope of n partially defined 
linear functions (i.e., n straight line segments) consists of at most O(na(n)) 
subsegments (see Fig. 1). Indeed, we can easily extend our segments to total 
functions (defined for every x e R) so that any two of them have at most three 
intersection points, and the upper  envelope of  the extended functions consists 
of  at least as many pieces as the upper  envelope of  the original segments. Recently, 
it was shown [WS] that this bound is tight, i.e., there exist collections of n 
segments in the plane whose upper  envelopes consist of  gl(na(n)) subsegments 
(a simplified version of  this construction has recently been given in [Sho]). For 
a strengthening of these theorems, see [EGH*].  Numerous applications for motion 
planning and other geometric problems are discussed in [SCKLPS]. 

The aim of this paper  is to generalize the above results to multivariate functions. 
In contrast to the univariate case, the combinatorial structure of  the upper 
envelope of functions with d variables has been very little studied and appears 
to be substantially more difficult. The only previous attempts in this direction 
were made in [SL] and [SS]. 

We restrict our attention to the case of  piecewise linear (or, in other words, 
polyhedral) functions f, with d variables, i.e., to functions whose graphs consist 
o f  a finite number  of  d-simplices in R d+~. In fact, by splitting the graph of  every 
f into pieces, we may assume that the graph of  each (now only partially defined) 
function is a d-dimensional simplex. The upper envelope of these d-simptiees is 

o b c  b a d o e a f a  e 

d ~' 

Fig. l. The upper envelope of segments in the plane. 
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Fig. 2. The upper envelope of triangles (2-simplices) in 3-space. 

defined as the graph of the upper  envelope of the corresponding functions. See 
Fig. 2 for an illustration. Hence the upper  envelope of  n d-simplices in R d÷~ is 
a polyhedral surface. 

In Section 2 of  this paper  we show that for d = 2 the following is true. 

Theorem 1. Theupperenvelopeofn trianglesscatteredin R 3 hasatmostO(n2a(n))  
faces, and this bound is asymptotically tight. 

The total number of all /-dimensional faces of a polyhedral surface cr over all 
i -  > 0  is called the combinatorial (or total) complexity of or. 

Using Euler's formula for planar maps, we can easily deduce the following 
slightly stronger form of Theorem 1. 

Theorem 1'. The combinatorial complexity of the upper envelope of n triangles 
scattered in R 3 is at most O(n2a(n) ), and this bound is asymptotically tight. 

In Section 3 we generalize Theorem 1 for every d-> 2. We establish 

Theorem 2. The upper envelope of n d-simplices scattered in •d+l has at most 
0 ( n da ( n )) facets ( i.e., d-dimensional#aces), and this bound is asymptotically tight 
for every d >- 2. 

This immediately implies that, given any collection of piecewise linear functions 
with d variables, whose graphs contain n d-simplices altogether, the number of  
facets in the graph of their upper  envelope is at most O(naet(n)). 

The proof  of  the upper  bound in Theorems 1 and 2 is by induction on d. We 
divide our collection of d-simplices into two subcollections of  nearly equal sizes, 
and then we obtain a recurrence relation between the number  of  facets of the 
upper envelope M of the entire collection and the number  of  facets of  the upper  
envelopes M~ and M2 of  the two subcoUections. In this recurrence we show that 
the number  of  extra facets of  M not "accounted for" by faces of  M~ or M2 is 
related to the complexity of  the envelope M when restricted over some ( d -  1)- 
dimensional hyperplanes. To bound this number, we apply the induction 
hypothesis (whose basis is provided by the results of  [HS]). 
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Theorem 2 gives an upper  bound only on the number  of facets of the upper 
envelope. For d-> 3 we have been unable to establish the same bound on the 
combinatorial complexity of the upper envelope, i.e., to prove an analogue of 
Theorem I'. This gap has recently been closed by Edelsbrunner [Ed] who, using 
a nice counting argument, has extended Theorem 1' to arbitrary dimensions d -> 3. 

Section 4 of  this paper  is devoted to the following more general problem. Let 
S be a collection of n d-dimensional compact  convex sets (so-called plates) in 
R a÷'. I f  we delete from R a÷~ all points belonging to at least one of these plates, 
then the space may split up into a number of  connected components.  Determine 
or estimate the maximal possible combinatorial complexity of the boundary of 
such a component ,  if d is fixed and n tends to infinity. 

For d = 1 it was shown in [PSS] that this maximal complexity is ®(ha(n)) .  
In the case d-> 2 we prove the following result. 

Theorem 3. For every d + 1 >- 3 there exists a constant e ( d + 1) > 0 such that, given 
any collection S of  n d-dimensional convex plates arranged in R d+ ~, the combinatorial 
complexity of  the boundary of any connected component of R a+l-  ~_J S is at most 
O(nd+l-e(d+l)). 

The proof  of  Theorem 3 is based on a combinatorial result of  Erd6s [Er], 
which gives an upper  bound for the number  of  hyperedges of  a uniform hyper- 
graph containing no complete subhypergraph of  a given size. 

In Section 5 we reformulate Erd6s's theorem in a slightly stronger form, and 
this enables us to prove that Theorem 3 and the corollary are valid with e(3) = ~9. 
(See Theorem 4 in Section 5.) 

The results obtained in this paper  have many applications in discrete and 
computational geometry. In a companion paper  lEGS] we describe an efficient 
algorithm for the calculation of  the upper  envelope of n triangles in R 3, whose 
time complexity is O(n2a(n)) ,  and is thus optimal in the worst case, We also 
describe various applications of  these results, including translational motion 
planning for a polyhedral object in R 3 amidst a collection of  polyhedral obstacles, 
combinatorial analysis and algorithms for the calculation of  the set of  all common 
transversal planes of  a set of  polyhedra in R 3, hidden surface elimination of 
intersecting polyhedral surfaces, and generalized Voronoi diagrams of  point 
clusters in the plane. 

2. The Upper Envelope of Triangles in 3-space 

In this section we prove Theorem 1. We use the following notation. Let S = 
{ S , , . . . ,  S,} be a collection of  n nonvertical triangles (2-simplices) in R 3, and 
let S* , .  .... S* denote their orthogonal projections onto the x - y  plane. Assume 
that these triangles are in generalposition, i.e., no two of  them overlap one another, 
no vertex of  one of them lies on another triangle, no two edges of  distinct S/s 
intersect, no edge of one triangle meets the intersection of any other two triangles, 
and the edges of  the projections S* do not overlap one another. Call such a 
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collection of triangles regular. Each S~ can be regarded as the graph of a partially 
defined function S~(x, y),  and in the rest of this section, without the danger of 
confusion, S~ will stand both for the triangle and the corresponding function. 

Let Ms = M denote the upper envelope of the S~'s, i.e., for each (x, y), M(x,  y) 
is the z-coordinate of the highest point of intersection of the vertical line through 
(x, y) with any of the S~'s (if there is no such intersection, we put M(x,  y) = -oo). 
Let S ( x , y ) c  S denote the set of those triangles S~ which attain M ( x , y )  (i.e., 
(x, y, M(x ,  y ) )~  S,). Let M* be the orthogonal projection of M to the x - y  plane, 
i.e., M* is a straight-edge planar map formed by the maximal connected regions 
over which S(x, y) is constant. We denote by N(S)  the number of two-dimensional 
faces in M*, and refer to it as the face-complexity of  the upper envelope M. Let 
~(n) denote the maximum value of N(S)  for any regular collection S of  n 
triangles in 3-space. We can now restate Theorem 1 as follows. 

Theorem 1. ~ ( n ) =  O(n2a(n)) .  

Proof. Let S = {$1, . . . ,  S,} be a regular collection of  triangles in 3-space, and 
consider their x - y  projections S * , . . . ,  S*. Partition this collection into two 
disjoint subcollections S], $2, each consisting of  nearly n/2 triangles. Let M], M2 
denote the upper envelopes of the triangles in S~ and $2, respectively. The number 
of two-dimensional faces of M~ and of M2 are both -<~b(n/2), by definition. 

However, the complexity of the overall upper envelope M can in general be 
larger than the sum of the complexities of the "subenvelopes" M~, M2. The 
reason is that a face F of  M~ can be split into several faces in M due to the 
addition of the other subenvelope. To overcome this difficulty, consider one of 
these subenvelopes, say M~, and superimpose the 3n lines containing the edges 
of all the projections S * , . . . ,  S* on the map M*,  to produce a refined planar 
map / ~ .  See Fig. 3 for an illustration. 

Lemma 2.1. Let F be a face of 1(41 which is contained in the projection of  some 
face of  Ml which is part of  some triangle S,. Then the portion of  F over which Si 
attains the overall envelope M is connected. 

~:.. - . . . . .  S 2 

t4' i~, 

Fig. 3. The refined projected map /~.  
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Proof Let F '  be that portion of F. The 3n added lines partition the x-y  plane 
into a collection of openly disjoint convex polygonal "base cells," so that no 
edge of  any of the triangles in S projects into the interior of  any of  these cells. 
Let Q be the base cell containing F, and let S o denote the subcollection of all 
triangles Sj whose projections S* contain Q. Note that, when restricted over Q, 
the upper envelope M is the same as the upper  envelope of the planes containing 
the triangles in S o. In particular, the portion F '  over which S, attains M is convex 
and thus connected. [] 

Lemma 2.1 implies that the sum of the number of  faces of  h41 and of the 
corresponding refined m a p / ~ 2  is an upper bound for the face-complexity of M. 

Lemma 2.2. The number f of faces in f/lj is at most the number t* of faces of M* 
plus O(n2ct(n)). 

Proof Let F be a face of  M~* which splits into ks subfaces by the addition of 
the lines Ii, •. •, 13,~ containing the edges of the projections S * , . . . ,  S* of all 
triangles in S. Suppose that F is the projection of a connected portion of some 
triangle Si ~ S~ which appears on the upper envelope M~. For each 1 ~ i -< 3n, let 
pi(F) denote the number of  connected portions of Fr~ I,, and let q(F) denote 
the number  of  intersection points of  the lines l, inside F. It is then easily checked 
that k s -  < l + q ( F ) + ~ ,  p~(F). (This is best seen by adding the lines I~ one at a 
time, and is illustrated schematically in Fig. 4.) Hence, if we sum these inequalities 
over all faces F of M * ,  we obtain 

f<- t*+Y~ q(F)+ Y~ p,(F). 
F I,f  

But clearly Y~ q(F) = O(n2). As to the other sum, note that for each i the 
sum Y~F p,(F) is just the complexity of the upper  envelope M~ restricted over the 
line 1~. Since each of the n/2 triangles in F~, when restricted over 1,, becomes a 
straight segment, it follows from standard Davenport-Schinzel theory (see [HS]) 
that 

Y~ p,( F) <- A3(n/2) <-- A3(n) = O(net(n)). 
F 

,t 1 Iz 

Fig. 4. Dissect ion of  a face F by the l ines I,. 
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Thus, summing over all lines I,, we obtain 

~<- t* + O( n 2) + O(n2,~(n)) = t* + O(n2 c~(n)). D 

Since a similar inequality applies to the map ~'t2, we can now obtain the 
desired recurrence formula for ~0: 

~0(n) ~ 2q~(n/2) + O(n2a(n)). 

The solution of this formula is readily seen to be + ( n ) =  O(n2a(n)). This 
completes the proof  of  our theorem. [] 

If, instead of the face-complexity, we wish to bound the total (i.e., com- 
binatorial) complexity of  M, then we also need to estimate the number  of  edges 
and vertices in the upper  envelope M (or in its projection M*). To do so, note 
that our assumptions about general position of the triangles in S imply that each 
vertex v of  M* is the projection of either the intersection of the interiors of 
exactly three triangles (and thus has degree 3), or a vertex of one of the triangles 
(and thus has degree 2), or the intersection of an edge of one triangle with the 
interior of  another (and thus has degree 2), or else v is the intersection of the 
projections of  two edges of  distinct triangles in S (in which case v has degree 
3). Let V2, ~ denote respectively the number  of  vertices of  M* having degree 
2, 3, and let E, • denote the number of  edges and faces of  M*, respectively. 
Then we obtain 2V2+3 ~ = 2E, and, using Euler's formula, we have 

V2+ ~ + ~  ~ E +2  = V z + ~ V 3 + 2 .  

Hence 

V3 <_ 2 q t - 4 - ~  2 ~ ( n ) - 4  = O(n%~(n)). 

To estimate V2, note that there are only O(n) degree-2 vertices in M* that 
are projections of the vertices of the triangles in S, and only O(n 2) possible 
intersections between edges of  triangles and interiors of other triangles in S. 
Hence V2 = O(n2). 

Finally, we need to discuss the case in which the triangles in S are not in 
general position. (In particular, when taking the graph of an arbitrary polyhedral 
function and decomposing it into a collection of triangles, these triangles will 
definitely not be in general position.) However, here we can make use of  the 
following general observation. Given a collection S of triangles, we can perturb 
slightly each of  them so as to obtain a collection S' of  the same number of  
triangles which are now in general position, such that the complexity of  the upper  
envelope of  the triangles in S' is at least the complexity of  the upper  envelope 
of the triangles in S. Hence the same bounds obtained above also apply to 
collections of  triangles not lying in general position. 
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It is also worth noting that the bound obtained in Theorem 1 is tight in the 
worst case. This follows from the recent result of [WS] that constructs a collection 
of n/2 line segments in, say, the x - z  plane, whose upper  envelope consists of 
11 ( na ( n )) subsegments. By taking the Cartesian product of  each of these segments 
with a large interval on the y axis, we obtain a collection of n/2  rectangles, to 
which we add n/2  sharp and narrow wedges whose upper  edges are all parallel 
to the x - z  plane, and are all at the same height, so that they cut through the 
entire upper  envelope of  the first n/2  rectangles. It is easy to extend our rectangles 
and wedges to triangles, so that their upper  envelope has complexity l )(n2a(n)).  

In summary,  we have 

Theorem 1'. The total number of  vertices, edges, and faces (i.e., the combinatorial 
complexity) of  the upper envelope of any collection of n (nonvertical) triangles in 
3-space is at most O( n 2or ( n ) ), and this bound is asymptotically tight in the worst case. 

3. The Upper Envelope of Simplices in Higher Dimensions 

Theorem I can be easily generalized to polyhedral functions in higher dimensions. 

Theorem 2. The maximal number of d-dimensional faces in the upper envelope of 
n d-simplices in R d + l (and thus also of any collection of  polyhedral functions from 
R d to R having n simplicial d-faces altogether) is O(ndcr(n)), and this bound is 
asymptotically tight in the worst case. The constants appearing in the upper and 
lower bounds increase and decrease, respectively, exponentially with d. 

Proof. By induction on d. For d <-2 the assertion has already been proved. 
Suppose the theorem holds for all d ' <  d, and let S = {S~ , . . . ,  S,} be a collection 
of n d-simplices in R d+'. As before, we can assume, without loss of generality, 
that these simplices are in general position. Let S* . . . .  , S* denote the projections 
of  these simplices on the hyperplane Xd+l----0, and let P ~ , . . . ,  P~d+,), denote the 
(d - 1 ) - planes containing the (d - 1 ) - faces of  these projections. Our assumptions 
on general position ensure in particular that these P/s  are also in general position, 
i.e., no d + 1 of  them have a point in common. 

Partition S into two subcollections S, ,  $2 of  n/2 simplices each, and let M, 
and M2 denote the upper  envelopes of  S~ and $2, respectively. Let M * ,  M2* 
denote the projections of  these subenvelopes on Xd+, =0.  Superimpose the 
( d -  1)-planes Pi on each of these projections to obtain two respective refined 
polyhedral partitions A4~, A~r 2 of  the hyperplane Xd+~ = O. 

Lemmas 2.1 and 2.2 can now be generalized as follows. 

Lemma 3.1. Let F be a d-cell of  ff/l~ which is contained in the projection of  some 
d-face of  M1 which is part of  a simplex Si. Then the portion of  F, over which S, 
attains the overall envelope M, is connected. 
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Proof Essentially identical to that of  Lemma 2.1. [] 

Lemma 3.2. The number f of d-cells in f4~ is at most the number t* of d-cells of 
M* plus O(nda(n)). 

Proof Let F be a d-cell of  M* which is split into kr subcells by the addition 
of all the ( d +  1)n-planes Pi. Suppose that F is the projection of a connected 
portion of  some simplex S~ c S, which appears on the upper envelope Mr. For 
each nonempty subset I of  the indices of  the (d - 1)-planes P~ of size ---d, let 
pr(F) denote the number of  connected portions of  Fc~ (1")~ ~ P~). It is then easily 
checked that kr  <- 1 +Y'q p~(F). (This can be shown by adding the planes Pi one 
at a time and use induction on their number.) Hence, if we sum these inequalities 
over all d-cells F of  M * ,  we obtain 

?<- t*+ ~ pI(F). 
l,F 

For each I (of size s --- d) the sum Y, Fpt(F) is just the number o f ( d  - s)-faces 
in the upper  envelope M~ restricted over the intersection P~ = O ~  Pi. Since each 
of the n/2 simplices in St,  when restricted over P~, becomes a (d - s)-dimensional 
convex polytope with some constant number of  facets, we can decompose it into 
a constant number of  (d - s)-simplices, and then apply the induction hypothesis 
to conclude that ~F p~(F)= O(na-~c~(n)). The number of  distinct subsets I of  
size s is O(n*), whence 

~<- t* + O(n%~(n)). [53 

Thus, denoting by qJd (n) the maximum number of  d-faces in the upper  envelope 
of n d-simplices in R d÷~, we conclude that 

qJa(n) <- 2~a(n/2) + O(naa(n)), 

and thus qJd(n) = O(ndc~(n)). 
The lower bound can be proved, using induction on d, in exactly the same 

way as for the case d = 2. That is, take a collection of n/2 (d - 1)-simplices in 
R d whose upper  envelope consists of  f l (nd-la(n))  facets, and extend each of 
them to a d-prism in R a÷l by translating it in the additional dimension. Add n/2 
"sharp hyperwedges" to this collection, which cut through the entire upper  
envelope of  the n/2 prisms. It is easily checked that the upper  envelope of the 
resulting collection has ~(ndct(n)) simplicial d-faces. 

The calculations showing the last statement of  the theorem are left to the 
reader. []  

4. The Boundary of a Region Enclosed by Convex Plates 

Let S = { S l , . . . ,  Sn } be a collection of n ( d - 1 ) - d i m e n s i o n a l  compact  convex 
sets (plates) in R a. I f  we delete from R a all points belonging to at least one of 
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these plates, then R d may  split up into a number  o f  connected components .  Let 
C denote  such a component .  The aim o f  this section is to give an upper  bound 
on the maximal  possible combinatorial  complexity o f  C. We are going to prove 

Theorem 3. For every d >- 3 there exists a constant e( d ) > 0 such that, given any 
collection S = { S , , . . . ,  S,} of  ( d - 1)-dimensional convex plates arranged in R '~, 
the combinatorial complexity o f  the boundary o f  any single connected component C 
o f  R a -0i"=2 S~ is at most  O(nd-~d) ) .  

Assume without  loss o f  generality, as we did in the previous section, that the 
plates are in general position. Then any vertex o f  the given componen t  C belongs 
to exactly d plates, and using the fact that  any d plates have at most one point 

/ \ 

in common,  we obtain that C has at m o s t ( d  ) = O( n d ) vertices. 

On the other  hand, it is easy to see that the total combinatorial  complexity of  
C (i.e., the number  o f  all / -dimensional faces over all 0 -  < i_< d)  is proport ional  
to the number  o f  its vertices. 

Hence,  it is sufficient to prove 

Theorem 3'. For every d >- 3 there exists a constant e ( d ) > 0 such that, given any 
collection S = { S 1 , . . . ,  S,} o f  ( d - 1)-dimensional convex plates arranged in R d in 
general position, the number o f  points belonging to d members o f  S and lying on 
the boundary o f  a given component C o f  R d -[._) S is at most O(nd-'~d~). ( ~  S is 
the shorthand for  U ~= 1 Si.) 

We need some preparat ion.  A d-uniform hypergraph is a set system whose 
members  (the so-called hyperedges) are d-element  sets. 

Definition 4.1. Let H = H ( S )  be a d-uniform hypergraph whose vertex set is S 
and whose  hyperedges are those d-tuples {S ~1~ . . . . .  S td~} c S for  which ~_.jd=~ S ~ 
lies on the boundary  o f  the given componen t  C of  ~d -- ~ S. 

Let K~r)(m,, m2 . . . .  , mr) denote an r -uniform hypergraph with m~ + m2 +" • • + 
mr vertices, whose vertex set is V1 w V2 w.  • • w Vr, [ V~ I = m, (1 -< i -< r), and whose 
edge set is V, x V2 x .  • • x Vr, i.e., consists o f  all r-tuples containing exactly one 
element f rom each V~. I f  mt = m2 . . . . .  mr = m, then we will write K<')(m) for 
K~r~( m, m, . . . , m ). 

We want to apply the fol lowing well-known combinatorial  result o f  Erd6s [Er] 
to the hypergraph defined in Definition 4.1. 

Theorem (Erd6s).  Let  H be an r-uniform hypergraph on n vertices containing no 
subhypergraph isomorphic to K<r)(m). Then IHI-< n r - " / ' ) r  ~. 

We also make use o f  the following little "s ide-tr ip"  to elementary plane 
geometry,  which is perhaps  also o f  some independent  interest. 



Upper Envelope of Piecewise Linear Functions 301 

iII i iI / 

Fig. 5. Two systems of lines meeting regularly. 

Definition 4.2. Two systems of  straight lines in the plane {l~, 12, . . .  , lt} and 
{l'j, l ~ , . . . ,  I',,} are said to meet regularly if there is a convex quadri lateral  Q 
whose sides are segments  of  l~, l'~, l,, l',, (in this cyclic order)  and 

(i) l i n l j n Q ~ Q f o r e v e r y  l < - i < - t , l < - j < - t  '. 
(ii) I, n l j c ~ Q = l l n l j n Q = Q  for every i ¢ j .  

Roughly speaking,  two systems of  straight lines meet  regularly if they form a 
"grid- l ike" configurat ion (see Fig. 5). 

Lemma 4.3. For any natural number t there exists an f = f ( t )  such that for  any 
two systems L and L' o f f  straight lines in R 2 (in general position ) we can f ind two 
t-element subsystems Lo c L and L'o c L' which meet regularly. 

Proof Let us supply  R 2 with the usual rectil inear coordinate  system (x, y). For  
any straight line l, define a(1) (the angle of  inclination of  I) as the min imum c~ 
such that  a counterclockwise  turn of  the x axis a round  the origin results in a line 
parallel to I. 

It is easily seen that  we can choose 0 </3 < ~r and two subsystems L~ c L and 
L'~ c L' with IL~l, IL'll-> ILl/2 = IL'I/2 = f / 2  and such that  either 0 < a(1) < fl for  
every I~L~ and f l < a ( l ' ) < ~ r  for every / ' e L ' l ,  or 0 < a ( l ' ) < f l  for every l ' c  L'~ 
and fl < a ( l ) <  ~r for every 16L1. 

Let L2 be any k-e lement  subsystem o f  Ll with k = t 5. The lines belonging to 

L2 de termine  at most  ( ~ ) p a i r w i s e  intersection points,  and the set P of  these 

intersection points  can be divided into two parts by a line in at most  4 ( ( i ) )  < k4 

different ways. Thus,  we can pick a t -e lement  subset L ~ c  L'~ such that  every line 
of L~ divides P into two parts in the same way, p rovided  that IL'~I >-f /2  >- tk 4 = t 2~. 
Similarly, the set P' of  all pairwise intersection points of  the lines belonging 
to L~ can be cut by a line in at most  t 4 different ways, hence we can find 
an IL~l/t4= t -e lement  subset  L o c L 2  each of  whose lines represents  the same 
bipart i t ion of  P ' .  
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It is not difficult to show now that Lo and L~ meet regularly. [] 

Next we extend the notion of regularly meeting lines recursively to higher 
dimensions. 

D e f i n i t i o n  4.4. Let P(~), p(2),..., ptd) by systems of hyperplanes in R d in general 
position, d >3.  We say that they meet regularly if for every 1-< i < d and for 
every P e Pti) the plane-systems 

{ P n  P(#): P(J)c P(J)}, j = l  . . . . .  i - l , i + l , . . . , d ,  

meet regularly in P. 

The following assertions are trivially true for d = 2, and in general can be 
proved by a straightforward induction. 

P r o p o s i t i o n  4.5. Let d >-2 and let P(~), pC2),..., p(d) be systems o f  hyperplanes 
in R d which meet regularly. Further, we f ix  two distinct elements p~O, p~) ~ p(~)for 
each 1 <- i <- d. Then: 

(i) P~o ~), P~o2),..., P~o d) meet regularly for  any subsystems P~o~) c P~), 1 <- i <- d. 
(ii) The polytope 

C(p~t),p~bl) ; . p(d) p~d))=conv p(i): a l , . .  C tae{a ,b  

is combinatorially equivalent to the d.dimensional cube. In particular, it has 
2d  facets,  which can be expressed as 

where k = 1 , . . . ,  d and ak ~ {a, b}. [] 

By the help of  Proposition 4.5, we can easily grab the most striking property 
of  the "grid-like" structure of  regularly meeting systems of hyperplanes. That is, 
we can show that for each i there is a natural linear ordering of the hyperplanes 
belonging to p(i). 

This can be done as follows: 
~, D( I ) .I" D( 1 ) Let us first define an order <" on pro. Let -a ---b and assume that the 

elements of a subsystem P~oJ) c pm have already been ordered. We will determine 
the position of a "new" clement P(~)e P(~)-P~o ~) relative to P~o ~), 

Let p~1) < p~a~) be two elements of P~o ~). Then the following cases can occur: 

(i) If the set C(P~,: ), P~)); P(~), p~2);... ; p~), p~d)) contains the set 
C(p~,), p(1); ~(2) . a(d) v(d)~ p( ' )  , - .  , p ( 2 ) ; . . . ,  < p(d,) - ~  , - -b J, t h e n  l e t  P(~) < 
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(ii) I f  the set C(P(~ ~), p(d~) ; --,,P(2~, p(b2).,...,, p(a), , P~b a)) is conta ined in the set 
C(p(1),  p(~); p(~), p(2) , . . .  ; --aP(d) , p(d)), then let _~P(*)< P ~ ) <  P(~). 

(iii) I f  the set int f ~ / D ( 1 )  D ( l ) .  p(2) p(2) (d), , - - ~  , • d , --~ , ; . . .  ; P ,  P(b d)) and the set 
int C(P(~ ~, P(~); P(:) P(b ~) . o(d) p(bd)) _~ , ; . . . ,  ~ , have empty  intersection, then 
let P(~) < P ~ ) <  P~d'- 

It can easily be checked that  there are no other  feasible cases, and the above 
rules define indeed a total order  on P(~). For any other  i, a total  order  on pU) 
can be defined analogously.  

Corollary 4.6. Let P(~), p(2) . . . .  , p(d) be regularly meeting systems ofhyperplanes 
in R d, and let P~) < P~') < P~) be three elements o f  a(n for  every i (1 <- i -< d, d >- 2). 
Then 

d 
-') ( i) (1) P~ e i n t  C( P,~ , P(b~);... ; pro), p(d)). E] 

i=l 

The fol lowing s imple Ramsey- type  result plays a key role in the p roof  of  
Theorem 3'. 

Lemma 4.7. Given any natural numbers t, d >- 2, there exists an F = F(  t, d)  with 
the property that in R d any d F-element systems of  hyperplanes pt~t, p<2) . . . . .  p¢a) 
contain some t-element subsystems P~o~) C P(~), p~o2)~ p(2), . . . ,  p~od)c p(d) which 
meet regularly. 

Proof. For  d = 2 this is the same as L e m m a  2.6. For  larger values of  d we can 
use a trivial induct ional  argument .  []  

We are now in a posi t ion to prove Theorem 3'. 

Proof. Let us consider  the d-uni form hypergraph  H = H ( S )  defined in Definit ion 
4.1. I f  H D K(d)(F(3,  d) ) ,  where  F(t ,  d)  denotes  the same as in L e m m a  4.7, then 
there are some F(3,  d ) - e l e m e n t  subsystems S (~t . . . . .  s ( d ) c  S such that  (-~d=~ S(n 
lies on the bounda ry  o f  the given c o m p o n e n t  of  R d - u S  for every choice 
S ( I )  E S ( I ) ,  . . . , s ( d ) E s  (d). 

Let p(n  denote  the system o f  hyperp lanes  containing the elements  o f S  ~n, 1 <- i -< 
d. Applying  L e m m a  4.7, we can choose  3-element  subsys tems P(o ~)= 
{P?), P(b ~) , P(~)} c p ( ~ ) , . . . ,  p(0U) = {PT) ,  P(b a), P(f)} c p(U), which meet  regularly. 
See Fig. 6. 

Assume without  loss o f  general i ty that  P(~') < p~n < p(bi) (according to the total 
order on  P(i)) for  every 1 -< i -< d. Then,  by Corol la ry  4.6, 

p~i) e int conv p(n .  a~ ad ~ {a, b 
i = l  
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I I  I 
E'~'~'~'~'~~ ~ ' S  -v'.'.v.v.'.'..':." v.,.,.,~ 

11 ! 
~-"-::":": II~":i"~':'':;/'"":'~ ~.-..:...v...._;,, 

I I ! ! 

Fig. 6. The subsystems P~o ') meeting regularly. 

Let S( f ,  S~ ~), S(j ) e S (~) denote  the corresponding sets contained in the hyperplanes 
P ( f , P ~ )  and P ( f ,  respectively. Obviously,  f '-]]=~S(')=f~a,:~P (') for any ~t I ott 

cq . . . . .  c~ae{a ,b ,c} .  Hence,  in view of  Proposi t ion 4.5(ii), f-]a=l SC,,) and 
{/-]a=, S (~)'~, . o q , . .  . ,  aa e{a ,  b}} cannot  all lie on the boundary  o f  the same 
componen t  o f  R a -I,.] S. 

This contradict ion proves that H does not contain K(a~(F(3,  d)) ,  and in this 
case we can deduce f rom the Erd6s theorem that 

IH[ <- n d-( l/ F(3,d)) a-I, 

as desired. [] 

5. Regions Enclosed by Convex Plates in 3-space 

In what  follows we would  like to improve the methods o f  the previous section 
for  d = 3, to obtain an explicit value for e(3) in Theorems 3 and 3'. 

More precisely, we will establish 

Theorem 4. Given any collection S = {$1, • • •, S~} o f  two-dimensional convex plates 
scattered in R 3, the combinatorial complexity o f  the boundary o f  any given connected 
component o f  R 3 - U  S is at m o s t  O ( n 3 - 1 / 4 9 ) .  

As in the case o f  Theorem 3, it is sufficient to bound  the number  o f  vertices 
of  the given component .  We can also assume that the Si's are in general position. 

The p roo f  is somewhat  technical,  so some of  the details will be omitted. 

Lemma 5.1. Let ~ = {0.1, o'2, 0.3} and E '=  {0.'1,0. '2,. . . ,  0.',} be two systems of 
straight line segments in R 2 such that: 

(i) 0.ic~o'~ ~ Q  for  every l < - i < 3 , 1 < - j <  t. 
(ii) All  intersection points pq = o'~ c~ 0.~ are on the boundary o f  the same connected 

component o f  R 2 - U E - U E'. 

Then t <-6 and this bound cannot be improved, as is demonstrated by Fig. 7. 
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Fig. 7. 

TI 
~r2 

A 3-line system and a 6-line system satisfying the conditions of Lemma 5.1. 

Proof. p,j = tr, c~ tr] is called an exposed point  o f  try, if p~/is not conta ined  in the 
interior of  the segment  conv[p,,j  : 1 <- i ' <  - 3]. Thus,  each o-j has exactly two exposed  
points, and the total n u m b e r  of  exposed  points is 2t. To establish the lemma,  it 
is sufficient to show that  

every ~r~ contains  at most  four  exposed  points.  (.) 

From here 2t-< 3 × 4 =  12, hence t -  < 6 follows immediately .  
The p r o o f  of  (*) may  consist  o f  the following steps: 

Let l, and l~ denote  the straight lines containing tri and ~r~, respectively. Further,  
set q,i = I~ c~ Ij (1 -< i ~ j  ~ 3). Assume without loss of  generali ty that  i = 1. 

Fact 1. T h e  interval [q~:, q13] contains at most  two exposed  points. 

Let P~I,P12,P~3, say, be three such points  on [q~:, q~3]. Then all points p,j 
(1-< i,j<_ 3) must  lie in the same closed hal fplane  bounded  by I~, in which q:3 
can be found.  (See Fig. 8.) 

Fur thermore ,  every cr~ (1 -<j-< 3) intersects the arc q~2q:3ql3. Let p, p ' ,  and p" 
be these intersection points,  listed in the order  as they appea r  on qlaq23q13. It is 
easy to see now that  p '  (=Pi,j, for  some 1 -< i ' , j '<-3)  is comple te ly  "enc losed"  by 
the segments  tr, and o-~ (1 -< i , j  <- 3). In part icular ,  it is impossible  that  all points  
p,j (1 _< i , j  < _ 3) are on the bounda ry  of  the same connected c o m p o n e n t  o f  R 2 -  
~1 ~ -  U o,~. This contradicts  condi t ion (ii) o f  the lemma.  

,t z 

P P'~ 

/ \ 
13 

Fig. 8. The proof of Lemma 5.1. 
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Let (-oG q~2] and [q13, +oo) denote the halflines obtained from 11 after the 
deletion of the open interval (q12, q13). 

Fact 2. None of (-oG qt2] and [ qms, +oo) contains more than two exposed points. 

Fact 3. If both (-o G q~2] and [q~3, +oo) contain exposed points, and at least 
one of them contains two, then there cannot be any exposed point on [q~2, q~3]. 

The proof of the last two facts is very similar to that of Fact 1, the details are 
left to the reader. Putting Facts 1-3 together, we obtain (*). [] 

We make use of the following generalization of the Erd/Ss theorem, which can 
be obtained by a fairly straightforward modification of the original proof (see 
[Er]). 

Theorem 5.2. Given an), natural numbers r, m >- 2, M >- m, there exists a constant 
C(r, m, M ) =  (~ such that the number o f  hyperedges o f  any r-uniform hypergraph 
on n vertices, which does not contain a subhypergraph isomorphic to K ~r) 
( m , . . . ,  m, M),  is at most Cn r-~l/r~r'. 

Definition 5.3. Given any system H of (two-dimensional) planes in R 3, and two 
planes P1 and P2 in general position, we say that P1 and P2 are equivalent with 
respect to II if there is a single rotation or translation which takes PI to P2 so 
that during the motion the plane: 

(i) Never passes through any point belonging to three members of II. 
(ii) Is never parallel to the intersection line of any two members of H. 

Lemma 5.4. Definition 5.3 yields an equivalence relation on the family of  all planes 
which are in general position with respect to H, and the number of  equivalence 
classes is at m o s t  [HI 9. 

Proof. For any point x and for any plane P in the three-dimensional projective 
space, let ~ and/3 denote the plane dual to x and the point dual to P, respectively. 
Further, let Poo denote the plane of infinity. 

Consider now the set Tn of all triple intersection points of members of l I  ~ {Po~}. 
Clearly, 

Set Tn = {37: y ~ Tn}. Then the planes belonging to Tli divide the projective space 
into at most 

(] T~])+]THt < ]HI9 

cells, and two planes P1 and P2 are equivalent with respect to H if and only if 
/31 and t32 are in the same cell. [] 
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Now we are in a position to prove Theorem 4. 
Let H(S)  be a 3-uniform hypergraph whose vertex set is S and whose hyper- 

edges are those triples {S, S', S"}c S for which S n  S ' n  S" lies on the boundary 
of the given component (say, the unbounded component) of R 3 - U  S. In view 
of Theorem 5.2, it is sufficient to show that H(S)  cannot contain a subhypergraph 
isomorphic to K~3)(7, 7, M)  for some integer M independent of n. In fact, we 
are going to prove the following somewhat stronger result. 

Lemma 5.5. H(S)  does not contain a subhypergraph isomorphic to 

K~3)(3, 7, 2 x 109+ 1). 

Proof. Assume, in order to obtain a contradiction, that there are three subsystems 
T, T', T " c  S such that: 

(i) ITI = 3,  IT'I = 7,  IT"I = 2 x 1 0 9 +  1. 
(ii) S n S ' n  S"~  f~ and lies on the boundary of  the unbounded component 

of  R 3 - U S  for every S e T ,  S ' e T ' ,  S"~T". 

Let P, P', and P" denote the systems of  planes containing the plates belonging 
to T, T', and T", respectively. Applying Lemma 5.4 with 11 = P u  P', we obtain 
that there exist three plates S~', S~, S~ e T" such that the corresponding planes 
p tt t! t! ~, P2, P3 are pairwise equivalent with respect to P u P'. 

For any S e T, let 

S =  conv[S n S ' n  S,": S ' e  T', 1 <- i<-3]c_ S, 

and similarly, for any S ' e  T', let 

S '=conv[SnS 'nS '~ ' :  S e T ,  1 < - i<-3]~  S'. 

Further, let 

~, = { S n  S'i': SET},  E l = { g ' n  S~': S ' e  T'}, 1 -  i - 3 .  

In view of the fact that the planes P," are pairwise equivalent with respect to 
P u P', the intersection structures of the segment-systems E~ u E~, 1 -  i < - 3, are 
combinatorially the same. 

Applying Lemma 5.1 to E~ and E~, say, there exist t r eE1 ,  o-'eE~ such that 
the point tr n tr' is completely enclosed by a simple dosed  polygon p, all of  whose 
sides are portions of  some segments belonging to E~ u $~. (As a matter of  fact, 
p can be chosen to be the boundary of  the unbounded component of  P~' - I,_] E 1 - 
UE~. )  In other words, there exist S e T ,  S ' e T '  and a finite sequence 
So, S1 . . . .  , S k = S o E T u T  ' such that, for every 1-<i-<3, the points ~nS~+ln 
S," --- S j n  Sj+~ n S," , j  = 0, 1 . . . .  , k - 1 (in this cyclic order), form a simple closed 
polygon which contains S n S ' n  S,'.' in its interior. 
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\ 

x 
/ 

\ _/ \ _/ 

Fig. 9. Two 4-line systems satisfying the conditions of Lemma 5.1. 

Assume without loss of generality that 

S n  S ' n  S " c c o n v [ S n  S' ~ S( ,  Sc~S' ~ S~]. 

Then S~, S'3' and S0, S ~ , . . . ,  Sk-~ enclose a bounded polyhedral region 
containing S c~ S'c~ S~ in its interior. This contradicts (ii). E3 

Note, however, that the hypergraph H(S)  associated with our system of  plates 
may contain a subhypergraph isomorphic to K~3~(4, 4, M) for any large integer 
M. This follows from the fact that we can find two systems of  straight line 
segments E and E' such that IEI = IY.'I = 4 and they satisfy both conditions in 
Lemma 5.1 (see Fig. 9). 

Conjecture 5.6. There exists a constant M (independent of  S) such that H(S) 
does not contain a subhypergraph isomorphic to Kt3)(5, 5, M). 

According to Theorem 5.2, this conjecture would imply that Theorem 4 is 
valid with 0(n3-1/25). 
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