Riemannian Metrics on Tangent Bundles (*).

E. Musso - ¥. TRIOERRI

Summary. — Some « natural » metrics on the tangent and on the sphere tangent bundle of Rie-
mannian maonifold are constructed and studied via the moving frame method.

1. — Introduction.

The tangent bundle T7M of a Riemannian manifold (M, g) admits a natural
Riemannian metrie: the Sasaki metric g,.

In order to define g, we consider two veetors X and Y tangent to TM at the
point (p, v). Suppose that X and Y are tangent at the time ¢ = 0 to the curves
&(t)y = (a(t), V()) and B(¢) = (B(¢), W(t)) respectively. Denote with DV /dt and DW/dt
the covariant derivatives of the vector fields V(¢) and W(¢) along «(t) and (¢}, then g,
is defined by: :

)

gs is perhaps the most natural metric on 7M depending only on the Riemannian
structure on M, but it is extremely rigid. For instance, g, has constant sealar eur-
vature if and only if ¢ is flat. Therefore, the Sagaki metric is locally homogeneous,
or loecally symmetrie, or Einstein only if it is flat (see n. 3). But, if we consider TH
as a vector bundle associated with OM we may easily construct other interesting
metrics on 7M.

In section 4 we discuss this general construction and we shall prove that the
Sasaki metric can be obtained in this way. We also give an explicit expresgion of a
complete metric goe introduced by CHEEGER and GROMOLL in [CGT.

If (M, g) is the standard n-sphere, the metric go has non negative curvature
and 87 is the soul of (78, g¢e).
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(1.1) Galw, (X, ¥) = g,((0), (0)) + .%(
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In section 5 we study the spherical tangent bundle 7' M = {(p, v) € TM/|v] = 1}
endowed with the induced Sasaki metric g.. It is interesting to observe that
(T, M, g;) is an homogeneous Riemannian space if (M, g) is a rank one symmetric
space (see m. 5).

T, M can be regarded as an hypersurface of T'M, thus the Levi Civita connection
and the curvature tensor of g, could be computed using Gauss equation. Instead,
we prefer to identify 7, M with a quotient of OM and make use of the moving
frame method (see n. 6). In section 6 we study the spherical tangent bundle T, 8"
of the standard m-sphere generalising the results obtained in [KS].

Section 7 deals with deformations of the metric g;.. We prove that the Einstein
metric defined on T,8" by S. KoBavAsHI ([KO,], [Je]) ean be obtained deforming g;
along the direction of the canonical contact form on T8

We are indebted to O. KowAaLSKI for the remark 4.3 and several useful discussions.

2. — The Sasaki metric.

Let (M, g) be an n-dimensional Riemannian manifold with tangent bundle TM
and natural projection m: TM — M,

A curve §: I —~TM,t — (y(t), V(1)) is horizontal if the vector field V(¢) is parallel
along y = moy. A vector on TM is horizontal if it is tangent to an horizontal curve,
or wvertical if is tangent to a fiber.

Let y: I - M, t - y(t) be a curve through the point p = p(0).

For each tangent veector v € T, M there exists a unique horizontal eurve y¥: I —
—> T'M through (p,v) which projects onto y. This curve is defined by:

yA(t) = ('}’“)7 V(t)) ’

where V(t) is the parallel vector field along y with V(0) = ». The curve »¥ is called
an horizzontal lift of y.

The horizontal lift of a vector field X on M is the unique vector field X# on T M
which is horizontal and which projects onto X.

Let (e, ..., ¢,) be an orthonormal frame field defined on the open set U c M,
and let (%2, ..., 2") be a local coordinate gystem on U. We define a local coordinate
system (2%, ..., o7, 9%, ..., 97) on m~{U) as follows:

(2.1) @i (p, v) = 2*(p), vi(p, v) = v*, (p,0) e (V) ,
where v = Y vie(p). We denote with I'; the local 1-forms defined by:

1

(2.2) Ve, = 3 T X)e,.
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It is easy to verify that the horizontal lift X¥ of a vector field X on M is given, in
terms of the local coordinate system above, as follows:

~

{2.3) X8=X—>THX)v = .
7 o'
The vertical lift XV is defined by:
0
vV __ i
(2.4) XV = ;X el

Horizontal and verfical vectors generate two complementary distributions on
TM: the horizontal distribution and the vertical distribution. Those two distributions
are orthogonal with respect to g,.

From (1.1) we obtain:

(2.5) { g,( X", YH) = g (X7, Y7) = g(X, ¥)om,

gs(XHy Yry=0,

for each pair of vector fields X and Y on M.

Clearly (2.5) uniquely determines the Sasaki metric. Then, according to (2.5)
we have that (e7,...,¢7, €], ..., ¢;) is an orthonormal frame field on =~*U) and its
dual eoframe is given by:

(2.6) wrely ..., a*er, Dol .., Do,
where ¢ denotes the 1-form defined by e'(e,) = 6, and Dv’ is given by

(2.7) Dol = dv' + Y v'a™T}-).
i

From (2.6) and (2.7) we have the following

ProrosiTiON 2.1. — The Sasaki metric g, can be written as follows:
(2.8) 9o = 2 a*(e!)? + 2 (Dri).
@ i

REMARK 2.1. — Observe that the metric induced on the fiber #~(p) is the Euclidean
metric. In fact (2.6) and (2.7) imply that the restriction of g, on #~(p) is given by
the quadratic form 3 (dv)®. Hence g, is the only metric on TM satisfying the
following conditions: °

a) horizontal and vertical distributions are orthogonal;
b) the metric induced on the fibers is Fuclidean;

¢) the projection x is a Riemannian submersion.
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M

The fibers are also totally geodesic ([BE], p. 47).

REMARK 2.2. — Let (¢, ..., ¢,) be an orthonormal frame defined on the open set
V¢ M, and suppose that

{2.9) 6;= 2 ale; on UNV:
7

(2.10) e;" = > (ajom)e], ¢ =3 (alom)e] on Y UNYV).
j

This implies that T M admits a natural O(n) x O(n) structure. Since O(n) X O(n) is a
closed subgroup of U(2n), we can also deduce that THM admits an almost complex
structure J compatible with g,. (For more details on the almost Hermitian manifold
(I'M,g,,J) see [DO], [YI] and [BE], pp. 46-48).

3. — The curvature of the Sasaki metric.

The curvature of g, has been computed by several authors with different methods
(see [KW], [Y1]). Proposition (2.1) permits the use of the moving frame method
and of the strueture equations of E. CARTAN.

First we put

(3.1) gt =m¥e?, @ =Dv, i=1i..n,

and we observe that (¢, ..., ¢**) is an orthonormal coframe field. The local 1-forms
@, of the Levi Civita connection of g, are given by:

dg* = — gtpﬁ/\w",

vi+ i =0.

(2.2)

The curvature forms &+

< ean be computed by using the formula:

(3.3) O, = dos + 2 ga gl -
¢
From (3.2) and (3.3) we find:
207 =2a*I} 4+ 30" Rme™t,
I,m

ntj

(3‘4) 2¢f‘t+i = g(pz ::\zl /UmRilmi(pl 3
Wy

nt+i s I3
Ppss = T -rz .
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In the formulae (3.4) and (3.5) we have written RB,,,, (V,RB)i;in... instead of
Riimont, (V,B)ijimom ..., a0d Ry (V. R)ijim ... denote the components of the cur-
vature tensor B and its covariant derivative VR with respect the local frame

(61 .evy On)-
Now we may state the following lemma:

LEMMA 3.1. — Let T be the scalar curvature of g, then:
(3.6) -E = T0W — % z R”mq_R“qu)m'vl .
where T 18 the scalar curvature of g.

PrOOF. — Let R denote the curvature tensor of g,. Then its components with
respect to the local frame (H,, ..., H,,) = (65, ..., €%, €}, ..., &) are given by:

(3.7) B isep = 204(Ho, Bp) .

Using (3.5) we find:

5 3
Biy= Ry — % z BjmeRijigom0?,

Img
Rinysinti= % 2 RigniRiqs o™ 0",
Img

Rn+i ntintindi — 0.

Then (3.6) follows.
The next proposition is an immediate consequence of (3.6).

ProrosITION 3.2. — (TM, g,) has constant scalar curvature if and only if (M, g)
18 locally Buclidean.

COROLLARY 3.3. — (T'M, g,) is locally homogencous if and only if g, is locally
Buclidean.

In particular (see [KW]) (T M, g,) is locally symmetric if and only if g, is locally
Eueclidean.



6 E. Musso - ¥. TRICERRI: Riemannian metrics on tangent bundles

Corollary 3.3 is still true assuming (TM,g.) curvature homogeneous (see [SI]).
In fact this assumption implies that the scalar curvature is constant.

COROLLARY 3.4. — The Sasaki metric is Finstein if and only if it is locally Buclidean.

4. — Other metrics on tangent bundles.
Let y: OM XR»— TM be the map defined by:
(4.1) pi () > (g, T&u)

where w = (g, %, ..., %) and & = (&4 ..., &"). o defines a submersion whose fiber
are diffeomorphic to O(n). This map is the canonical projection onto 7TM regarded
as the vector bundle with standard fiber R associated to O(M). Therefore, TM is
identified with OM xR»/O(n), where the orthogonal group O(n) acts on the right
on OM as follows:

42)  (w&a=(ua,a718) = (g, Saiuy, .., T 6huy, Taif, o, Taid).

Let now @ be a symmetric, semi-pogitive defined, tensor field of type (2, 0) and
rank 2n on OM xR* Moreover, we assume that @ is basie for y. This mewns that @
is O(m)-invariant, and Q(X, ¥) = 0 if X is tangent to a fiber of .

Under these assumptions, there is a unique Riemannian metric g, on 7'M such
that *(g,) = @. This metric is determined by the formula

gu{(m,v)(X7 Y) == Q‘(u,é)(xli Y’) H

where (u, &) belongs to the fiber yi(p,v), X and Y are elements of 7' . (TM),
X', Y’ are tangent vectors of OM xR~ at (u, £) with dy(X') = X and dyp(Y') =Y.

We observe that is easier to assign @ than to define directly g, on TM since
OM xR=» is parallelizable.

Let 0 = (67, ..., 07) denote the canonical 1-form on OM, and let p be the natural
projection OM > M.

Then, according to the definition we get:

(4.4) apu(X) = 3 0(X)usy  w = (g, s, .ory Un) -

If we denote with w = (]) the so(n)-valued differential form defined by the Levi
Civita connection of ¢, then we find that:

G, i=1,..;n; o, T<h<kb<n; dgt, i=1,..,%n,

is an absolute parallelism on OM xR~
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‘We recall two facts:

(4.5) R3(0°) = 3 (a™)50",
h
(4.6) R¥(}) = 3 (a7 wyaf,
hk

for each a € O(n). Moreover, the forms o’ are related to the local 1-forms I'; defined
in (2.2) as follows:

(4.7) w; = % (¥o ) d(yo); + % (97 (™ %) (a)] -
v, denotes the O(n)-valued function on p~%U) given by:

(4.8) (Yo) i) = g(:lotns %s) -

(4.7) can also be written in matrix form as follows:

(4.9) ® = yg' dyo + v7 (@*yo .

Finally, it will be useful later on to note that:

(4.10) pret =2 (po)it’.

i
LEMMA 4.1, — The vertical distribution of vy is defined by:
gi=0,
D§i=d§i+25"w}'=0 .
3

ProOOF. - Let X be a vertical vector of v, then X is tangent at { = 0 to a curve
of the form:

a(t) = (ue*4, e=*4§), Ae€so(n).

Then X = ¢(0) = A*|,— A&, A* is the fundamental vector field on OM generated
by A. It follows that

and
DE(X) = — B (Af) + T Eoj(dd) = — T AjE + T A8 =0.

The converse is obvious.
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In particular we see that any basic symmetric form ¢ on OM xR* is a second
order polynomial in 6° and D& whose coefficient yield @ invariant under the O(n)-
action. '

For instance, consider

?

(e.11) Q.= 2 (6 + E@ (D&)2.
ﬁgm (4.2) and (4.6) we find: |
(4.12) | RHDE) = 3 ()i DE"
Hence @, is basic (see (4.5)).
PROPOSITION 4.2. — The metric induced by the quadratic form Q, is the Sasaki metric.

Proor. ~ First, we observe that the diagram

OMXR — s TM

Lo, b

oM L. u
commutes. Then, using (4.7) we get:

(4.13) PHDv') = 3 (po)iDE .
2
Because (4.10) and because yy is O(n)-va,lued, we see that y*(g,) = ¢..
Consider now the quadratic form :

(4.14) Gou = 2, (05 + 3 ()" + 2 (d&))".
i n<k 7
Jon 18 a metric defined on OM xR*; moreover, from (4.5), (4.6) and (4.2), we find
that O(n) is a group of isometries for gg.
Hence the metric go), projects onto a unique metric goe on TM so that the
projection p becames a Riemannian submersion. gee is the metric of Cheeger and
Gromoll (see [CG]). :

If we assume that g is complete, we have that > (6)°-+ > (»?)® is a complete
i <k

Riemannian metric on OM (indeed p is a Riemannian submersion). Then it follows
that goy and gee are both complete Riemannian metrics. '

REMARK 4.1. - If (M, g) is the standard sphere (8%, can), then OM = O{n 4 1)

and 3 (0°)*+4 3 (0")? is a biinvariant metric (see n. 6). Sinee goy is the product
i h<k
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of two Riemannian metrics with non-negative sectional curvatures, then g, itself
has non-negative sectional curvature. Now, from O’Neill’s formula it follows that
the CHEEEGER GROMOLL metric g¢q has;non-negative curvature (see [CG]).

ProPOSITION 4.3. — The metric gq; is induced by the tensor field

(4.18) Qoe = Z( R T 1+ té;“z (z (Dg?) (% Em_Dé:m)Z) '

k3

Proor. - Let Vw be the vertical distribution of y, then its orthogonal complement
H, is defined by the equation:

(4.16) ot = EFdEr — EMAER.

Thus, the restriction of go, on H, XH, agrees with the restriction of the tensor
field given by

(4.17) = E (EvdE» — dEr g2 4 > (dE9)2.

e 0¥ 2 ;
We observe that:
(4.18) : ; EdEl = ; & DE,
From (4.16) and (4.18) we find that:
(4.19) 08, = (LF [€]2)7 (D€ + & 3 £"DE")
Replacing (4.19) in (4.17), we get:

Slayx 7= Qusla,xa,

Since ¢ is a Riemannian submersion, we have: y*g..= g,,ly xxz - We thus
proved (4.15).

REMARK 4.2. — From (4.15) we have a local expression of gos, namely:
1
. — m)2 mgpm ey,

Therefore, the metric induced on the fiber is

1

]_:—?:W{z (domy2 (z o™ dvm) }

(4.21) gr =

which is not flat.
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If dim M = 2, we get
(4.22) gy = ar? 4 (14 r2)~irade?,
where v!= 7 cos o, v*= rsin o (see [CE], p. 146).

REMARK 4.3. — The Cheeger-Gromoll metric on TM is uniquely determined at
the point (p, #) by the following conditions:

gCG(XH, YH) == g”(X, Y) ’

(4.23) Joo( X7, Y7) = (L1 + Ju]?)(g,(X, Y) + 9x(X, w) g,(Y, w)) ,
Gl X2, Y7) =0,

where X, Ye T, M, and X¥, XV are the horizontal and the vertical lifts of X (see
n. 2). It is a «natural metric» on TM in the sense of [KWS].

5. — The group of isometries of g,.

Let G = I(M, g) denote the group of isometries of (M, g). There are two natural
left actions of G on TM and on OM defined by:

(5.1) Ly(g, v) = a(q, v) = (aq, dLy(v)), @a€6, (g,0)eTM,
(6.2) - Lyu) = au = (aq, dL,(4y), ..., dL(u,)), @€, ueOM,

where dL, denotes the differential of the map I,: M — M, q — aq.
ProposiTION 5.1. - g, is a G-invariant metric on TM.
ProoF. —~ First we extend the action (5.2) on OM xXR* by setting:
(5.3) L.(u, &) = a(u, &) = (au, &).
The canonical 1-form 6 and the Levi Civita connection form o are G-invariant, i.e.

(5.4) . LEOYH =6,
(6.5) Li(w}) = of.

Since @ acts trivially on R, the differential forms D' are G-invariant. The projec-
tion yp: OM — TM commutes with the actions (5.1) and (5.2):

yoL,= L.y, acl.
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From (4.11) we have that y*(g,) is a G-invariant quadratic form. But:
v¥(L3g,) = Li(v*g) = v*g..
Since v is a submersion, we obtain for each 4 in ¢
Lig) =g
This proves the proposition.

REMARK b5.1. — The same arguments hold if we exchange g, with g, hence the
Cheeger-Gromoll metric gq, is G-invariant.
Let u, be an orthonormal frame, and let ¢, be the map defined by

(5.6) Gyt G — OM, a— au,.

Since the action (5.2) is free, the map ¢, is an imbedding (see [KN], Vol. I, p. 4).
Therefore dim G<dim OM = in(n + 1), and the equality holds if and only if (3, g)
is isometric to one of the following spaces of constant curvature:

i) the n-dimensional Euclidean space R=»;

ii) the n-dimensional sphere S#;

)
iii) the m-dimensional real projective space RP=;
)

iv) the n-dimensional hyperbolic space H~

(see [KO,], p.- 46). In these cases the group @ is transitive on 7, M.
This property is characteristic of two-point homogeneous spaces, in fact we have

PROPOSITION 5.2 ([WO], p. 289). — G is transitive on the spherical tangent bundle
if and only if (M, g) is a two-point homogeneous space.

From prop. (5.1) we see that (T,M,g,) is an homogeneous Riemannian space
if (M, g) is two-point homogeneous, although (T'M, g,) is never homogeneous unless g,
is flat.

REMARK 5.2, — The orbits of the action (5.1) are M, regarded as the zero sec-
tion of 7M, and the spherical tangents bundles 7,M of radius r, # > 0. Then
(T'M, g,) is a Riemannian space of cohomogenity one. The spherical bundles 7, M are
the prinecipal orbits of the action, moreover 7, M is a submanifold with constant
mean curvature [SA], whereas M is totally geodesic.

REMARK 5.3. — The tangent bundle TG of every Lie group @ has a natural Lie
group structure. Under the identification TG = @ xXg the product is defined by:

(5.7) (a, 4)(b, B) = (ab, B+ Ad(b)A), a,beG; A,Beg.
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If G acts on M, TG acts on the tangent bundle 7M as follows:
(5.8) Lo (g, ) = (a4, dLo(v) + (Ad(a) A)*],q)

where, for each X € g, X* denotes the induced fundamental vector-field on M. If ¢
is transitive on M, then T@ is transitive on T'M. Clearly this does not mean that
if ¢ is a G-invariant metric on M, then g, is T'G-invariant. In fact, L, , is an
isometry of (1M, g,) if and only if V,4*= 0 for each vector field X on M.

6. — Tangent sphere bundle.

In gection 5 we have already noted that the tangent sphere bundle of a two point
homogeneous space endowed with the metric g; is & Riemannian homogeneous space.
In this section we will investigate the tangent sphere bundle 7,8 of the standard
n-sphere, equipped with the induced Sasaki metric, and we will generalize some of
the results proven in [KS]. '

First we need some general facts concerning the tangent sphere bundle of a

Riemannian manifold.
Consider the map y,: OM — T, M defined by:

(6.1) Yai (G Uy oeey Uu) = (¢ Uy)

(see [CH,], p. 36). This map is a submersion whose fibers are diffeomorphic with

O(n — 1), identified to the subgroup of O(n) of the matrices (g (1)), acO(n—1).

Then T, M can be regarded as the quotient space OM/O(n— 1) and %, is the
natural projection. Now we shall prove the following proposition:

PROPOSITION 6.1. — Let g, be the induced Sasaki metric on T, M, then we have
Yilgs) = 2 (09 + 3 (@)
Proor. — First we observe that the following diagram

—>T.M C——> T™

\/

commutes. Hence, nging (4.9) and (4.10) we get:
(6.2) (Topa)* (m*ef) = p*(e?) = 3 (pu);’,
3
1

(6.3) (foy,)* (a* ') = p*(I') = yroyz' — dyryz.
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Because (v'oy,)(u) = v'(4,) = (yy)a(%), We obtain:

(6.4) (foypa)* (Dv') = 3, (yo)je), -

3
Since yi¥(g)) = yi(i*g,) = (ioy,)*g, and vy, is an O(n)-valued function, the formulae
(6.2), (6.3) and (6.4) imply proposition (6.1).

REMARK 6.1. — It is an elementary matter to check that the quadratic form
Q= X (04 > (@) is O(n—1)-invariant and @(X, ¥) = 0 if one of X and Y is

% i
vertical for y,. Hence @ is basic. As for n. 4, we may characterize g, as the only
metric on 7, M satistying y*(g)) = Q.
Moreover, from proposition 4.3 it follows that the metric g;G induced on 7, M
by the Cheeger-Gromoll metric is uniquely characterized by the following condition:

R = 2 (002 + 1 X (0h).

PrOPOSITION 6.2. — (T,8% ¢,) is isometric to the Stiefel manifold SO(n -+ 1)/
/80(n — 1) equipped with a metric induced from a biivariant one on SO(n - 1).

Proor. — Let O (8") denote the bundle of positive orthonormal frames on 8=

Let u, be a point of O (S*) and let p be the canonieal projection from SO(n 1)
onto S*, then the diagram

8 = 80(n 4 1)/80(n)

commutes. Hence 7', 8» is diffeomorphic to the Stiefel manifold SO(n +1)/80(n—1).
Indeed, a point of 7,8" is given by a pair of orthonormal vectors in R**%. To
conclude the proof we must check a few facts.
First consider the 1-forms on SO(n 1) defined by:

(6.3) 0t = o% 0°, i=1,.,n,

(6.6) o = ok (o), l<i<j<n.

Facr 1. - {0, &}, 1<h < j<wn are left-invariant and linearly independent 1-forms,
therefore they are Maurer-Cartan forms of SO(n - 1).
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PRrOOF. — Let 80(n + 1) act on O, (M) (see (5.2)). Then, for each a,be S0(n + 1),
we have:

(6.7) Oy, oL, = LaOGuN

where in the left hand side of (6.7) L, denotes the left franslation of 8O(n 1 1).
Then we get

L¥0) = (0.,0La)*6" = o}, L¥0".
In the same way,

L) = o3, Lis(w)) -
Since SO(n 1) acts as an isometry group on §8¢, the canonical 1-form and the
connection form w are SO(n 4 1)-invariant. This implies Fact 1.
Taking the structure equations of S* and making use of Q= ‘A6’ one may
see that §" and @; satisfy the following equations:

i = — 3N

h
(6.8) At = NG — 3 dip ol .
h

Facr 2. — Let § denote the quadratic-form 3 (§)*+ 3 (@)%, then 2nj = — B,
[ i<j
where B is the Killing form of SO(n +1). Therefore § is & biinvariant metrie on
80{n 4 1).

PROOF. — so(n - 1) is isomorphic with the Lie algebra of left invariant vector
fields on SO(n --1). An explicit isomorphism can be defined taking the dual basis
{E,, B} of {§*, ®}}, hence any left invariant vector field X can be written in the
form:

(6.9) X=30X)E, + 3 oi(X)E!.

i i<g
The isomorphism is given by the mapping:
X (4,5,

where

A -
(4, §)=(_,E (f), A= (@YX)), &= ©OX),..,00X)).
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Then the Killing form is is given by.

B(X, X') = —ntr (4, £)o(d’, &) = — 2%{ 3 BHX) BHX) ) Gf(X)G‘(X’)}, g.e.d.

Proposition (6.2) follows from Facts 1 and 2, and from proposition (6.1).

REMARK 6.2. ~ The above proposition implies that 7', 8* with the metric g, is a
normal Riemannian homogeneous space, therefore (T,8%, g,) is naturally reductive.
A naturally reductive decomposition of so(n 4 1) is given by

(6.10) soln+1)=mDEk,
where
0 n &
(6.11) m =1~ 0 o = (n, § )[*¢, e R*, ae Ry,
— 7 —a 0
and
B 0 0
(6.12) E=3{{0 0 ©0]/Beso(n—1);.
¢ 0o 0

The geodesics of (T,8", g,) through the origin (q,, ue) = Yn0y () are orbits of 1-pa-
rameter subgroups generated by elements X belonging to m. In the two-dimensional
case all geodesics are closed (see [KS]). Of course, for n>3 this property is no
longer true. For instance, the curve

y(t) = exp (1X)

where X == (g, §,0), "y = (0, ..., a,0),7& = (0,...,0,b) and a/b irrational, is a geo-
desic, dense in & torus contained in 7,8% which is not closed.

7. — Deformation of the metric g..

In section 6 we noted that on the spherical tangent bundle 7, M we may define
Riemannian metrics in analogy with section 4 (see remark 6.1). For instance, since
6 is an invariant differential form under the O(n — 1) action on OM, and since f*
vanishes on the vertical vectors of the fibration y,, we may deduce that the
quadratic form

n—1

(7.1) Qi= 3 (0924 (672 + 3 (), 10,

e
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induces a metric tensor g, on 7, M which is uniquely determined by the condition
"Pf(gt) = Q. .

In this section we will show that if (M, g) is a space of constant sectional cur
vature ¢ = 1, then the metric ¢, is Einstein when 2= 2/n(n — 1). Hence g,= g,
can be an Einstein metric only if dim M = 2. Indeed (see [KS]), the Riemannian
manifold (7,82 ¢,) is isometric to the real projective space RP? endowed with a
metric of constant positive curvature .

The Einstein metries g,, 2= 2/n(n — 1), on T, 8* was defined by 8. KOBAYASHI
in [KO,] as a particular case of Hinstein metrics on S!-principal bundles. This
construction was generalized by G. JENSEN ([Je]) to other homogeneous spaces,
for instance if M is & Stiefel manifold.

Since y is injective, the Riemann and the Ricei curvature tensors are uniquely
determined by their pull-backs on OM. Therefore we will work on OM, leaving
the computational details to the reader.

First we put:

(7.2) pi=0, oe*=t", oe=wi, i=1,..,n—1.
From now on we shall employ the following ranges of indices:
Wik hyn=1,..c,n—1; A,BC...=1,.,20—1; a,bc...=1,...,n.

We consider the following equations:

do* = — g (p)ang®,

(7.3)
(ps + (97t)§ =0.

To compute the differentials dg* we make use of (7.2) and of the structure equa-
tiong for the metric g on M. Recall that the structure equations of ¢ can be written
as follows:

ao* = — > oAb

74 0 = dof + 3 wihei.
¢

a

The 1-forms (6%),.; .. .1 (@5)gsey,...,. 2T respectively Re-valued and so(n)-valued
differential forms globally defined on OM. Moreover:

(7.5) 205 =3 Ra. 0°\6%,
ad
where R, , must be regarded as real-valued functions on OM related to the

Riemann curvature tensor B by the formula:

(7'6) Rabcd(%) = Rlp(n)(uw Upy U,y ud) H Uue OM .
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Now, using Cartan’s lemma we see that (7.3) uniquely characterize the forms (g,):
It is a routine matter to deduce the following expression:

(‘Pt);: = w; ’21‘ ; Riinh¢n+h7

i 241 1 —
((pt)ﬂ = ((Pt)? = 2t (P’H_' - ’— z Rm’nh ¢n+h y
(7.7) i nti__ 1 5 R
. (@hpas = — (@)% Qtanq) ,
2—1

(@onts = — (@™ = —— <p"+;z~t§1?nm<p",

(‘pt):i; = C()] .

Let (®,); be the forms given by the equation:

{7.8) (D)3 = dlpy)s - g (@) (95 .
Then
(7.9) R, =23 (D)i® (¢*Ng®)

is the pull-back of the Riemann curvature tensor of g,. The pull-back of the Ricei
tensor is given by
(7.10) 0= g(et)Aa¢A®¢B,

>

where the components (g;) .z are given by the formula:

*t—1
(04)ii ——Rﬁ—"é’tr z'a'“2t2

-1+ 5 los 5
(Q t)m - 4t2 Rz’n "_Zt % RirnkRmnk ]

z RmnkRmnk 2 z -Rirnk Ra‘rnk ’
kr

l\'?“..n

(@8)inss =

(V R)Mm %‘ z (V?'R)z‘fﬂj b2
(7.11) !

-1 1 =
(@)un = —55— (n—1) +';Rnu -

(Qt nnti = z V R mn:,

7T

(0 )nts nts = {(” —2)—

2t2 Z -Rnrﬂs RnIBS )

(12 —1)*
212

z Rnrm Rm‘m + % z Rrsm Rrsm ’

bou + 353

with
i

(7.12) d abcd == Z { V -R abch + Rmbcdwa + Ramcdwb +Rabmdwc + Rabcmwa}
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If (M, g) i3 a space of constant curvature 4, (7.11) may be re-written as follows:

#—2A(n—1)82 4 A2 —1
(00 = — ( 2t)2 + 0.5,
*— (A1)
(7.13) (Qon = g (0 1),
t—2(n—1)12 -2 1
(0)ntiints = — ( 222 + is .

where the components that do not appear in (7.13) vanish identically on OM.
From (7.13) we obtain

PROPOSITION 7.1. — Let (M, g) be a space of constant curvature 2, then (T, M, g,)
is an Hinstein space if either A =1, and ©*= 2((n— 1)/n) or else 1 =0 and n =1,
t2=1.

Naturally, the latter case is trivial.

ReMARK 7.1. — Equation (7.1) may be written in the form

(7.14) Q=209+ Z (wn)? + (£ —1)(6™)?.
Therefore,
(7.15) gi=g.+ (2—1)y,

where y is the 1-form induced on 7, M by 6. Since yi(y) = 0 we get

(7.16) Yf(a,v)(X) = g(dn(X),»), Xe Ti(Ti M)«
Then y is the restriction to T; M of the Liouwille form of TM (see [BE], p. 21),
i.e. y is the canonical contact form on T, M (see [CH,] or [BL]).
Thus the Einstein metric on T, 8 defined by Kobayashi can be obtained by deform-
ing the induced Sasaki metric g, along the direction of the canonical contact form of T, 8™
Clearly the projection sz: 7;,8" — 8* is no longer a Riemannian submersion. This
is the price to be paid for an Einstein metric. In context, see CALABI [CA] where
the construction of Kihler metries on holomorphic veetor bundles is discussed.
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