
R i e m a n n i a n  Metr ics  on  T a n g e n t  B u n d l e s  (*). 

E. ~r - F. TRIOERRI 

Summary. - Some ~( natural ~) metrics on the tangent and on the sphere tangent bundle o] Rie- 
mannian mani]old are constructed and studied via the moving ]rame method. 

l .  - I n t r o d u c t i o n .  

The tangent  bundle T M  of a R iemannian  manifold  (M, g) admits  a na tu ra l  
R iemann ian  met r ic :  the Sasaki  metric g~. 

I n  order to define g~ we consider two vectors  X and Y tangent  to T M  at  the  
point  (p, v). Suppose t ha t  X and I z are t angent  a t  the t ime  t --~ 0 to the curves 

~(t) = (a(t), V(t)) and fi(t) = (fi(t), W(t))  respectively.  Denote  with D V / d t  and D W / d t  

the  covar iant  der ivat ives  of the  vector  fields V(t) and W(t)  along ~(t) and  fi(t), then  g~ 
is defined by:  

(1.1) ( l D V  
g~l(,,o),x, r )  = gd~(o), ~(o)) § g~ -~- o' - ~  o 

g, is perhaps  the  mos t  na tura l  met r ic  on T M  depending only on the R iemann ian  
s t ruc ture  on M, bu t  it  is ex t remely  rigid. For  instance,  g~ has constant  scalar cur- 
va tu re  if and  only if g is flat. Therefore,  the Sasaki met r ic  is locally homogeneous,  

or locally symmetr ic ,  or Eins te in  only if it is flat (see n. 3). But ,  if we eonsi4er •M 
as a vector  bundle  associated with  O M  we m a y  easily construct  other interest ing 
metr ics  on T M .  

I n  section 4 we discuss this general  construct ion and  we shall p rove  t ha t  the  

Sasaki met r ic  can be obta ined  in this way. We also give an explicit  expression of a 
complete  met r ic  gca in t roduced b y  C~EEaE~ and G~O~OLL in [CG]. 

I f  (M, g) is the s tandard  n-sphere,  the met r ic  gca has non negat ive  curva ture  
and S ~ is the  soul of ( T S  ~, gca). 

(*) Entrata in Redazione il 25 ottobre 1986. 
Indirizzo degli A.A.: E. Musso: Dipartimento di Matematica, Universit~ dell'Aquila, 

L'Aquila, Italy; F. TRIC~RRI: Dipartimento di Ma*ematica, Universit~ di Torino, Torino, 
Italy. Indirizzo a*tuale: Istituto di Matematica, Universi~g di Firenze, Firenze, italy. 
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In  section 5 we s tudy  the spherical tangent  bnndle T x M  = ((p, v) ~ TM/Hvl] = l}  
endowed with the  induced Sasaki metr ic  g:. I t  is interest ing to observe tha t  
( T I M ,  g:) is ~I1 homogeneous l~iemalmian space if (M, g) is a rank  one symmetr ic  

space (see n. 5). 
T~M can be regarded as an hypersurfaee  of /~M,  thus  the Levi  Civita connection 

and the curvature  tensor of g: could be computed using Gauss equation. Instead,  
we prefer  to ident i fy  T x M  with a quot ient  of O M  and make use of the moving 
frame method  (see n. 6). In  section 6 we s tudy  the  spherical tangent  blmdle TxS  ~ 

of the s tandard n-sphere generalising the results obtained in [KS]. 
Section 7 deals with deformations of the metr ic  g:. We prove tha t  the Einstein 

metr ic  defined on TxS" by  S. K o ~ Y A s m  ([KO~], [gel) can be obta ined deforming g: 
along the direction of the canonical contact  form on / 1 8  ~. 

We are indebted to O. KOWALSKI for the remark  4.3 and several useful discussions. 

2 .  - T h e  S a s a k i  m e t r i c .  

Let  (M, g) be an n-dimensional l~iemannian manifold with tangent  bundle T M  

and natura l  projection z :  TM---> M .  
A cu rve  ~: I ~ T M ,  t --> (),(t), V(t))  is horizontal if the  vector  field V(t) is parallel 

along ~, ---- ~o~. A vector  on T M  is horizontal if it  is t angent  to  an horizontal  eurve~ 

or vertical if is tangent  to  a fiber. 
Le t  V: I --> M, t -->~,(t) be a curve through the point  p = ~(0). 
l~or each tangent  vector  v ~ T ~ M  there  exists a unique horizontal  curve ~H: I --> 

" + T M  through (p, v) which projects onto ~. This curve is defined by:  

7"(t) = (~,(~), v ( t ) ) ,  

where Y(t) is the  parallel  vector  field along y with V(0) : v. The curve y~ is called 

an horizzontal li/t o] ~. 
The horizontal  lift of a vector  field X on M is the unique vector  field X n on T M  

which is horizontal  and which projects onto X. 
Le t  (el, ..., e~) be aI! or thonormal  f rame field defined on the open set U c  M, 

and let  (x 1, ... , x  ~) be a local coordinate system on U. We define a local coordinate 
system (x 1, . . . ,  x ~, v 1, . . . ,  v ~) on z-~(U) as follows: 

(2.1) x f fp ,  v) = x~(p) ,  v ' (p ,  v) = v ~ , (p, v) e a - ~ ( U ) ,  

where v = ~ Ve~(p). We denote  with /~j the  local i - forms defined by :  

(2.2) V~e~ = X Fl(.x) e, .  
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I t  is easy to  ver i fy  t ha t  the horizontal  l ift  X H of a vector  field X on M is given, in 

t e rms  of the  local coordinate  sys tem above,  as follows: 

i T .~ _ -  (2.3) x ~ =  x -  ~ _ e ~ . ( x ) ~ . , .  
~j r 

The ver t ical  l i l t  X v is defined by :  

(2.4) X v  = ~ x ~  ~-~ . 

Horizonta l  and  ver t ical  vectors  generate  two complemen ta ry  'distributions on 
T M :  the horizonta l  d i s t r ibu t ion  and  the  vert ical  d i s t r ibu t ion .  Those two distr ibutions 
are or thogonal  wi th  respect  to  gs. 

F r o m  (1.1) we obta in :  

{ g~(X~, ~,)  = go(X~, ~ )  = g(X, y)o~ , 
(2.5) go(X", yv) = o,  

for each pa i r  of vector  fields X and  :Y on M. 
Clearly (2.5) uniquely  determines the Sasaki metric.  Then~ according to (2.5) 

C v eH eV, . . . ,  n) is an or thonormal  f rame field on Jr-l(U) and  its we have  t h a t  (e~, ..., , ,  
dual  eoframe is given by :  

(2.6) ~* el~ . . . ,  ~* e n , 1)v 1, . . . ,  D v  ~ , 

where e ~ denotes the 1-form defined b y  e~(ek)---- ~ ,  and D v  ~ is given b y  

(2.7) Dv ~ = dv ~ + ~ v~*(r~-). 
i 

F r o m  (2.6) and (2.7) we have  the following 

t)~OPOSITIOZr 2.1. - T h e  S a s a k i  me t r i c  g~ can be w r i t t e n  as  /olIows: 

(2.s) g~ = ~ ~*(e')~ + ~ (Dv~)~. 
i i 

I~EZ~ARK 2.1. -- Observe tha t  the met r ic  induced on the fiber z - l (p )  is the Eucl idean 

metr ic .  I n  fact  (2.6) and  (2.7) imp ly  t ha t  the restr ict ion of g8 on g-~(p) is given b y  
the quadrat ic  fo rm ~ (dye) ~. Hence g~ is the only metr ic  on T M  satisfying the  

following conditions : 

a) horizontal  and vert ical  distr ibutions are orthogonal;  

b) the  metr ic  induced on the fibers is Eucl idean;  

c) the project ion z is a R iemannian  submersion.  
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The fibers are also totally geodesic ([BE], p. 47). 

I ~ E ~ K  2.2. - Let  (e[,...~ e~) be an or thonormal  f rame defined on the open set 

V c M, and suppose tha, t 

i 

Then we have:  

on U C ~ V  

(2.10) 4 ~ = ~ ~,';~'~ ~" '~" k~,i~,~/ vj ~ ei = Z / JO V ~a~ ~z) ej on :z-~( U n V).  
J J 

This implies tha t  T M  admits a natural  O(n)x O(n) structure.  Since O(n)• O(n) is a 
closed subgroup of U(2n), we can also deduce tha t  T M  admits an almost complex 
s t ructure  J compatible with g~. (For more details on the almost Hermi t ian  manifold 
(TM,  g~, J ) s e e  [DO], [YI] and [BE]~ pp. 46-48). 

3. - T h e  curvature  o f  the  Sasaki  metr i c .  

The curvature  of g~ has been computed by  several authors with different methods 
(see [KW], [u  Proposit ion (2.1) permits  the use of the moving frame method  
and of the struetm'e equations of E. CAgWA~. 

Firs t  we pu t  

(3.1) qzi--= zl*e~, ~o~+~ = Dvi~ i = i . . . n  , 

an4 we observe tha t  (~ ,  ..., 905-) is an orthonormM eoframe field. The local 1-forms 
~ of the Levi  Civita connection of g~ are given by:  

(3.~) 
A B 

~ + ~ = o .  

The curvature  forms ~ can be computed b y  using the formula:  

(3:3) % A % 
C 

From (3.2) and (3.3) we find: 

(a.4) i ,~ n+j ~ x  ~ ~ m  R 2%+~=---~cpl =/2., i~.,Jq~ , 
q't~ Z 

n+t 7f.~ f ~ :  �9 
~Pn+j 
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(3.5) 

qnlq m~q 

~sm mt 

" + z z 
~m.q 

~ n + i  = (~l~i j rs  v m V , R q r m i ~ q s H )  ~'~+~ ~ - -  ~ ,  ~A~v~. 
~mq 

In  the formulae (3.4) and (3.5) we have wri t ten  R~j~, (V~R)~j~ . . . .  instead of 
R~r (V~R)~jz,~oz..., and R~j~, (V~R)~j~... denote the components of the cur- 
va ture  tensor R and its eovariant  derivat ive VR with respect the local f rame 
(e~, ..., e.). 

Now we may  state  the following lemma:  

I J E ~  3.1. - Zet ~ be the scalar curvature o] g~ then: 

(3.6) 

where "r is the scalar curvature o/ g. 

l ~ o o ~ ,  - Let  /~ denote the curvature  tensor of g~. Then its components  with 
e~, e~) are given by:  respect to the local f rame (E~, ..., E~)  = (v~, ..., e~, .,., 

(3.7) _~ .~ .  = 2r E , ) .  

Using (3.5) we find: 

lmq 

- -  iqmj,~iq~ju tJ 
Imq 

R n + i  n+i n+i n+i ~ 0 . 

Then (3.6) follows. 
The nex t  proposit ion is an immedia te  consequence of (3.6). 

l~l~OPOSI~Io~r 3.2. - (TM, g~) has constant scalar curvature i] and only i /  (M, g) 
is locally Euclidean. 

C0~O:LZA~Y 3.3. -- (TM, gs) is locally homogeneous i] and only i] g, is locally 
Euclidean. 

In part icular  (see [KW]) (TM, g,) is locally symmetr ic  if and only if g~ is locally 
Euclidean.  
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Corollary 3.3 is still t rue assuming (TM, g~) curvature homogeneous (see [SI]). 
In  fact  this assumption implies tha t  the scalar curvature  is constant.  

COI{OLT,.4~Y 3.4. - The Sasaki metric is Einstein i /and  only i] it is locally Euvlidean. 

4.  - Other m e t r i c s  o n  t a n g e n t  bundles .  

Let  ~: O M x R  ~-~ T M  be the map defined by:  

(4.1) ~: (u, ~)-> (q, ~ ~e~u~), 

where u = (q, u t , . . . , u , )  an4 ~ : =  ( ~ , . . . , ~ ) .  yJ defines a submersion whose fiber 
are diffeomorphie to O(n). This map is the canonical projection onto T M  regarded 
as the vector  bundle with s tandard  fiber R ~ associated to  O(M). Therefore,  T M  is 
identified with OMxR"/O(n),  where the orthogonal group O(n) acts on the right 
on OM as follows: 

(4.2) (q ,  . , , , ,  . . . ,  

Let  now Q be a symmetric ,  semi-positive defined, tensor field of type  (2, 0) and 
rank  2n on O M x R , .  ~oreover ,  we assume tha t  Q is basic for ~. This means tha t  Q 
is O(n)-invariant,  and Q(X, ~) = 0 if X is tangent  to a fiber of ~. 

Under  these assumptions, there  is a unique Riemannian metr ic  ge on I 'M such 
tha t  ~o*(ge)= Q. This metr ic  is determined by  the formulu 

g~I~,.~)(X, Y) = QI(~,~I(X', Y') , 

where (u, ~) belongs to the fiber y~-l(p, v), X and 1 z are elements of T<~.+(TM), 
X' ,  Y' are tangent  vectors of OM• at  (u, ~) with d~(X') = X and d~(:Y') = Y. 

We observe tha t  is easier to assign Q than  to define direct ly gq on T M  since 
OM X R ~ is parallelizable. 

Le t  0 = (01, ..., O n) denote the canonical 1-]orm on OM, and let  p be the natural  
projection OM ._5. M. 

Then,  according to the definition we get:  

(4.4) dp~(X)  = ~ O'(X)u~ , u = (q, u l ,  . . . , u s ) .  
i 

I f  we denote with (o = ( ~ )  the so(n)-valued differential form defined by  the Levi  
Civita connection of g, then  we find tha t :  

O k, i = l , . . . ; n ;  co~ ] < h < k < n ;  d~ i, i = l , . . . ~ n ,  

is an absolute parallelism on OM x R% 
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We recall  two facts:  

(~.5) R*(0') = ~ (a-1)~0 ' ,  
h 

(4.6) ~ * ~  ~" , a - l , ~  h 

hk 

for each a ~ O(n). ~oreover~ the  forms o~ are re la te4  to the  local 1 - fo rms / '~  4efined 

in (2.2) as follows: 

~ =  (p v ~ ) ( ~ ) j .  (4.7) ~ ]~ -1 ~ 
h hk 

~ denotes the  0(n) -va lue4  funct ion on p- l (U)  given by:  

(4.8) (~ ) i (u )  = g(e,l~(~,, u , ) .  

(4.7) can also be  wr i t ten  in ma t r i x  fo rm as follows: 

(4.9) o9 = y)~ dv2~ + ~@l(p*- F) ~pu. 

Final ly,  i t  will be useful la ter  on to  note  t ha t :  

(4.10) p*e '  = ~ (yb)~O j . 

LE:~z_~ 4.1. - The vertical distribution o/ y) is de]ined by: 

{ 0~=0, 
D~ ~ = d~ ~ + ~ ~%~ = 0 .  

PgOOF. - Le t  X be a ver t ical  vector  of y), then  X is t angen t  a t  t = 0 to a curve 

of the  form:  

a(t) = ( u e %  e - ' ~ ) ,  A e so(n) . 

Then X = ~(0) = A * ] - -  A~, A* is the fundamen ta l  vector  fiel4 on OM generated 

b y  A. I t  follows t h a t  

O~(X) = 0 , 

and 

= ~ ~o~(A.)  = - -  Z _ ~ t ~ +  Z A i ~  ~ = o .  
J i 5 

The converse is obvious.  
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I n  part icular  we see tha t  any  basic symmetr ic  form Q on OM •  is a second 
order polynomial  in 0 ~ ~nd D~ ~ whose coefficient yield Q invar iant  under  the O(n)- 
action. 

For  instance, consider 

(4 .~)  Q, = 5` (o,)~ + ~ (D~,)~. 
i 

:From (4.2) and (4.6) we find: 

(4.12) - R , ( D ~ )  _~ 5` (a-~)~D~ ~. 
h 

Hence Q~ is basic (see (4.5)). 

PROPOSITm~ 4.2. - The metric induced by the quadratic ]orm Q~ is the Sasaki metric. 

t ~ o o v .  - First ,  we observe tha t  the diagram 

O M •  Y' ~ T M  

OM P> M 

commutes.  Then, using (4.7) we get:  

(4.13) yJ*(Dv i) : ~ ' 

5 

Because (4.10) an4 because yJ~ is O(n)-valned, we see tha t  ~*(g~) ---- Q,. 
Consider now the quadrat ic  form 

(4.14) go~ = ~, (o') ~ + ~, (~)~ + 5, (d~') ~. 
i h < k  

goM is a metr ic  defined on OM• moreover,  from (4.5), (4.6) and (4.2)~ we find 
tha t  O(n) is a group of isometries for goM. 

Hence the metr ic  go• projects onto a unique metr ic  gcq on T M  so tha t  the 
project ion V becames a Riemannian submersion, gca is the metric o/ Cheeger and 
Gromoll (see [CG]). 

I f  we assume tha t  g is complete,  we have tha t  5` (0~) ~ -~ 5` ,t(~2k, is a complete 
i h</c 

l~iemannian metr ic  on OM (indeed p is a Riemannian submersion). Then it  follows 
tha t  goM and gcv are bo th  complete Riemannian metrics. 

RE~AaK 4.1. - I f  (M, g) is the s tandard Sphere (S% can), then OM ----- O(n -~ 1) 
and 5` (0~)2~ 5` ((o~) ~ is a bi invariant  metr ic  (see n. 6). Since goM is the product  

i h .<k 
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of two l~iemannian metr ics  wi th  non-negat ive  sectional curvatures ,  then  goM itself 

has non-negat ive  sectional curvature .  ~ow,  f rom O'NeilPs formula  it follows tha~ 
the C m ~ a ~  G~o~oLL metr ic  gco has ,non -nega t ive  curva ture  (see [CG]). 

P~o~osITIo~ 4.3. - The met r ic  gca is induced b y  the tensor field 

1 

P~oo~.  - Le t  V v be the  ver t ical  dis t r ibut ion of ~, then  its orthogon~l complement  

H v is defined b y  the  equat ion:  

h (4.1.6) o& ~- ~ d ~  ~ -  ~ d ~  ~ �9 

Thus~ the restr ict ion of goM o n  .~yX~,p agrees with the  restr ict ion of the tensor  

field given b y  

= 2 : (09  ~ + 22 ( ~ d ~  ~ - -  d ~ )  ~ + 2: (d~) ~" 
i h < k  

(4.17) 

We observe t ha t :  

(4.18) ~id~ = ~ ~ ) ~ i .  

F r o m  (4.16) and  (4.18) we find tha t :  

(4.19) (1 + + 

l:~..eplacing (4.19) in (4.17), we get :  

Since ~ is a l~iemannian submersion,  we have:  ~ * g ~ =  gO~IH~• We thus  
p roved  (4.15). 

RE~ARI; 4.2. - F r o m  (4.15) we have  ~ local expression of gc~, namely :  

(4.20) 

Therefore,  the met r ic  in4uced on the  fiber is 

1 ~ (dv.9~_ t~: v ~ dvm)~ I (4.2:~ ) 

which is not  flat. 
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I f  dim 21 /=  2, we get  

(4.22) g~ : dr2-~ (1--~ r2)-lr2dzt~, 

where v ~ = r cos ~, v ~ ---- r sin ~ (see ICE], p. 146). 

t~E1VIARK 4.3. -- The Cheeger-Gromoll metric on T M  is uniquely determined at  

the point (p, u) by  the following conditions: .... 

gcq(X", Y")  -= g~(X, ~)  , 

(4.23) goo(x,, ~ )  = ( 1 +  Ilullp-~(g~(X, ~)  + g~(x, u ) g j Y ,  u)) , 

g~a(X', Y~') = 0 , 

where X ,  Y E  T~M, and X ' ,  X v are the horizontal and the vertical lifts of X (see 

n. 2). I t  is a (~ natural  m e t r i c ,  on T M  in the sense of [KWS]. 

5. - The group of  isometrics of  g~. 

Let  G = I ( M ,  g) denote the group of isometrics of (M, g). There are two natural  

left actions of G on T M  and on OM defined by :  

(5.1) I J q ,  v ) - - - - a ( q , v ) =  (aq, dL~(v)), a e G ,  (q,v) e T M ,  

(5.2) L~(u) = au ----- (aq, dL~(ul), . . . ,  dL~(u~)) , a e G ,  u e O M ~  

where dL~ denotes the differential of the map L~: M --> M, q -> aq. 

PROPOSITION 5.1. - g~ is a G-invariant metric on T M .  

Pl~oor. - Firs t  we extend the action (5.2) on O M •  by  setting: 

(5.3) L J u ,  ~) = a(u, ~) = (au, ~). 

The canonical 1-form 0 and the Levi Civita connection form oJ are G-invariant, i.e. 

(5.4) L*(o') = r , 

(5.5) L*c~o~ = o~ 
a \  J/ 

Since G acts tr ivially en R ~, the differential forms D~ ~ are G-invariant. The projec- 

tion ~p: O M - - ~ T M  commutes with the actions (5.1) and (5.2): 
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F rom (4.11) we have tha t  ~v*(g~) is a (~-invariant quadrat ic  form. Bu t :  

~*(2;*g~) = L*(~*g~) = ~* g~. 

Since ~v is a submersion, we obtain for each a in G 

L*(g~) -~ g~. 

This proves the proposition. 

RE~_A~ 5.1. - The same arguments  hold if we exchange g~ with gca, hence the 
Cheeger-Gromoll metr ic  gcG is G-invariant.  

Le t  uo be an or thonormal  frame, and let  ~ .  be the map defined by  

(5.6) a~.: G --> OM, a --> aUo . 

Since the action (5.2) is free, the map ~o is an imbedding (see [KN], Vol. I ,  p. 4). 
Therefore dim G~<dim OM : �89 ~- 1), and the equali ty holds if and only if (M, g) 
is isometric to one of the following spaces of constant  curvature :  

i) the n-dimensional Eucl idean space R"; 

ii) the n-dimensional sphere S"; 

iii) the  n-dimensional real  project ive space RP- ;  

iv) the n-dimensional hyperbolic  space H ~ 

(see [KO,], p. 46). In  these eases the group G is tTansitive on T,M.  
This p roper ty  is characterist ic of two-point  homogeneous spaces, in fact  we have 

PnOPOSITION 5.2 ([WO], p. 289). - G is transitive on the spherical tangent bundle 
i] and only i] (M, g) is a two-point homogeneous space. 

From prop. (5.1) we see tha t  (TIM, g:) is an homogeneous Riemannian space 
if (M, g) is two-point  homogeneous, al though (TM, g~) is never  homogeneous unless gs 
is flat. 

R E ~ R K  5.2. -- The orbits of the action (5.1) are M, regarded as the zero sec- 
t ion of TM,  and the spherical tangents  bundles T~M of radius r, r > O. Then 
(TM, g~) is a Riemannian space of eohomogenity one. The spherical bundles T~M are 
the  principal orbits of the action~ moreover  T , M  is a submanifold with constant 
mean curvature [SA], whereas M is to ta l ly  geodesic. 

l ~ v . ~ K  5.3. - The tangent  bundle Y(~ of every  Lie group G has a na tura l  Lie 
group structure.  Under  the identification T(~ = G •  the  product  is defined by :  

(5.7) (a ,A)(b ,B)  = (ab, B - ~  Ad(b-1)A),  a, beG;  A, B e g .  
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I f  G acts on M, T G  acts on the tangent  bundle T M  as follows: 

(5.8) L(o,~,(q, v) = (aq, dLo(v) + (Ad(a)A)*lo~ 

where, for each X e g ,  X* denotes the induced f tmdamentM vector-field on M. I f  G 
is t ransi t ive on M, then  TG is t ransi t ive on T M .  Clearly this does not  mean tha t  
if g is a G-invariant metr ic  on M, then g~ is TG-invariant.  I n  facL L(~,~) is an 
isometry  of ( T M ,  g~) if and only if VxA*---- 0 for each vector field X on M. 

6. - Tangent  sphere bundle. 

In  section 5 we have already noted tha t  the tangent  sphere bundle of a two point  
homogeneous space endowed with the metr ic  g: is a Riemunnian homogeneous space. 
In  this section we will investigate the tangent  sphere bundle T~S ~ of the s tandard 
n-sphere, equipped with the induced Sasaki metric,  and we will generalize some of 
the results proven in [KS]. 

Fi rs t  we need some general facts concerning the tangent  sphere bundle of a 
Riemannian manifold. 

Consider the map yJ~: O M  - + T ~ M  defined by:  

(6.:l) ~ :  (q, ul, ..., u~) -~ (q, u~) 

(see [CH~], p. 36). This map is ~ submersion whose fibers are diffeomorphic w i t h  

Then T ~ M  can be regarded as the quot ient  space O M / O ( n - - 1 )  and ~ is the  
natural  projection. Now we shall prove the following proposition: 

~Ir 6.1. - Let  g: be the induced Sasaki  metric on T~M,  then we have 

= (0') 2 + Y. 2. 
i i 

l ~ooF .  - Fi rs t  we observe tha t  the following diagram 

O M  ~p~ i > T I M  ( > T M  

M 

commutes.  

(6.2) 

(6.3) 

Hence,  using (4.9) and (4.10) we get:  

(ioyJ~)* (z* e i) ~-- p*(e i) : ~ (yJ~)~O j , 

(io~p,)* (~* F )  = p * ( E )  = yJ~co~f~ 1 - -  d ~ , p ~  1 . 
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Because (v%%,)(u) : V(u,~) = (tv~)~(u), we obtain:  

(io n)* = . '  

Since v : M )  * i* ~2~( g~) = (io~p,)*g~ and ~% is an 0(n)-vMued function, the formulae 
(6.2)~ (6.3) and (6.4) imply proposit ion (6.1). 

R E ~ K  6.1. - I t  is an e lementary  ma t t e r  to check tha t  the quadrat ic  form 
Q = ~ (0~) 2 q- ~ (0)~)~ is O(n - 1)-invariant  and Q(X, Y) = 0 if one of X and ~Y is 

i i 

vert ical  for F~. Hence Q is basic. As for n. 4, we m a y  characterize g: as the only 
, t 

metr ic  on T~M satisfying %o (g~)= Q. 
l 

Moreover, f rom proposit ion 4.3 it  follows tha t  the metr ic  g~a induced on T I M  
by  the  Cheeger-Gromoll metr ic  is uniquely  characterized by  the following condition: 

$ t ~)n(goq) ~" ~ (Oi) 2 ~-- �89 E ( ~  
i 

PRoPosi~Io~ 6 . 2 . -  (T~S', g'~) is isometric to the Stie]el mani]old SO(n q-1)/  
/SO(n- -1)  equipped with a metr ic  induced from a bi ivariant  one on SO(n q-1). 

P~ooF. - Le t  0+(g ") denote  the bundle of positive or thonormal  frames on S ~. 
Let  u0 be a point  of 0+(S") and let  p be the canonical project ion f rom SO(n q-1) 
onto S ", then  the diagram 

SO(n ~- l)  0,,0> O§ W,~> T~S,, c i TS  n 

S ~ = SO(n ~- 1)/SO(n) 

commutes.  Hence T1S ~ is diffeomorphic to the Stiefel manifold SO(n -~ 1)/SO(n-- 1). 
Indeed,  a point  of TIS  ~ is given b y  a pair of or thonormal  vectors in R~+L To 

conclude the proof we must  check a few facts. 
F i rs t  consider the 1-forms on SO(n q-1) defined by:  

(6.5) Oi o* 0 i i = 1, ..., n , 

(6.6) : o~~ 1 < i <  ] < n  

FACT 1. - {0~, ~ } ,  1 < h < ] < n are lef t- invariant  and l inearly independent  1-forms, 

therefore  they  are Maurer-Cartan forms of $O(n-~ 1). 
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PROOF. - Le t  SO(n + 1) act on O+(M) (see (5.2)). Then,  for each a, b e SO(n + 1), 

we have:  

(6.7) d,. oL~ = L~oa~,, 

where in the left  hand  side of (6.7) L .  denotes the left  t ranslat ion of SO(n + 1). 

Then  we get 

In the  same way, 

* L * ~  L*(O)' = (,~,, o/_,a)*O' = ~ . _ o _  . 

Since SO(n + 1) acts as an i sometry  group on S ' ,  the  canonical 1-form and the 
connection form to are SO(n 4- 1)-invariant.  This implies Fac t  1. 

Taking the s t ructure  equations of S ~ and making use of f~j----0~A0 j one m ay  
- '  satisfy the following equations:  see tha t  6 ~ and % 

(6 .8)  
h 

d ~  6'A 6 ~ - -  ~ - '  ~' - -  o,~A o~. 
k 

Fxc~ 2. - Le t  ~ denote the quadrat ic-form ~ (~)~ 4- ~ (~)~, then  2n~ ---- -- B, 

where B is the Killing form of ~O(n 4- 1). Therefore ~ is a bi invariant  metr ic  on 

~O(n + 1) .  

PROOF. -- so(n 4- 1) is isomorphic with the Lie algebra of lef t  invariant  vector  
fields on SO(n 4- 1). An explicit  isomorphism can be defined taking the dual basis 
(E~, E~} of {O ~, co~}, hence any  left  invar iant  vector  field X can be wri t ten in the 

form: 

(6.9) X Z O'(X)E, + Z ' -' = , o , ( X ) E , .  
~<~ 

The isomorphism is given by  the mapping:  

X ->  (A,  $ ) ,  

where 

�9 ~ = r . . . ,  6~(x)). 
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Then the Killing form is is given by. 

, (x ,x , )  - - 2 - { Z - '  -' ' } q.e.d. = - = o ~ ( x ) % ( x  ) + ~ O q x ) & ( x ' )  , 
~,,J i 

Proposition (6.2) follows from Facts 1 and 2, and from proposition (6.1). 

R E ~ x  6.2. - The above proposition implies tha t  T~S ~ with the metric g: is a 
normal Riemannian homogeneous space, therefore (TIS",g~) is naturally reductive. 
A natural ly  reduetive decomposition of so(n ~ 1) is given by  

(6.1o) so(n ~ 1) = m O  k ,  

where 

(6.11) 

and 

(6.12) 

m 
(V, ~, ~)/*$, *V~R n, a e R  t , 

k = 0 / B  e s o ( n  ~ 1 )  . 

0 

The geodesics of (T1S", g'~)through the origin (qo, up) = ~a~.(e) are orbits of 1-pa- 
rameter  subgroups generated by elements X belonging to m.  In  the two-dimensional 
case all geodesics are closed (see [KS]). Of course, for n~>3 this property is no 
longer true. For  instance, the curve 

~(t) = exp ( tX)  

where X = (7, ~, 0), z~ = (0, ..., a, 0), ~ -~ (0, ..., O, b) and a/b irrational, is a geo- 
desic, dense in a torus contained in T1S ~, which is not  closed. 

7. - De format ion  o f  the  metric  g~. 

In  section 6 we noted tha t  on the spherical tangent  bundle T1M we m a y  define 
Riemannian metrics in analogy with section 4 (see remark 6.1). For instance, since 
0- is an invariant  differential form under  the O(n--  1) action on OM, and since 0" 
vanishes on the vertical vectors of the fibration ~ ,  we may  de4uce tha t  the 
quadratic form 

(7.1) O, = Z (09 ~ + t~(o~) ~ + ~ (~D ~, t r o ,  
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induces a metr ic  tensor gt on T I M  which is uniquely determined b y  the condition 
~*(g,) = Q,. 

I n  this section we will show tha t  if (M, g ) i s  a space of constant  sectional cur 
va ture  a = 1, then  the metr ic  gt is Einstein when t 2 =  2 I n ( n - - 1 ) .  Hence g ' ,=  g~- 
can be an Einste in  metr ic  only if dim M = 2. Indeed  (see [KS]), the l~iemannian 
manifold (T~S ~, g:) is isometric to the real project ive space RP  a endowed with a 
metr ic  of constant  posit ive curvature  [ .  

The Einstein metrics gt~ t ~ = 2 I n ( n - -  1), on T~S  ~ was defined b y  S. KoBxYAS]~X 
in [ K O j  as a part icular  ease of Einstein metrics on S~-principal bundles. This 
construction was generalized by  G. JE~s~,~ ([Je]) to other  homogeneous spaces, 
for  instance if M is ~ Stiefel manifold. 

Since ~* is injectiv% the l~iemann and the Ricci curvature  tensors are uniquely 
determined by  their  pull-backs on O M .  Therefore we will work on OM~ leaving 
the computat ional  details to the reader.  

l~irst we pu t :  

(7.2) ~ 0 i , ~" : tO" ~ = a)~, , = ~ + i  ~ i : 1 ~ . . ,  n - - 1 .  

F r om now on we shall employ the following ranges of indices: 

i , ] ~ k , h ~  .... 1, . . . ,  n - - 1  ; A , B , C  .... 1, ..., 2 n - - 1  ; a ~ b , c  .... 1 , . . . , n .  

We consider the following equations: 

(7.3) 
{ d~ ~ = - -  ~(~,)~Aq ~B, 

B 

(%1~ + (%)~ = o .  

To compute the differentials d~0 ~ we make use of (7.2) and of the s t ructure  equa- 
tions for the metr ic  g on M. Recall tha t  the s t ructure  equations of g can be wri t ten  
as follows: 

- -  0 3  a 0 b dO ~  Y. oA 
a 

(7.4) f~  do~ § 2. ~ / \  

The 1-forms (0~)a.1 . . . . . .  ,(~o~)~,b= 1 . . . . . .  are respectively R"-valued and so(n)-valued 

differential  forms globally define4 on OM. l~Ioreover: 

(7.5) 2~9~ ---- ~/~o~o,0,A0 , , 
ad 

where /~,bo~ must  be regarded as rcal-valued functions on O M  related 
Riemann curvature  tensor  R by  the formula:  

to the  

(7.6) l~bc~(u) = R]~(~)(u~, ub, ur us) , u ~ O M .  
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Now, using Cartan's l e m m a  we see tha t  (7.3) uniquely  characterize the forms (%)]: 
I t  is a rout ine ma t t e r  to deduce the following expression: 

(7.7) 

h 

t~-}-i  . ' i  1 ~ -  
2t 

(~)~+~ = _ (~),~+~ = _ 1 ~ .~,.,.~f~ + T ~}~ - - ~  R,,,,,~q~ , 

. t ' - - l c f , _ + _ l ~ , . , c f a  ' 

~n+t i 
~) t ln+l  ~-- O)f . 

Let  (~)~, be the forms given by  the  equation:  

(7.8) ( r  = d(%)~ + ~ (q~,)~A (q~,)~ �9 
0 

Then 

(7.91 R, = 2 ~ (g~,).,1| (9;*A9~"1 

is the pull-back of the Riemann curvature  tensor of g~. 

tensor is given by  

(7.]o) e~ = ~ ( ~ , ) . , , ~ |  
A , B  

The pull-back of the Ricei 

where the components  (~ot)_~B are given by  the formula:  

(7.11) 

with 

(7.]2) 

(~t)i~= R .  t 4 - 1 ~ ,  I - 

4t ~ 

1 

- ! ~  , 
(~t)~ 2t ~ t~ ~ 2t 2 ,, , 

(~,)~+~+j = ( n - - 2 )  ~7~ J ~" + ~7~ ,, 

d(K~0,) ~ V -  - - - - - o~" . 
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I f  (M,g)  is a space of constant  curvature  ~, (7.11) m a y  be re-wri t ten as follows: 

(7.13) 

t 4 - 2 A ( n - 1 ) t  2 + 13-1 

(@t){J : 2t ~ ~i," , 

t~ -- (), --i)~ 
(~')"" - 2t~ ( n - l ) ,  

(@t)n4-jinj-j : t 4 - - 2 ( n  -- 1)t  ~ --/~ + 1 0~.. 
2t ~ 

where the components  t ha t  do not  appear  in (7.13) vanish identically on OM. 
F r om (7.13) we obtain 

PROPOSITIOI~ 7.1. - Zet (M, g) be a space o/ constant curvature l, then (T~M, gt) 
is an Einstein space i /e i ther  t = 1, and t ~ = 2((n -- 1)/n) or else i = 0 and n = 1, 
t 2 = 1 .  

l~aturally, the la t ter  case is trivial.  

RE~A~K 7.1. - Equat ion  (7.1) m a y  be wri t ten  in the form 

(7.14) 

Therefore,  

(7.15) 

Q, - -  ]~ (0") 2 + ~ ((9~) ~ -[- (t ~ - 1 ) ( 0 " )  2 . 
a 4 

g t =  g: + (t 2 - 1 ) 7 ,  

where ~ is the 1-form induced on T I M  by  0 ~. Since ~v*(7) = 0% we get 

(7.16) ~!,%~)(X) =: g~(d~(X), v) ,  X e T(q,~,(T~M) . 

Then ? is the restr ict ion to T1M of the Ziouville /orm of T M  (see [BE], p. 21), 
i.e. ~ is the canonical contact ]orm on T1M (see [CH2] or [BL]). 

Thus the Einstein metric on T1S" de/ined by .Kobayashi can be obtained by de/orm- 
ing the induced Sasaki metric g: along the direction of the canonical contact ]orm o] TI S". 

Clearly the projection z :  TIS" --> S ~ is no longer a Riemannian submersion. This 
is the price to be paid for an Einstein metric. In  context ,  see CALA•I [CA] where 
the  construct ion of K~hler metrics on holomorphic vec to r  bundles is discussed. 
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