Riemannian Metrics on Tangent Bundles (*).

E. Musso - F. Tricerri

Summary. – Some « natural » metrics on the tangent and on the sphere tangent bundle of Riemannian manifold are constructed and studied via the moving frame method.

1. - Introduction.

The tangent bundle TM of a Riemannian manifold (M,g) admits a natural Riemannian metric: the Sasaki metric g_s .

In order to define g_s we consider two vectors X and Y tangent to TM at the point (p,v). Suppose that X and Y are tangent at the time t=0 to the curves $\bar{\alpha}(t)=\left(\alpha(t),\,V(t)\right)$ and $\bar{\beta}(t)=\left(\beta(t),\,W(t)\right)$ respectively. Denote with DV/dt and DW/dt the covariant derivatives of the vector fields V(t) and W(t) along $\alpha(t)$ and $\beta(t)$, then g_s is defined by:

$$(1.1) g_s|_{(p,v)}(X,Y) = g_p(\dot{\alpha}(0),\dot{\beta}(0)) + g_p\left(\frac{DV}{dt}\Big|_{0},\frac{DW}{dt}\Big|_{0}\right).$$

 g_s is perhaps the most natural metric on TM depending only on the Riemannian structure on M, but it is extremely rigid. For instance, g_s has constant scalar curvature if and only if g is flat. Therefore, the Sasaki metric is locally homogeneous, or locally symmetric, or Einstein only if it is flat (see n. 3). But, if we consider TM as a vector bundle associated with OM we may easily construct other interesting metrics on TM.

In section 4 we discuss this general construction and we shall prove that the Sasaki metric can be obtained in this way. We also give an explicit expression of a complete metric g_{cg} introduced by Cheeger and Gromoll in [CG].

If (M, g) is the standard *n*-sphere, the metric g_{cg} has non negative curvature and S^n is the soul of (TS^n, g_{cg}) .

^(*) Entrata in Redazione il 25 ottobre 1986.

Indirizzo degli A.A.: E. Musso: Dipartimento di Matematica, Università dell'Aquila, L'Aquila, Italy; F. Tricerri: Dipartimento di Matematica, Università di Torino, Torino, Italy. Indirizzo attuale: Istituto di Matematica, Università di Firenze, Firenze, Italy.

In section 5 we study the spherical tangent bundle $T_1M=\{(p,v)\in TM/\|v\|=1\}$ endowed with the induced Sasaki metric g_s' . It is interesting to observe that (T_1M,g_s') is an homogeneous Riemannian space if (M,g) is a rank one symmetric space (see n. 5).

 T_1M can be regarded as an hypersurface of TM, thus the Levi Civita connection and the curvature tensor of g'_s could be computed using Gauss equation. Instead, we prefer to identify T_1M with a quotient of OM and make use of the moving frame method (see n. 6). In section 6 we study the spherical tangent bundle T_1S^n of the standard n-sphere generalising the results obtained in [KS].

Section 7 deals with deformations of the metric g'_s . We prove that the Einstein metric defined on T_1S^n by S. Kobayashi ([KO₁], [Je]) can be obtained deforming g'_s along the direction of the canonical contact form on T_1S^n .

We are indebted to O. Kowalski for the remark 4.3 and several useful discussions.

2. - The Sasaki metric.

Let (M, g) be an *n*-dimensional Riemannian manifold with tangent bundle TM and natural projection $\pi \colon TM \to M$.

A curve $\tilde{\gamma}: I \to TM$, $t \to (\gamma(t), V(t))$ is horizontal if the vector field V(t) is parallel along $\gamma = \pi \circ \tilde{\gamma}$. A vector on TM is horizontal if it is tangent to an horizontal curve, or vertical if is tangent to a fiber.

Let $\gamma: I \to M$, $t \to \gamma(t)$ be a curve through the point $p = \gamma(0)$.

For each tangent vector $v \in T_{\nu}M$ there exists a unique horizontal curve $\gamma^{H}: I \to TM$ through (p, v) which projects onto γ . This curve is defined by:

$$\gamma^{H}(t) = (\gamma(t), V(t)),$$

where V(t) is the parallel vector field along γ with V(0) = v. The curve γ^{μ} is called an horizzontal lift of γ .

The horizontal lift of a vector field X on M is the unique vector field X^H on TM which is horizontal and which projects onto X.

Let $(e_1, ..., e_n)$ be an orthonormal frame field defined on the open set $U \subset M$, and let $(x^1, ..., x^n)$ be a local coordinate system on U. We define a local coordinate system $(x^1, ..., x^n, v^1, ..., v^n)$ on $\pi^{-1}(U)$ as follows:

$$(2.1) x^{i}(p, v) = x^{i}(p), v^{i}(p, v) = v^{i}, (p, v) \in \pi^{-1}(U),$$

where $v = \sum_{i} v^{i} e_{i}(p)$. We denote with Γ_{j}^{i} the local 1-forms defined by:

(2.2)
$$\nabla_{\mathbf{x}} e_i = \sum_i \Gamma_i^i(X) e_i.$$

It is easy to verify that the horizontal lift X^H of a vector field X on M is given, in terms of the local coordinate system above, as follows:

(2.3)
$$X^{H} = X - \sum_{ij} \Gamma^{i}_{j}(X) v^{i} \frac{\partial}{\partial v^{i}}.$$

The vertical lift X^{v} is defined by:

$$(2.4) X^{v} = \sum_{i} X^{i} \frac{\partial}{\partial v^{i}}.$$

Horizontal and vertical vectors generate two complementary distributions on TM: the horizontal distribution and the vertical distribution. Those two distributions are orthogonal with respect to q_s .

From (1.1) we obtain:

(2.5)
$$\left\{ \begin{array}{l} g_s(X^{\!\scriptscriptstyle H}\!,Y^{\!\scriptscriptstyle H}\!) = g_s(X^{\!\scriptscriptstyle V}\!,Y^{\!\scriptscriptstyle V}\!) = g(X,Y) \!\circ\! \pi \, , \\ g_s(X^{\!\scriptscriptstyle H}\!,Y^{\!\scriptscriptstyle V}\!) = 0 \, , \end{array} \right.$$

for each pair of vector fields X and Y on M.

Clearly (2.5) uniquely determines the Sasaki metric. Then, according to (2.5) we have that $(e_1^H, ..., e_n^H, e_1^V, ..., e_n^V)$ is an orthonormal frame field on $\pi^{-1}(U)$ and its dual coframe is given by:

(2.6)
$$\pi^* e^1, ..., \pi^* e^n, Dv^1, ..., Dv^n,$$

where e^i denotes the 1-form defined by $e^i(e_k) = \delta^i_k$, and Dv^i is given by

(2.7)
$$Dv^{i} = dv^{i} + \sum_{j} v^{j} \pi^{*}(\Gamma_{j}^{i}).$$

From (2.6) and (2.7) we have the following

Proposition 2.1. – The Sasaki metric g_s can be written as follows:

(2.8)
$$g_s = \sum_i \pi^*(e^i)^2 + \sum_i (Dv^i)^2.$$

REMARK 2.1. – Observe that the metric induced on the fiber $\pi^{-1}(p)$ is the Euclidean metric. In fact (2.6) and (2.7) imply that the restriction of g_s on $\pi^{-1}(p)$ is given by the quadratic form $\sum_i (dv^i)^2$. Hence g_s is the only metric on TM satisfying the following conditions:

- a) horizontal and vertical distributions are orthogonal;
- b) the metric induced on the fibers is Euclidean;
- c) the projection π is a Riemannian submersion.

The fibers are also totally geodesic ([BE], p. 47).

REMARK 2.2. – Let $(e'_1, ..., e'_n)$ be an orthonormal frame defined on the open set $V \subset M$, and suppose that

(2.9)
$$e'_i = \sum_j a_i^j e_j \quad \text{on } U \cap V.$$

Then we have:

(2.10)
$$e_i'^{II} = \sum_j (a_i^j \circ \pi) e_i^{II}, \quad e_i'^{V} = \sum_j (a_i^j \circ \pi) e_j^{V} \quad \text{on } \pi^{-1}(U \cap V).$$

This implies that TM admits a natural $O(n) \times O(n)$ structure. Since $O(n) \times O(n)$ is a closed subgroup of U(2n), we can also deduce that TM admits an almost complex structure J compatible with g_s . (For more details on the almost Hermitian manifold (TM, g_s, J) see [DO], [YI] and [BE], pp. 46-48).

3. - The curvature of the Sasaki metric.

The curvature of g_s has been computed by several authors with different methods (see [KW], [YI]). Proposition (2.1) permits the use of the moving frame method and of the structure equations of E. CARTAN.

First we put

(3.1)
$$\varphi^{i} = \pi^{*} e^{i}, \quad \varphi^{n+i} = Dv^{i}, \quad i = i \dots n,$$

and we observe that $(\varphi^i, ..., \varphi^{2n})$ is an orthonormal coframe field. The local 1-forms φ_B^A of the Levi Civita connection of g_s are given by:

$$\begin{cases} d\varphi^{\mathtt{A}} = -\sum_{\mathtt{B}} \varphi^{\mathtt{A}}_{\mathtt{B}} \wedge \varphi^{\mathtt{B}} \,, \\ \varphi^{\mathtt{A}}_{\mathtt{B}} + \varphi^{\mathtt{B}}_{\mathtt{A}} = 0 \,. \end{cases}$$

The curvature forms $\Phi_{\scriptscriptstyle B}^{\scriptscriptstyle A}$ can be computed by using the formula:

(3.3)
$$\Phi_{\scriptscriptstyle B}^{\scriptscriptstyle A} = d\varphi_{\scriptscriptstyle B}^{\scriptscriptstyle A} + \sum_{\scriptscriptstyle C} \varphi_{\scriptscriptstyle C}^{\scriptscriptstyle A} \wedge \varphi_{\scriptscriptstyle B}^{\scriptscriptstyle C} \,.$$

From (3.2) and (3.3) we find:

(3.4)
$$\begin{cases} 2\varphi_{j}^{i} = 2\pi^{*} \Gamma_{j}^{i} + \sum_{l,m} v^{m} R_{ijml} \varphi^{n+l}, \\ 2\varphi_{n+j}^{i} = -2\varphi_{i}^{n+j} = \sum_{m,l} v^{m} R_{ilmj} \varphi^{l}, \\ \varphi_{n+j}^{n+i} = \pi^{*} \Gamma_{i}^{i}. \end{cases}$$

$$\left\{ \begin{array}{l} 4\varPhi_{j}^{i} = \sum\limits_{rs} \left(2R_{ijrs} - \sum\limits_{mlq} v^{m} v^{l} R_{ijmq} R_{rslq} - \sum\limits_{mlq} v^{m} v^{l} R_{irmq} R_{jslq}\right) \varphi^{r} \wedge \varphi^{s} + \\ + 2\sum\limits_{rsm} v^{m} (\nabla_{r} R)_{ijms} \varphi^{r} \wedge \varphi^{n+s} + \sum\limits_{rs} \left(2R_{ijrs} - \sum\limits_{ml} v^{m} v^{l} R_{iqmr} R_{jqls}\right) \varphi^{n+r} \wedge \varphi^{n+l}, \\ 4\varPhi_{n+j}^{i} = -4\varPhi_{i}^{n+j} = 2\sum\limits_{r} v^{m} (\nabla_{r} R)_{ismj} \varphi^{r} \wedge \varphi^{s} + \\ + \sum\limits_{rs} \left(2R_{irjs} - \sum\limits_{lmq} v^{m} v^{l} R_{iqms} R_{qrlj}\right) \varphi^{r} \wedge \varphi^{n+s}, \\ 4\varPhi_{n+j}^{n+i} = \sum\limits_{rs} \left(2R_{ijrs} - \sum\limits_{lmq} v^{m} v^{l} R_{qrmi} R_{qslj}\right) \varphi^{r} \wedge \varphi^{s}. \end{array} \right.$$

In the formulae (3.4) and (3.5) we have written R_{ijlm} , $(\nabla_r R)_{ijlm}$... instead of $R_{ijlm} \circ \pi$, $(\nabla_r R)_{ijlm} \circ \pi$..., and R_{ijlm} , $(\nabla_r R)_{ijlm}$... denote the components of the curvature tensor R and its covariant derivative ∇R with respect the local frame (e_1, \ldots, e_n) .

Now we may state the following lemma:

LEMMA 3.1. - Let $\bar{\tau}$ be the scalar curvature of g_s then:

$$\bar{\tau} = \tau \circ \pi - \frac{1}{4} \sum R_{ijmq} R_{ijlq} v^m v^l.$$

where τ is the scalar curvature of g.

PROOF. – Let \overline{R} denote the curvature tensor of g_s . Then its components with respect to the local frame $(E_1, ..., E_{2n}) = (e_1^H, ..., e_n^H, e_1^V, ..., e_n^V)$ are given by:

$$\vec{R}_{ABCD} = 2\Phi_B^A(E_C, E_D).$$

Using (3.5) we find:

$$\begin{split} & \bar{R}_{ijij} = R_{ijij} - \frac{3}{4} \sum_{lmq} R_{ijmq} R_{ijlq} v^m v^l \,, \\ & \bar{R}_{i\,n+j\,i\,n+j} = \frac{1}{4} \sum_{lmq} R_{iqmj} R_{iqlj} v^m v^l \,, \\ & \bar{R}_{n+i\,n+j\,n+i\,n+j} = 0 \,. \end{split}$$

Then (3.6) follows.

The next proposition is an immediate consequence of (3.6).

Proposition 3.2. – (TM, g_s) has constant scalar curvature if and only if (M, g) is locally Euclidean.

COROLLARY 3.3. – (TM, g_s) is locally homogeneous if and only if g_s is locally Euclidean.

In particular (see [KW]) (TM, g_s) is locally symmetric if and only if g_s is locally Euclidean.

Corollary 3.3 is still true assuming (TM, g_s) curvature homogeneous (see [SI]). In fact this assumption implies that the scalar curvature is constant.

COROLLARY 3.4. - The Sasaki metric is Einstein if and only if it is locally Euclidean.

4. - Other metrics on tangent bundles.

Let $\psi \colon OM \times \mathbb{R}^n \to TM$ be the map defined by:

$$\psi \colon (u, \, \xi) \to \left(q, \, \sum_i \xi^i \, u_i\right),\,$$

where $u = (q, u_1, ..., u_n)$ and $\xi = (\xi^1, ..., \xi^n)$. ψ defines a submersion whose fiber are diffeomorphic to O(n). This map is the canonical projection onto TM regarded as the vector bundle with standard fiber \mathbb{R}^n associated to O(M). Therefore, TM is identified with $OM \times \mathbb{R}^n/O(n)$, where the orthogonal group O(n) acts on the right on OM as follows:

$$(4.2) (u,\xi)a = (ua, a^{-1}\xi) = \left(q, \sum_{i} a_{1}^{i} u_{i}, \dots, \sum_{i} a_{n}^{i} u_{i}, \sum_{i} a_{1}^{i} \xi^{i}, \dots, \sum_{i} a_{n}^{i} \xi^{i}\right).$$

Let now Q be a symmetric, semi-positive defined, tensor field of type (2,0) and rank 2n on $OM \times \mathbb{R}^n$. Moreover, we assume that Q is basic for ψ . This means that Q is O(n)-invariant, and O(X,Y) = 0 if X is tangent to a fiber of ψ .

Under these assumptions, there is a unique Riemannian metric g_q on TM such that $\psi^*(g_q) = Q$. This metric is determined by the formula

$$g_{u|(p,v)}(X,Y) = Q|_{(u,\xi)}(X',Y')$$
,

where (u, ξ) belongs to the fiber $\psi^{-1}(p, v)$, X and Y are elements of $T_{(q,v)}(TM)$, X', Y' are tangent vectors of $OM \times \mathbb{R}^n$ at (u, ξ) with $d\psi(X') = X$ and $d\psi(Y') = Y$.

We observe that is easier to assign Q than to define directly g_Q on TM since $OM \times \mathbb{R}^n$ is parallelizable.

Let $\theta = (\theta^1, ..., \theta^n)$ denote the canonical 1-form on OM, and let p be the natural projection $OM \stackrel{p}{\longrightarrow} M$.

Then, according to the definition we get:

$$dp_u(X) = \sum_i \theta^i(X) u_i, \quad u = (q, u_1, ..., u_n).$$

If we denote with $\omega = (\omega_j^i)$ the so(n)-valued differential form defined by the Levi Civita connection of g, then we find that:

$$\theta^i, i=1,\ldots,n;$$
 $\omega_k^h, 1\leqslant h\leqslant k\leqslant n;$ $d\xi^i, i=1,\ldots,n,$

is an absolute parallelism on $OM \times \mathbb{R}^n$.

We recall two facts:

(4.5)
$$R_a^*(\theta^i) = \sum_h (a^{-1})_h^i \theta^h,$$

$$(4.6) R_a^*(\omega_j^i) = \sum_{hk} (a^{-1})_h^i \omega_k^h a_j^k,$$

for each $a \in O(n)$. Moreover, the forms ω_j^i are related to the local 1-forms Γ_j^i defined in (2,2) as follows:

(4.7)
$$\omega_{j}^{i} = \sum_{h} (\psi_{\overline{\sigma}}^{-1})_{h}^{i} d(\psi_{\overline{\sigma}})_{j}^{h} + \sum_{hk} (\psi_{\overline{\sigma}}^{-1})_{h}^{i} (p^{*} \Gamma_{k}^{h}) (\psi_{\overline{\sigma}})_{j}^{k}.$$

 $\psi_{\scriptscriptstyle U}$ denotes the O(n)-valued function on $p^{-1}(U)$ given by:

$$(\psi_{\overline{v}})_{i}^{i}(u) = g(e_{i}|_{p(u)}, u_{i}).$$

(4.7) can also be written in matrix form as follows:

(4.9)
$$\omega = \psi_{\overline{v}}^{-1} d\psi_{\overline{v}} + \psi_{\overline{v}}^{-1}(p * \Gamma) \psi_{\overline{v}}.$$

Finally, it will be useful later on to note that:

$$p^*e^i = \sum_j \left(\psi_{\mathcal{U}}\right)_j^i \theta^j.$$

LEMMA 4.1. – The vertical distribution of ψ is defined by:

$$\left\{ \begin{array}{l} \theta^i = 0 \; , \\ D\xi^i = d\xi^i + \sum\limits_i \xi^i \omega^i_i = 0 \; . \end{array} \right.$$

PROOF. – Let X be a vertical vector of ψ , then X is tangent at t=0 to a curve of the form:

$$\alpha(t) = (ue^{tA}, e^{-tA}\xi), \quad A \in so(n).$$

Then $X = \dot{\alpha}(0) = A^*|_u - A\xi$, A^* is the fundamental vector field on OM generated by A. It follows that

$$\theta^i(X) = 0$$
,

and

$$D\xi^i(X) = -\,d\xi^i(A\xi)\,+\,\sum\limits_j \xi^j\omega^i_j(A^*_u) = -\,\sum\limits_j A^i_j\xi^j + \sum\limits_j A^i_j\xi^j = 0$$
 .

The converse is obvious.

In particular we see that any basic symmetric form Q on $OM \times \mathbb{R}^n$ is a second order polynomial in θ^i and $D\xi^i$ whose coefficient yield Q invariant under the O(n)-action.

For instance, consider

(4.11)
$$Q_s = \sum_{i} (\theta^i)^2 + \sum_{i} (D\xi^i)^2.$$

From (4.2) and (4.6) we find:

(4.12)
$$R_a^*(D\xi^i) = \sum_h (a^{-1})_h^i D\xi^h.$$

Hence Q_s is basic (see (4.5)).

Proposition 4.2. – The metric induced by the quadratic form Q_s is the Sasaki metric.

PROOF. - First, we observe that the diagram

$$\begin{array}{ccc}
OM \times \mathbb{R}^n & \xrightarrow{\psi} & TM \\
\downarrow & & \downarrow \pi \\
OM & \xrightarrow{p} & M
\end{array}$$

commutes. Then, using (4.7) we get:

$$\psi^*(Dv^i) = \sum_i (\psi_{\mathcal{U}})_i^i D\xi^i.$$

Because (4.10) and because $\psi_{\overline{v}}$ is O(n)-valued, we see that $\psi^*(g_s) = Q_s$. Consider now the quadratic form

(4.14)
$$g_{\mathit{OM}} = \sum_{i} (\theta^{i})^{2} + \sum_{h < k} (\omega_{k}^{h})^{2} + \sum_{i} (d\xi^{i})^{2}.$$

 g_{OM} is a metric defined on $OM \times \mathbb{R}^n$; moreover, from (4.5), (4.6) and (4.2), we find that O(n) is a group of isometries for g_{OM} .

Hence the metric g_{OM} projects onto a unique metric g_{CG} on TM so that the projection ψ becames a Riemannian submersion. g_{CG} is the metric of Cheeger and Gromoll (see [CG]).

If we assume that g is complete, we have that $\sum_{i} (\theta^{i})^{2} + \sum_{h < k} (\omega_{k}^{h})^{2}$ is a complete Riemannian metric on OM (indeed p is a Riemannian submersion). Then it follows that g_{OM} and g_{CG} are both complete Riemannian metrics.

REMARK 4.1. – If (M, g) is the standard sphere (S^n, can) , then OM = O(n+1) and $\sum_{i} (\theta^i)^2 + \sum_{h \leq k} (\omega_k^h)^2$ is a biinvariant metric (see n. 6). Since g_{OM} is the product

of two Riemannian metrics with non-negative sectional curvatures, then g_{OM} itself has non-negative sectional curvature. Now, from O'Neill's formula it follows that the Cheeger Gromoll metric g_{CG} has non-negative curvature (see [CG]).

Proposition 4.3. – The metric g_{cg} is induced by the tensor field

$$(4.15) Q_{CG} = \sum_{i} (\theta^{i})^{2} + \frac{1}{1 + \|\xi\|^{2}} \left(\sum_{i} (D\xi^{i})^{2} + \left(\sum_{m} \xi^{m} D\xi^{m} \right)^{2} \right).$$

PROOF. – Let V_{ψ} be the vertical distribution of ψ , then its orthogonal complement H_{ψ} is defined by the equation:

Thus, the restriction of $g_{\scriptscriptstyle OM}$ on $H_{\scriptscriptstyle \psi} \times H_{\scriptscriptstyle \psi}$ agrees with the restriction of the tensor field given by

(4.17)
$$S = \sum_{i} (\theta^{i})^{2} + \sum_{h \leq k} (\xi^{k} d\xi^{h} - d\xi^{h} \xi^{k})^{2} + \sum_{i} (d\xi^{i})^{2}.$$

We observe that:

$$(4.18) \qquad \qquad \sum_{i} \xi^{i} d\xi^{i} = \sum_{i} \xi^{i} D\xi^{i}.$$

From (4.16) and (4.18) we find that:

$$(4.19) d\xi^{i}|_{H_{\psi}} = (1 + \|\xi\|^{2})^{-1} \left(D\xi^{i} + \xi^{i} \sum_{m} \xi^{m} D\xi^{m}\right)|_{H_{\psi}}.$$

Replacing (4.19) in (4.17), we get:

$$S|_{H_w \times H_w} = Q_{CG}|_{H_w \times H_w}$$
.

Since ψ is a Riemannian submersion, we have: $\psi^*g_{\sigma\sigma} = g_{\sigma M}|_{H_{\psi} \times H_{\psi}}$. We thus proved (4.15).

Remark 4.2. – From (4.15) we have a local expression of g_{cg} , namely:

$$(4.20) g_{cc} = g + \frac{1}{1 + \|v\|^2} \Big\{ \sum_{m} (Dv^m)^2 + \Big(\sum_{m} v^m dv^m \Big)^2 \Big\}.$$

Therefore, the metric induced on the fiber is

$$(4.21) g_F = \frac{1}{1 + \|v\|^2} \Big\{ \sum_m (dv^m)^2 + \Big(\sum_m v^m dv^m \Big)^2 \Big\}$$

which is not flat.

If dim M=2, we get

$$(4.22) g_{F} = dr^{2} + (1 + r^{2})^{-1}r^{2}d\alpha^{2},$$

where $v^1 = r \cos \alpha$, $v^2 = r \sin \alpha$ (see [CE], p. 146).

REMARK 4.3. – The Cheeger-Gromoll metric on TM is uniquely determined at the point (p, u) by the following conditions:

$$\begin{array}{ll} g_{\rm CG}(X^{\rm H},\,Y^{\rm H}) = g_{\rm p}(X,\,Y)\,, \\ g_{\rm CG}(X^{\rm v},\,Y^{\rm v}) = (1+\|u\|^2)^{-1} \big(g_{\rm p}(X,\,Y) + g_{\rm p}(X,\,u)g_{\rm p}(Y,\,u)\big)\,, \\ g_{\rm CG}(X^{\rm H},\,Y^{\rm v}) = 0\,, \end{array}$$

where $X, Y \in T_p M$, and X^H, X^P are the horizontal and the vertical lifts of X (see n. 2). It is a «natural metric» on TM in the sense of [KWS].

5. – The group of isometries of g_s .

Let G = I(M, g) denote the group of isometries of (M, g). There are two natural left actions of G on TM and on OM defined by:

(5.1)
$$L_a(q, v) = a(q, v) = (aq, dL_a(v)), \quad a \in G, (q, v) \in TM,$$

$$(5.2) L_a(u) = au = (aq, dL_a(u_1), ..., dL_a(u_n)), a \in G, u \in OM,$$

where dL_a denotes the differential of the map L_a : $M \to M$, $q \to aq$.

Proposition 5.1. - g_s is a G-invariant metric on TM.

PROOF. - First we extend the action (5.2) on $OM \times \mathbb{R}^n$ by setting:

(5.3)
$$L_a(u,\xi) = a(u,\xi) = (au,\xi).$$

The canonical 1-form θ and the Levi Civita connection form ω are G-invariant, i.e.

$$L_a^*(\theta^i) = \theta^i,$$

$$(5.5) L_a^*(\omega_i^i) = \omega_i^i.$$

Since G acts trivially on \mathbb{R}^n , the differential forms $D\xi^i$ are G-invariant. The projection $\psi \colon OM \to TM$ commutes with the actions (5.1) and (5.2):

$$\psi \circ L_a = L_a \circ \psi$$
, $a \in G$.

From (4.11) we have that $\psi^*(g_s)$ is a G-invariant quadratic form. But:

$$\psi^*(L_a^*g_s) = L_a^*(\psi^*g_s) = \psi^*g_s$$
.

Since ψ is a submersion, we obtain for each a in G

$$L_a^*(g_s) = g_s$$
.

This proves the proposition.

REMARK 5.1. – The same arguments hold if we exchange g_s with g_{cg} , hence the Cheeger-Gromoll metric g_{cg} is G-invariant.

Let u_0 be an orthonormal frame, and let σ_{u_0} be the map defined by

(5.6)
$$\sigma_{u_0}: G \to OM, \ a \to au_0.$$

Since the action (5.2) is free, the map σ_{u_0} is an imbedding (see [KN], Vol. I, p. 4). Therefore dim $G \leq \dim OM = \frac{1}{2}n(n+1)$, and the equality holds if and only if (M, g) is isometric to one of the following spaces of constant curvature:

- i) the *n*-dimensional Euclidean space \mathbb{R}^n ;
- ii) the *n*-dimensional sphere S^n ;
- iii) the *n*-dimensional real projective space $\mathbb{R}P^n$;
- iv) the *n*-dimensional hyperbolic space \mathbb{H}^n

(see [KO₂], p. 46). In these cases the group G is transitive on T_1M .

This property is characteristic of two-point homogeneous spaces, in fact we have

Proposition 5.2 ([WO], p. 289). – G is transitive on the spherical tangent bundle if and only if (M, g) is a two-point homogeneous space.

From prop. (5.1) we see that (T_1M, g'_s) is an homogeneous Riemannian space if (M, g) is two-point homogeneous, although (TM, g_s) is never homogeneous unless g_s is flat.

REMARK 5.2. – The orbits of the action (5.1) are M, regarded as the zero section of TM, and the spherical tangents bundles T_rM of radius r, r > 0. Then (TM, g_s) is a Riemannian space of cohomogenity one. The spherical bundles T_rM are the principal orbits of the action, moreover T_rM is a submanifold with constant mean curvature [SA], whereas M is totally geodesic.

REMARK 5.3. – The tangent bundle TG of every Lie group G has a natural Lie group structure. Under the identification $TG = G \times g$ the product is defined by:

$$(5.7) (a, A)(b, B) = (ab, B + Ad(b^{-1})A), a, b \in G; A, B \in \mathbf{g}.$$

If G acts on M, TG acts on the tangent bundle TM as follows:

(5.8)
$$L_{(a,A)}(q,v) = (aq, dL_a(v) + (Ad(a)A)^*|_{aq})$$

where, for each $X \in g$, X^* denotes the induced fundamental vector-field on M. If G is transitive on M, then TG is transitive on TM. Clearly this does not mean that if g is a G-invariant metric on M, then g_s is TG-invariant. In fact, $L_{(e,A)}$ is an isometry of (TM, g_s) if and only if $\nabla_X A^* = 0$ for each vector field X on M.

6. - Tangent sphere bundle.

In section 5 we have already noted that the tangent sphere bundle of a two point homogeneous space endowed with the metric g'_s is a Riemannian homogeneous space. In this section we will investigate the tangent sphere bundle T_1S^n of the standard n-sphere, equipped with the induced Sasaki metric, and we will generalize some of the results proven in [KS].

First we need some general facts concerning the tangent sphere bundle of a Riemannian manifold.

Consider the map $\psi_n \colon OM \to T_1M$ defined by:

$$(6.1) \psi_n: (q, u_1, ..., u_n) \to (q, u_n)$$

(see [CH₁], p. 36). This map is a submersion whose fibers are diffeomorphic with O(n-1), identified to the subgroup of O(n) of the matrices $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, $a \in O(n-1)$.

Then T_1M can be regarded as the quotient space OM/O(n-1) and ψ_n is the natural projection. Now we shall prove the following proposition:

Proposition 6.1. - Let g'_s be the induced Sasaki metric on T_1M , then we have

$$\psi_n^*(g_s') = \sum_i (\theta^i)^2 + \sum_i (\omega_n^i)^2$$
.

PROOF. - First we observe that the following diagram

$$OM \xrightarrow{\psi_n} T_1M \xrightarrow{i} TM$$

$$p \xrightarrow{M}$$

commutes. Hence, using (4.9) and (4.10) we get:

(6.2)
$$(i \circ \psi_n)^*(\pi^* e^i) = p^*(e^i) = \sum_i (\psi_U)_i^i \theta^i,$$

$$(6.3) (i \circ \psi_n)^*(\pi^* \Gamma) = p^*(\Gamma) = \psi_{\overline{\nu}} \omega \psi_{\overline{\nu}}^{-1} - d\psi_{\overline{\nu}} \psi_{\overline{\nu}}^{-1}.$$

Because $(v^i \circ \psi_n)(u) = v^i(u_n) = (\psi_{\overline{v}})_n^i(u)$, we obtain:

$$(6.4) \qquad (i \circ \psi_n)^* (Dv^i) = \sum_j (\psi_v)_j^i \omega_n^j.$$

Since $\psi_n^*(g_s') = \psi_n^*(i^*g_s) = (i \circ \psi_n)^*g_s$ and $\psi_{\overline{\nu}}$ is an O(n)-valued function, the formulae (6.2), (6.3) and (6.4) imply proposition (6.1).

REMARK 6.1. – It is an elementary matter to check that the quadratic form $Q = \sum_i (\theta^i)^2 + \sum_i (\omega_n^i)^2$ is O(n-1)-invariant and Q(X, Y) = 0 if one of X and Y is vertical for ψ_n . Hence Q is basic. As for n. 4, we may characterize g_s' as the only metric on T_1M satisfying $\psi_n^*(g_s') = Q$.

Moreover, from proposition 4.3 it follows that the metric $g'_{\sigma\sigma}$ induced on T_1M by the Cheeger-Gromoll metric is uniquely characterized by the following condition:

$$\psi_n^*(g'_{og}) = \sum (\theta^i)^2 + \frac{1}{2} \sum_i (\omega_n^i)^2$$
.

Proposition 6.2. – (T_1S^n, g'_s) is isometric to the *Stiefel manifold* SO(n+1)/SO(n-1) equipped with a metric induced from a bivariant one on SO(n+1).

PROOF. – Let $O_+(S^n)$ denote the bundle of positive orthonormal frames on S^n . Let u_0 be a point of $O_+(S^n)$ and let p be the canonical projection from SO(n+1) onto S^n , then the diagram

$$SO(n+1) \xrightarrow{\sigma_{u0}} O_{+}(S^{n}) \xrightarrow{\psi_{n}} T_{1}S^{n} \subset i \quad TS^{n}$$

$$\downarrow p \qquad \qquad \pi$$

$$S^{n} = SO(n+1)/SO(n)$$

commutes. Hence T_1S^n is diffeomorphic to the Stiefel manifold SO(n+1)/SO(n-1). Indeed, a point of T_1S^n is given by a pair of orthonormal vectors in \mathbb{R}^{n+1} . To conclude the proof we must check a few facts.

First consider the 1-forms on SO(n+1) defined by:

(6.5)
$$\bar{\theta}^i = \sigma_{u_0}^* \theta^i, \qquad i = 1, ..., n,$$

$$\bar{\omega}_i^i = \sigma_{u_i}^*(\omega_i^i) , \quad 1 \leqslant i < j \leqslant n .$$

FACT 1. $-\{\bar{\theta}^i, \bar{\omega}^h\}$, $1 \le h < j \le n$ are left-invariant and linearly independent 1-forms, therefore they are Maurer-Cartan forms of SO(n+1).

PROOF. - Let SO(n+1) act on $O_+(M)$ (see (5.2)). Then, for each $a,b \in SO(n+1)$, we have:

$$\sigma_{u_0} \circ L_a = L_a \circ \sigma_{u_0},$$

where in the left hand side of (6.7) L_a denotes the left translation of SO(n+1). Then we get

$$L_a^*(\theta)^i = (\sigma_{u_0} \circ L_a)^* \theta^i = \sigma_{u_0}^* L_a^* \theta^i.$$

In the same way,

$$L_a^*(\omega_i^i) = \sigma_{u_a}^* L_a^*(\omega_i^i)$$
.

Since SO(n+1) acts as an isometry group on S^n , the canonical 1-form and the connection form ω are SO(n+1)-invariant. This implies Fact 1.

Taking the structure equations of S^n and making use of $\Omega_j^i = \theta^i \wedge \theta^j$ one may see that $\bar{\theta}^i$ and $\bar{\omega}_j^i$ satisfy the following equations:

$$\begin{cases} d\bar{\theta}^i = -\sum_{h} \bar{\omega}_h^i \wedge \bar{\theta} , \\ d\bar{\omega}_j^i = \bar{\theta}^i \wedge \bar{\theta}^j - \sum_{h} \bar{\omega}_h^i \wedge \omega_j^h . \end{cases}$$

FACT 2. – Let \vec{g} denote the quadratic-form $\sum_{i} (\vec{\theta}^{i})^{2} + \sum_{i < j} (\vec{\omega}_{j}^{i})^{2}$, then $2n\vec{g} = -B$, where B is the Killing form of SO(n+1). Therefore \vec{g} is a biinvariant metric on SO(n+1).

PROOF. -so(n+1) is isomorphic with the Lie algebra of left invariant vector fields on SO(n+1). An explicit isomorphism can be defined taking the dual basis $\{\bar{E}_k, \bar{E}_i^i\}$ of $\{\bar{\theta}^k, \bar{\omega}_i^j\}$, hence any left invariant vector field X can be written in the form:

(6.9)
$$X = \sum_{i} \bar{\theta}^{i}(X) \bar{E}_{i} + \sum_{i < j} \omega_{j}^{i}(X) \bar{E}_{i}^{j}.$$

The isomorphism is given by the mapping:

$$X \rightarrow (A, \xi)$$
,

where

$$(A,\xi) = \begin{pmatrix} A & \xi \\ -{}^{x}\xi & 0 \end{pmatrix}, \quad A = \left(\bar{\omega}_{j}^{i}(X)\right), \quad {}^{x}\xi = \left(\bar{\theta}^{1}(X), ..., \bar{\theta}^{n}(X)\right).$$

Then the Killing form is is given by.

$$B(X,X') = -n \operatorname{tr} (A,\xi) \circ (A',\xi') = -2n \left\{ \sum_{i,j} \bar{\alpha}_i^i(X) \bar{\alpha}_i^i(X') + \sum_i \hat{\theta}^i(X) \bar{\theta}^i(X') \right\}, \quad \text{q.e.d.}$$

Proposition (6.2) follows from Facts 1 and 2, and from proposition (6.1).

REMARK 6.2. – The above proposition implies that T_1S^n with the metric g'_s is a normal Riemannian homogeneous space, therefore (T_1S^n, g'_s) is naturally reductive. A naturally reductive decomposition of so(n+1) is given by

$$(6.10) so(n+1) = \boldsymbol{m} \oplus \boldsymbol{k},$$

where

(6.11)
$$\boldsymbol{m} = \left\{ \begin{pmatrix} 0 & \eta & \xi \\ -r^{2}\eta & 0 & \alpha \\ -r^{2}\xi & -\alpha & 0 \end{pmatrix} = (\eta, \xi, \alpha)/r\xi, r\eta \in \mathbb{R}^{n}, \alpha \in \mathbb{R} \right\},$$

and

(6.12)
$$k = \left\{ \begin{pmatrix} B & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| B \in so(n-1) \right\}.$$

The geodesics of (T_1S^n, g'_s) through the origin $(q_0, u_0) = \psi_n \sigma_{u_0}(e)$ are orbits of 1-parameter subgroups generated by elements X belonging to m. In the two-dimensional case all geodesics are closed (see [KS]). Of course, for $n \ge 3$ this property is no longer true. For instance, the curve

$$\gamma(t) = \exp(tX)$$

where $X = (\eta, \xi, 0)$, $\eta = (0, ..., a, 0)$, $\xi = (0, ..., 0, b)$ and a/b irrational, is a geodesic, dense in a torus contained in T_1S^n , which is not closed.

7. – Deformation of the metric g_s^i .

In section 6 we noted that on the spherical tangent bundle T_1M we may define Riemannian metrics in analogy with section 4 (see remark 6.1). For instance, since θ^n is an invariant differential form under the O(n-1) action on OM, and since θ^n vanishes on the vertical vectors of the fibration ψ_n , we may deduce that the quadratic form

(7.1)
$$Q_t = \sum_{i=1}^{n-1} (\theta^i)^2 + t^2(\theta^n)^2 + \sum_i (\omega_n^i)^2, \quad t \neq 0,$$

induces a metric tensor g_t on T_1M which is uniquely determined by the condition $\psi_n^*(g_t) = Q_t$.

In this section we will show that if (M, g) is a space of constant sectional curvature $\sigma = 1$, then the metric g_t is Einstein when $t^2 = 2/n(n-1)$. Hence $g_s' = g_1$ can be an Einstein metric only if dim M = 2. Indeed (see [KS]), the Riemannian manifold (T_1S^2, g_s') is isometric to the real projective space $\mathbb{R}P^2$ endowed with a metric of constant positive curvature $\frac{1}{4}$.

The Einstein metrics g_i , $t^2 = 2/n(n-1)$, on T_1S^n was defined by S. Kobayashi in [KO₁] as a particular case of Einstein metrics on S^1 -principal bundles. This construction was generalized by G. Jensen ([Je]) to other homogeneous spaces, for instance if M is a Stiefel manifold.

Since ψ_n^* is injective, the Riemann and the Ricci curvature tensors are uniquely determined by their pull-backs on OM. Therefore we will work on OM, leaving the computational details to the reader.

First we put:

$$(7.2) \varphi^i = \theta^i, \varphi^n = t\theta^n, \varphi^{n+i} = \omega_n^i, i = 1, ..., n-1.$$

From now on we shall employ the following ranges of indices:

$$i, j, k, h, \dots = 1, \dots, n-1;$$
 $A, B, C \dots = 1, \dots, 2n-1;$ $a, b, c \dots = 1, \dots, n.$

We consider the following equations:

(7.3)
$$\begin{cases} d\varphi^{A} = -\sum_{B} (\varphi_{t})_{B}^{A} \wedge \varphi^{B}, \\ (\varphi_{t})_{A}^{A} + (\varphi_{t})_{A}^{B} = 0. \end{cases}$$

To compute the differentials $d\varphi^A$ we make use of (7.2) and of the structure equations for the metric g on M. Recall that the structure equations of g can be written as follows:

(7.4)
$$\begin{cases} d\theta^a = -\sum_a \omega_b^a \wedge \theta^b \\ \Omega_b^a = d\omega_b^a + \sum_c \omega_c^a \wedge \omega_b^c \end{cases}$$

The 1-forms $(\theta^a)_{a=1,\ldots,n}$, $(\omega^a_b)_{a,b=1,\ldots,n}$ are respectively \mathbb{R}^n -valued and so(n)-valued differential forms globally defined on OM. Moreover:

$$2\Omega_b^a = \sum_{ad} \bar{R}_{abcd} \theta^c \wedge \theta^d,$$

where \overline{R}_{abcd} must be regarded as real-valued functions on OM related to the Riemann curvature tensor R by the formula:

(7.6)
$$\bar{R}_{abcd}(u) = R|_{p(u)}(u_a, u_b, u_c, u_d), \quad u \in OM.$$

Now, using Cartan's lemma we see that (7.3) uniquely characterize the forms $(\varphi_t)_B^A$: It is a routine matter to deduce the following expression:

$$(7.7) \begin{cases} (\varphi_{t})_{j}^{i} = \omega_{j}^{i} + \frac{1}{2} \sum_{h} \bar{R}_{ijnh} \varphi^{n+h}, \\ (\varphi_{t})_{n}^{i} = -(\varphi_{t})_{i}^{n} = \frac{t^{2} + 1}{2t} \varphi^{n+i} - \frac{1}{2t} \sum_{h} \bar{R}_{ninh} \varphi^{n+h}, \\ (\varphi)_{n+j}^{i} = -(\varphi_{j})_{i}^{n+j} = -\frac{1}{2} \sum_{h} \bar{R}_{hinj} \varphi^{h} + \frac{t^{2} - 1}{2t} \delta_{j}^{i} \varphi^{n} - \frac{1}{2t} \bar{R}_{ninj} \varphi^{n}, \\ (\varphi_{t})_{n+j}^{n} = -(\varphi_{t})_{u}^{n+j} = \frac{t^{2} - 1}{2t} \varphi^{j} + \frac{1}{2t} \sum_{h} \bar{R}_{nhnj} \varphi^{h}, \\ (\varphi_{t})_{n+i}^{n+i} = \omega_{j}^{i}. \end{cases}$$

Let $(\Phi_t)_B^A$ be the forms given by the equation:

(7.8)
$$(\Phi_t)_B^A = d(\varphi_t)_B^A + \sum_C (\varphi_t)_C^A \wedge (\varphi_t)_B^C.$$

Then

$$(7.9) R_t = 2 \sum_{t} (\Phi_t)_B^A \otimes (\varphi^A \wedge \varphi^B)$$

is the pull-back of the Riemann curvature tensor of g_i . The pull-back of the Ricci tensor is given by

(7.10)
$$\varrho_t = \sum_{A,B} (\varrho_t)_{AB} \varphi^A \otimes \varphi^B,$$

where the components $(\varrho_t)_{AB}$ are given by the formula:

$$(2t)_{ij} = \bar{R}_{ij} - \frac{t^4 - 1}{2t^2} \delta_{ij} - \frac{1}{2t^2} \sum_{k} \bar{R}_{nink} \bar{R}_{njnk} - \frac{1}{2} \sum_{kr} \bar{R}_{irnk} \bar{R}_{jrnk},$$

$$(2t)_{in} = \frac{4t - (t - 1)^2 (t + 1)}{4t^2} \bar{R}_{in} - \frac{1}{2t} \sum_{kr} \bar{R}_{irnk} \bar{R}_{nrnk},$$

$$(2t)_{in+j} = \frac{1}{2t} (\nabla_n \bar{R})_{ninj} - \frac{1}{2} \sum_{r} (\nabla_r \bar{R})_{irnj},$$

$$(2t)_{nn} = \frac{t^4 - 1}{2t^2} (n - 1) + \frac{1}{t^2} \bar{R}_{nn} - \frac{1}{2t^2} \sum_{r} \bar{R}_{nrns} \bar{R}_{nrns},$$

$$(2t)_{nn+j} = -\frac{1}{2} \sum_{r} (\nabla_r \bar{R})_{nrnj},$$

$$(2t)_{n+j} = -\frac{1}{2} \sum_{r} (\nabla_r \bar{R})_{nrnj},$$

$$(2t)_{n+j} = -\frac{1}{2} \sum_{r} (\nabla_r \bar{R})_{nrnj},$$

$$(2t)_{n+j} = -\frac{1}{2} \sum_{r} (\nabla_r \bar{R})_{nrnj},$$

with

$$(7.12) \quad d(\bar{R}_{abcd}) = \sum_{m=1}^{n} \left\{ (\nabla_m \bar{R})_{abcd} \theta^m + \bar{R}_{mbcd} \omega_a^m + \bar{R}_{amcd} \omega_b^m + \bar{R}_{abmd} \omega_c^m + \bar{R}_{abcm} \omega_d^m \right\}.$$

If (M, g) is a space of constant curvature λ , (7.11) may be re-written as follows:

(7.13)
$$\begin{cases} (\varrho_t)_{ij} = -\frac{t^4 - 2\lambda(n-1)t^2 + \lambda^2 - 1}{2t^2} \delta_{ij}, \\ (\varrho_t)_{nn} = \frac{t^4 - (\lambda - 1)^2}{2t^2} (n-1), \\ (\varrho_t)_{n+ji \, n+j} = -\frac{t^4 - 2(n-1)t^2 - \lambda^2 + 1}{2t^2} \delta_{ij}. \end{cases}$$

where the components that do not appear in (7.13) vanish identically on OM. From (7.13) we obtain

PROPOSITION 7.1. – Let (M, g) be a space of constant curvature λ , then (T_1M, g_t) is an Einstein space if either $\lambda = 1$, and $t^2 = 2((n-1)/n)$ or else $\lambda = 0$ and n = 1, $t^2 = 1$.

Naturally, the latter case is trivial.

REMARK 7.1. - Equation (7.1) may be written in the form

(7.14)
$$Q_t = \sum_{n} (\theta^a)^2 + \sum_{i} (\omega_n^i)^2 + (t^2 - 1)(\theta^n)^2.$$

Therefore,

$$(7.15) g_t = g_s' + (t^2 - 1)\gamma,$$

where γ is the 1-form induced on T_1M by θ^n . Since $\psi_n^*(\gamma) = \theta^n$, we get

(7.16)
$$\gamma|_{(q,v)}(X) = g_q(d\pi(X), v), \quad X \in T_{(q,v)}(T_1M).$$

Then γ is the restriction to T_1M of the Liouville form of TM (see [BE], p. 21), i.e. γ is the canonical contact form on T_1M (see [CH₂] or [BL]).

Thus the Einstein metric on T_1S^n defined by Kobayashi can be obtained by deforming the induced Sasaki metric g'_s along the direction of the canonical contact form of T_1S^n .

Clearly the projection $\pi\colon T_1S^n\to S^n$ is no longer a Riemannian submersion. This is the price to be paid for an Einstein metric. In context, see Calabi [CA] where the construction of Kähler metrics on holomorphic vector bundles is discussed.

BIBLIOGRAPHY

- [BBG] E. BERGER R. BRYANT P. GRIFFITHS, The Gauss equations and rigidity of isometric embeddings, Duke Math. Journal, 50 (1983), pp. 803-892.
- [BE] A. L. Besse, Manifolds all of whose Geodesics are Closed, Springer-Verlag: Berlin, Heidelberg, New York (1978).

- [BL] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., no. 509, Springer-Verlag: Berlin, Heidelberg, New York (1976).
- [CA] E. CALABI, Métriques kähleriennes et fibrés holomorphes, Ann. Sci. Norm. Sup., 12 (1979), pp. 269-294.
- [CE] J. CHEEGER D. G. EBIN, Comparison Theorems in Riemannian Geometry, North-Holland Publ. Company, Amsterdam (1975).
- [CG] J. CHEEGER D. GROMOLL, On the structure of complete manifolds of nonnegative curvature, Ann. Math., 96 (1972), pp. 413-443.
- [CH₁] S. S. Chern, Topics in Differential Geometry, Lecture Notes, Institute for Advanced Study, Princeton (1951).
- [CH₂] S. S. CHERN R. S. HAMILTON, On Riemannian metrics adapted to three-dimensional contact manifolds, Arbeitstagung Bonn 1984 Proceedings, Lecture Note in Math., no. 1111, Springer-Verlag: Berlin, Heidelberg, New York (1985).
- [DO] P. Dombrowski, On the geometry of the tangent bundle, J. reine und angew. Math., 210 (1962), pp. 73-78.
- [JE] G. Jensen, Einstein metrics on principal fibre bundles, J. Diff. Geom., 8 (1973), pp. 599-614.
- [KN] S. Kobayashi K. Nomizu, Foundations of Differential Geometry, Intersc. Publ., New York (1963 e 1969).
- [KO₁] S. Kobayashi, Topology of positively pinched Kähler manifolds, Tôhoku Math. J., 15 (1963), pp. 121-139.
- [KO₂] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag: Berlin, Heidelberg, New York (1972).
- [KS] W. KLINGENBERG S. SASAKI, On the tangent sphere bundle of a 2-sphere, Tôhoku Math. J., 27 (1975), pp. 49-56.
- [KW] O. KOWALSKI, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. reine und angew. Math., 250 (1971), pp. 124-129.
- [KWS] O. Kowalski M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundle—a classification, preprint, Prague (1986).
- [SA] A. Sanini, Applicationi armoniche tra fibrati tangenti unitari, Rend. Sem. Mat. Univ. Pol. Torino, 43 (1985), pp. 159-170.
- [SI] I. M. Singer, Infinitesimally homogeneous spaces, Comm. on Appl. and Pure Math., 13 (1960), pp. 685-697.
- [YI] K. Yano S. Ishihara, Tangent and Cotangent Bundles, M. Dekker Inc., New York (1973).
- [WO] J. A. Wolf, Spaces of Constant Curvature, Publish or Perish, IV edition, Berkeley (1977).