Riemannian Metrics on Tangent Bundles (*).

E. Musso - F. Triomrri

Summary, - Some "natural» metrics on the tangent and on the sphere tangent bundle of Riemannian manifold are constructed and studied via the moving frame method.

1. -- Introduction.

The tangent bundle $T M$ of a Riemannian manifold, $(M, g$) admits a natural Riemannian metric: the Sasaki metric g_{s}.

In order to define g_{s} we consider two vectors X and Y tangent to $T M$ at the point (p, v). Suppose that X and Y are tangent at the time $t=0$ to the curves $\bar{\alpha}(t)=(\alpha(t), V(t))$ and $\bar{\beta}(t)=(\beta(t), W(t))$ respectively. Denote with $D V / d t$ and $D W / d t$ the covariant derivatives of the vector fields $V(t)$ and $W(t)$ along $\alpha(t)$ and $\beta(t)$, then g_{s} is defined by:

$$
\begin{equation*}
\left.g_{s}\right|_{(v, v)}(X, Y)=g_{p}(\dot{\alpha}(0), \dot{\beta}(0))+g_{p}\left(\left.\frac{D V}{d t}\right|_{0},\left.\frac{D W}{d t}\right|_{0}\right) \tag{1.1}
\end{equation*}
$$

g_{s} is perhaps the most natural metric on $T M$ depending only on the Riemannian structure on M, but it is extremely rigid. For instance, g_{s} has constant scalar curvature if and only if g is flat. Therefore, the Sasaki metric is locally homogeneous, or locally symmetric, or Einstein only if it is flat (see $n .3$). But, if we consider $T M$ as a vector bundle associated with $O M$ we may easily construct other interesting metrics on $T M$.

In section 4 we discuss this general construction and we shall prove that the Sasaki metric can be obtained in this way. We also give an explicit expression of a complete metric $g_{C G}$ introduced by Oheeger and Gromoll in [CG].

If (M, g) is the standard n-sphere, the metric $g_{C G}$ has non negative curvature and \S^{n} is the soul of $\left(T S^{n}, g_{C G}\right)$.
(*) Entrata in Redazione il 25 ottobre 1986.
Indirizzo degli A.A.: E. Musso: Dipartimento di Matematica, Università dell'Aquila, L'Aquila, Italy; F. Tricerri: Dipartimento di Matematica, Università di Torino, Torino, Italy. Indirizzo attuale: Istituto di Matematica, Università di Firenze, Firenze, Italy.

In section 5 we study the spherical tangent bundle $T_{1} M=\{(p, v) \in T M /\|v\|=1\}$ endowed with the induced Sasaki metric g_{s}^{\prime}. It is interesting to observe that ($T_{1} M, g_{s}^{\prime}$) is an homogeneous Riemannian space if (M, g) is a rank one symmetric space (see n. 5).
$T_{1} M$ can be regarded as an hypersurface of $T M$, thus the Levi Civita connection and the curvature tensor of g_{s}^{\prime} could be computed using Gauss equation. Instead, we prefer to identify $T_{1} M$ with a quotient of $O M$ and make use of the moving frame method (see n. 6). In section 6 we study the spherical tangent bundle $T_{1} S^{n}$ of the standard n-sphere generalising the results obtained in [KS].

Section 7 deals with deformations of the metric g_{s}^{\prime}. We prove that the Einstein metric defined on $T_{1} S^{n}$ by S. Kobayashi ($\left[\mathrm{KO}_{1}\right]$, $\left.[\mathrm{Je}]\right)$ can be obtained deforming g_{s}^{\prime} along the direction of the canonical contact form on $T_{1} S^{n}$.

We are indebted to O. Kowalski for the remark 4.3 and several useful discussions.

2. - The Sasaki metric.

Let (M, g) be an n-dimensional Riemannian manifold with tangent bundle $T M$ and natural projection $\pi: T M \rightarrow M$.

A curve $\bar{\gamma}: I \rightarrow T M, t \rightarrow(\gamma(t), V(t))$ is horizontal if the vector field $V(t)$ is parallel along $\gamma=\pi \circ \bar{\gamma}$. A vector on $T M$ is horizontal if it is tangent to an horizontal curve, or vertical if is tangent to a fiber.

Let $\gamma: I \rightarrow M, t \rightarrow \gamma(t)$ be a curve through the point $p=\gamma(0)$.
For each tangent vector $v \in T_{g} M$ there exists a unique horizontal curve $\gamma^{H}: I \rightarrow$ $\rightarrow T M$ through (p, v) which projects onto γ. This curve is defined by:

$$
\gamma^{H}(t)=(\gamma(t), \nabla(t))
$$

where $V(t)$ is the parallel vector field along γ with $V(0)=v$. The curve γ^{β} is called an horizzontal lift of γ.

The horizontal lift of a vector field X on M is the unique vector field X^{H} on $T M$ which is horizontal and which projects onto X.

Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal frame field defined on the open set $U \subset M$, and let $\left(x^{1}, \ldots, x^{n}\right)$ be a local coordinate system on U. We define a local coordinate system ($x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}$) on $\pi^{-1}(U)$ as follows:

$$
\begin{equation*}
x^{i}(p, v)=x^{i}(p), \quad v^{i}(p, v)=v^{i}, \quad(p, v) \in \pi^{-1}(U) \tag{2.1}
\end{equation*}
$$

where $v=\sum_{i} v^{i} e_{i}(p)$. We denote with Γ_{j}^{i} the local 1 -forms defined by:

$$
\begin{equation*}
\nabla_{X} e_{j}=\sum \Gamma_{j}^{j}(X) e_{i} \tag{2.2}
\end{equation*}
$$

It is easy to verify that the horizontal lift X^{H} of a vector field X on M is given, in terms of the local coordinate system above, as follows:

$$
\begin{equation*}
X^{H}=X-\sum_{i j} \Gamma_{j}^{i}(X) v^{j} \frac{\overline{2}}{\partial \bar{v}^{i}} \tag{2.3}
\end{equation*}
$$

The vertical lift X^{v} is defined by:

$$
\begin{equation*}
X^{v}=\sum_{i} X^{i} \frac{\partial}{\partial v^{i}} \tag{2.4}
\end{equation*}
$$

Horizontal and vertical vectors generate two complementary distributions on $T M$: the horizontal distribution and the vertical distribution. Those two distributions are orthogonal with respect to g_{s}.

From (1.1) we obtain:

$$
\left\{\begin{array}{l}
g_{\mathrm{s}}\left(X^{H}, Y^{H}\right)=g_{s}\left(X^{v}, Y^{V}\right)=g(X, Y) \circ \pi \tag{2.5}\\
g_{\mathrm{s}}\left(X^{H}, Y^{v}\right)=0
\end{array}\right.
$$

for each pair of vector fields X and Y on M.
Clearly (2.5) uniquely determines the Sasaki metric. Then, according to (2.5) we have that ($e_{1}^{H}, \ldots, e_{n}^{H}, e_{1}^{\nabla}, \ldots, e_{n}^{\nabla}$) is an orthonormal frame field on $\pi^{-1}(U)$ and its dual coirame is given by:

$$
\begin{equation*}
\pi^{*} e^{1}, \ldots, \pi^{*} e^{n}, \quad D v^{1}, \ldots, D v^{n} \tag{2.6}
\end{equation*}
$$

where e^{i} denotes the 1 -form defined by $e^{i}\left(e_{k}\right)=\delta_{k}^{i}$, and $D v^{i}$ is given by

$$
\begin{equation*}
D v^{i}=d v^{i}+\sum_{j} v^{j} \pi^{*}\left(\Gamma_{j}^{i}\right) \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7) we have the following
Proposition 2.1. - The Sasaki metric g_{s} can be written as follows:

$$
\begin{equation*}
g_{\varepsilon}=\sum_{i} \pi^{*}\left(e^{i}\right)^{2}+\sum_{i}\left(D v^{i}\right)^{2} \tag{2.8}
\end{equation*}
$$

Remark 2.1. - Observe that the metric induced on the fiber $\pi^{-1}(p)$ is the Euclidean metric. In fact (2.6) and (2.7) imply that the restriction of g_{s} on $\pi^{-1}(p)$ is given by the quadratic form $\sum_{i}\left(d v^{i}\right)^{2}$. Hence g_{s} is the only metric on $T M$ satisfying the following conditions: ${ }^{i}$
a) horizontal and vertical distributions are orthogonal;
b) the metric induced on the fibers is Euclidean;
c) the projection π is a Riemannian submersion.

The fibers are also totally geodesic ([BE], p. 47).
Remark 2.2. - Let $\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ be an orthonormal frame defined on the open set $V \subset M$, and suppose that

$$
\begin{equation*}
e_{i}^{\prime}=\sum_{i} a_{i}^{j} e_{j} \quad \text { on } U \cap V \tag{2.9}
\end{equation*}
$$

Then we have:

$$
\begin{equation*}
e_{i}^{\prime H}=\sum_{j}\left(a_{i}^{i} \circ \pi\right) e_{j}^{H}, \quad e_{i}^{\prime T}=\sum_{j}\left(a_{i}^{j} \circ \pi\right) e_{j}^{V} \quad \text { on } \pi^{-1}(U \cap V) . \tag{2.10}
\end{equation*}
$$

This implies that $T M$ admits a natural $O(n) \times O(n)$ structure. Since $O(n) \times O(n)$ is a closed subgroup of $U(2 n)$, we can also deduce that $T M$ admits an almost complex structure J compatible with g_{s}. (For more details on the almost Hermitian manifold $\left(T M, g_{s}, J\right)$ see [DO], [YI] and [BE], pp. 46-48).

3. - The curvature of the Sasaki metric.

The curvature of g_{s} has been computed by several authors with different methods (see [KW], [YY]). Proposition (2.1) permits the use of the moving frame method and of the structure equations of E. Cartan.

First we put

$$
\begin{equation*}
\varphi^{i}=\pi^{*} e^{i}, \quad \varphi^{n+i}=D v^{i}, \quad i=\dot{i} \ldots n \tag{3.1}
\end{equation*}
$$

and we observe that $\left(\varphi^{i}, \ldots, \varphi^{2 n}\right)$ is an orthonormal coframe field. The local 1 -forms φ_{s}^{A} of the Levi Civita connection of g_{s} are given by:

$$
\left\{\begin{array}{l}
d \varphi^{A}=-\sum_{B} \varphi_{B}^{A} \wedge \varphi^{B} \tag{3,2}\\
\varphi_{B}^{A}+\varphi_{A}^{B}=0
\end{array}\right.
$$

The curvature forms Φ_{B}^{A} can be computed by using the formula:

$$
\begin{equation*}
\Phi_{B}^{A}=d \varphi_{B}^{A}+\sum_{C} \varphi_{\sigma}^{A} \wedge \varphi_{B}^{\sigma} \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we find:

$$
\left\{\begin{align*}
2 \varphi_{j}^{i} & =2 \pi^{*} \Gamma_{j}^{i}+\sum_{l, m} v^{m} R_{i j m l} \varphi^{n+l} \tag{3.4}\\
2 \varphi_{n+j}^{i} & =-2 \varphi_{i}^{n+j}=\sum_{m, l} v^{m} R_{i l m j} \varphi^{l} \\
\varphi_{n+j}^{n+i} & =\pi^{*} \Gamma_{i}^{i} .
\end{align*}\right.
$$

$$
\begin{align*}
& \int^{4} \Phi_{j}^{i}=\sum_{r s}\left(2 R_{i r s}-\sum_{m l q} v^{m} v^{l} R_{i j m Q} R_{r s l a}-\sum_{m l Q} v^{m} v^{l} R_{i r m a} R_{j s l q}\right) \varphi^{r} \wedge \varphi^{s}+ \\
& +2 \sum_{r s m} v^{m}\left(\nabla_{r} R\right)_{i s m s} \varphi^{r} \wedge \varphi^{n+s}+\sum_{r s}\left(2 R_{i j r s}-\sum_{m l} v^{m} v^{v} R_{i a m r} R_{j a q s}\right) \varphi^{n+r} \wedge \varphi^{n+l}, \\
& 4 \Phi_{n+j}^{i}=-4 \Phi_{i}^{n+j}=2 \sum_{r} v^{m i}\left(\nabla_{r} R\right)_{i s, m i} \varphi^{r} \wedge \varphi^{s}+ \tag{3.5}\\
& +\sum_{r s}\left(2 R_{i r r_{s}}-\sum_{b m q} v^{m} v^{2} R_{i g m s} R_{a r i}\right) \varphi^{r} \wedge \varphi^{n+s}, \\
& 4 \Phi_{n+j}^{n+i}=\sum_{r s}\left(2 R_{i j r s}-\sum_{l m q} v^{m} v^{l} R_{g r m i} R_{g s l i}\right) \varphi^{r} \wedge \varphi^{s} .
\end{align*}
$$

In the formulae (3.4) and (3.5) we have written $R_{i j l_{m}},\left(\nabla_{r} R\right)_{i j l_{m}} \ldots$ instead of $R_{i j l m} \circ \pi,\left(\nabla_{r} R\right)_{i j l m} \circ \pi \ldots$, and $R_{i j l m},\left(\nabla_{r} R\right)_{i j l m} \ldots$ denote the components of the curvature tensor R and its covariant derivative ∇R with respect the local frame $\left(e_{1}, \ldots, e_{n}\right)$.

Now we may state the following lemma:
Lemana 3.1. - Let $\bar{\tau}$ be the sealar curvature of g_{s} then:

$$
\begin{equation*}
\bar{\tau}=\tau \circ \pi-\frac{1}{4} \sum R_{i s m q} R_{i j l q} v^{m} v^{l} . \tag{3.6}
\end{equation*}
$$

where τ is the scalar curvature of g.
Proof. - Let \bar{R} denote the curvature tensor of g_{s}. Then its components with respect to the local frame ($E_{1}, \ldots, E_{2 n}$) $=\left(e_{1}^{H}, \ldots, e_{n}^{H}, e_{1}^{F}, \ldots, e_{n}^{\nabla}\right)$ are given by:

$$
\begin{equation*}
\bar{R}_{A B C D}=2 \Phi_{B}^{A}\left(E_{C}, E_{D}\right) . \tag{3.7}
\end{equation*}
$$

Using (3.5) we find:

$$
\begin{aligned}
& \bar{R}_{i j i j}=R_{i j i j}-\frac{3}{4} \sum_{l m q} R_{i j m Q} R_{i j i q} v^{m q} v^{l}, \\
& \bar{R}_{i n+j i n+j}=\frac{1}{4} \sum_{l m q} R_{i q m i} R_{i q l i} v^{m} v^{l}, \\
& \bar{R}_{n+i n+i n+i n+j}=0 .
\end{aligned}
$$

Then (3.6) follows.
The next proposition is an immediate consequence of (3.6).
Proposition 3.2. - (TM, g_{s}) has constant scalar curvature if and only if (M, g) is locally Euclidean.

Corollary 3.3. - $\left(T M, g_{s}\right)$ is locally homogeneous if and only if g_{s} is locally Euctidean.

In particular (see [KW]) (TM, g_{s}) is locally symmetric if and only if g_{s} is locally Euclidean.

Corollary 3.3 is still true assuming ($T M, g_{s}$) curvature homogeneous (see [SI]). In fact this assumption implies that the scalar curvature is constant.

Corollary 3.4. - The Sasaki metric is Einstein if and only if it is locally Euclidean.

4. - Other metrics on tangent bundles.

Let $\psi: O M \times \mathbb{R}^{n} \rightarrow T M$ be the map defined by:

$$
\begin{equation*}
\psi:(u, \xi) \rightarrow\left(q, \sum_{i} \xi^{i} u_{i}\right) \tag{4.1}
\end{equation*}
$$

where $u=\left(q, u_{1}, \ldots, u_{n}\right)$ and $\xi=\left(\xi^{n}, \ldots, \xi^{n}\right) . \psi$ defines a submersion whose fiber are diffeomorphic to $O(n)$. This map is the canonical projection onto $T M$ regarded as the vector bundle with standard fiber \mathbb{R}^{n} associated to $O(M)$. Therefore, $T M$ is identified with $O M \times \mathbb{R}^{n} / O(n)$, where the orthogonal group $O(n)$ acts on the right on $O M$ as follows:

$$
\begin{equation*}
(u, \xi) a=\left(u a, a^{-1} \xi\right)=\left(q, \sum_{i} a_{1}^{i} u_{i}, \ldots, \sum_{i} a_{n}^{i} u_{i}, \sum_{i} a_{1}^{i} \xi^{i}, \ldots, \sum_{i} a_{n}^{i} \xi^{i}\right) \tag{4.2}
\end{equation*}
$$

Let now Q be a symmetric, semi-positive defined, tensor field of type $(2,0)$ and rank $2 n$ on $O M \times \mathbb{R}^{n}$. Moreover, we assume that Q is basic for ψ. This menns that Q is $O(n)$-invariant, and $Q(X, Y)=0$ if X is tangent to a fiber of ψ.

Under these assumptions, there is a unique Riemannian metric g_{Q} on $T M$ such that $\psi^{*}\left(\boldsymbol{g}_{\boldsymbol{q}}\right)=Q$. This metric is determined by the formula

$$
g_{u \mid(v, v)}(X, Y)=\left.Q\right|_{(u, \xi)}\left(X^{\prime}, Y^{\prime}\right),
$$

where (u, ξ) belongs to the fiber $\psi^{-1}(p, v), X$ and Y are elements of $T_{(q, v)}(T M)$, X^{\prime}, Y^{\prime} are tangent vectors of $O M \times \mathbb{R}^{n}$ at (u, ξ) with $d \psi\left(X^{\prime}\right)=X$ and $d \psi\left(Y^{\prime}\right)=Y$.

We observe that is easier to assign Q than to define directly g_{Q} on $T M$ since $O M \times \mathrm{R}^{n}$ is parallelizable.

Let $\theta=\left(\theta^{1}, \ldots, \theta^{n}\right)$ denote the canonical 1-form on $O M$, and let p be the natural projection $O M \xrightarrow{>} M$.

Then, according to the definition we get:

$$
\begin{equation*}
d p_{u}(X)=\sum_{i} \theta^{i}(X) u_{i}, \quad u=\left(q, u_{1}, \ldots, u_{n}\right) \tag{4.4}
\end{equation*}
$$

If we denote with $\omega=\left(\omega_{j}^{i}\right)$ the $s o(n)$-valued differential form defined by the Levi Civita connection of g, then we find that:

$$
\theta^{i}, \quad i=1, \ldots ; n ; \quad \omega_{k}^{h}, \quad 1 \leqslant h \leqslant k \leqslant n ; \quad d \xi^{i}, i=1, \ldots, n
$$

is an absolute parallelism on $O M \times \mathbb{R}^{n}$.

We recall two facts:

$$
\begin{gather*}
R_{a}^{*}\left(\theta^{i}\right)=\sum_{h}\left(a^{-1}\right)_{h}^{i} \theta^{h} \tag{4.5̆}\\
R_{a}^{*}\left(\omega_{j}^{i}\right)=\sum_{h k}\left(a^{-1}\right)_{h}^{i} \omega_{k}^{h} a_{j}^{k} \tag{4.6}
\end{gather*}
$$

for each $a \in O(n)$. Moreover, the forms ω_{j}^{i} are related to the local 1-forms Γ_{j}^{i} defined in (2.2) as follows:

$$
\begin{equation*}
\omega_{j}^{i}=\sum_{h}\left(\psi_{\sigma}^{-1}\right)_{h}^{i} d\left(\psi_{\sigma}\right)_{j}^{h}+\sum_{h \hbar}\left(\psi_{\sigma}^{-1}\right)_{h}^{i}\left(p^{*} \Gamma_{h}^{h}\right)\left(\psi_{\sigma}\right)_{j}^{k} \tag{4.7}
\end{equation*}
$$

ψ_{σ} denotes the $O(n)$-valued function on $p^{-1}(U)$ given by:

$$
\begin{equation*}
\left(\psi_{\sigma}\right)_{j}^{i}(u)=g\left(\left.e_{i}\right|_{p(u)}, u_{j}\right) \tag{4.8}
\end{equation*}
$$

(4.7) can also be written in matrix form as follows:

$$
\begin{equation*}
\omega=\psi_{\bar{U}}^{-1} d \psi_{\sigma}+\psi_{\bar{U}}^{-1}\left(p^{*} \Gamma\right) \psi_{U} \tag{4.9}
\end{equation*}
$$

Finally, it will be useful later on to note that:

$$
\begin{equation*}
p^{*} e^{i}=\sum_{j}\left(\psi_{U}\right)_{j}^{i} \theta^{j} \tag{4.10}
\end{equation*}
$$

Lemma 4.1. - The vertical distribution of ψ is defined by:

$$
\left\{\begin{array}{l}
\theta^{i}=0 \\
D \xi^{i}=d \xi^{i}+\sum_{j} \xi^{j} \omega_{j}^{i}=0
\end{array}\right.
$$

Proof. - Let X be a vertical vector of ψ, then X is tangent at $t=0$ to a curve of the form:

$$
\alpha(t)=\left(u e^{t A}, e^{-t A} \xi\right), \quad A \in s o(n)
$$

Then $X=\dot{\alpha}(0)=\left.A^{*}\right|_{s}-A \xi, A^{*}$ is the fundamental vector field on $O M$ generated by A. It follows that

$$
\theta^{i}(X)=0
$$

and

$$
D \xi^{i}(X)=-d \xi^{i}(A \xi)+\sum_{j} \xi^{j} \omega_{j}^{i}\left(A_{w}^{*}\right)=-\sum_{i} A_{j}^{i} \xi^{j}+\sum_{j} A_{j}^{i} \xi^{j}=0
$$

The converse is obvious.

In particular we see that any basic symmetric form Q on $O M \times \mathbb{R}^{n}$ is a second order polynomial in θ^{i} and $D \xi^{i}$ whose coefficient yield Q invariant under the $O(n)$ action.

For instance, consider

$$
\begin{equation*}
Q_{s}=\sum_{i}\left(\theta^{i}\right)^{2}+\sum_{i}\left(D \xi^{i}\right)^{2} \tag{4.11}
\end{equation*}
$$

From (4.2) and (4.6) we find:

$$
\begin{equation*}
R_{a}^{*}\left(D \xi^{i}\right)=\sum_{h}\left(a^{-1}\right)_{h}^{i} D \xi^{h} \tag{4.12}
\end{equation*}
$$

Hence Q_{s} is basic (see (4.5)).
Proposition 4.2. - The metric induced by the quadratic form Q_{s} is the Sasaki metric.
Proof. - First, we observe that the diagram

commutes. Then, using (4.7) we get:

$$
\begin{equation*}
\psi^{*}\left(D v^{i}\right)=\sum_{i}\left(\psi_{\nabla}\right)_{j}^{i} D \xi^{j} \tag{4.13}
\end{equation*}
$$

Because (4.10) and because ψ_{σ} is $O(n)$-valued, we see that $\psi^{*}\left(g_{s}\right)=Q_{s}$.
Consider now the quadratic form

$$
\begin{equation*}
g_{o M}=\sum_{j}\left(\theta^{i}\right)^{2}+\sum_{h<k}\left(\omega_{k}^{h}\right)^{2}+\sum_{j}\left(d \xi^{j}\right)^{2} \tag{4.14}
\end{equation*}
$$

$g_{o m}$ is a metric defined on $O M \times \mathbb{R}^{n}$; moreover, from (4.5), (4.6) and. (4.2), we find that $O(n)$ is a group of isometries for $g_{\text {ous }}$.

Hence the metric $g_{o m}$ projects onto a unique metric $g_{C G}$ on $T M$ so that the projection ψ becames a Riemannian submersion. $g_{C G}$ is the metrio of Cheeger and Gromoll (see [CG]).

If we assume that g is complete, we have that $\sum_{i}\left(\theta^{i}\right)^{2}+\sum_{h<k}\left(\omega_{k}^{h}\right)^{2}$ is a complete Riemannian metric on $O M$ (indeed p is a Riemannian submersion). Then it follows that $g_{o n}$ and $g_{\sigma G}$ are both complete Riemannian metrics.

Remark 4.1. - If (M, g) is the standard sphere (S^{n}, can), then $O M=O(n+1)$ and $\sum_{i}\left(\theta^{i}\right)^{2}+\sum_{h<k}\left(\omega_{k}^{h}\right)^{2}$ is a biinvariant metric (see n. 6). Since $g_{o M}$ is the product
of two Riemannian metrics with non-negative sectional curvatures, then $g_{o m}$ itself has non-negative sectional curvature. Now, from O'Neill's formula it follows that the Cheeeger Gromoll metric $g_{C G}$ has non-negative curvature (see [CG]).

Proposition 4.3. - The metric $g_{C G}$ is induced by the tensor field

$$
\begin{equation*}
Q_{C G}=\sum_{i}\left(\theta^{i}\right)^{2}+\frac{1}{1+\|\boldsymbol{\xi}\|^{2}}\left(\sum_{i}\left(D \xi^{i}\right)^{2}+\left(\sum_{m} \xi^{m} D \xi^{m}\right)^{2}\right) \tag{4.15}
\end{equation*}
$$

Proof. - Let V_{ψ} be the vertical distribution of ψ, then its orthogonal complement H_{ψ} is defined by the equation:

$$
\begin{equation*}
\omega_{k}^{h}=\xi^{k} d \xi^{h}-\xi^{h} d \xi^{k} \tag{4.16}
\end{equation*}
$$

Thus, the restriction of $g_{\text {ом }}$ on $H_{\psi} \times H_{\psi}$ agrees with the restriction of the tensor field given by

$$
\begin{equation*}
S=\sum_{i}\left(\theta^{i}\right)^{2}+\sum_{h<k}\left(\xi^{k} d \xi^{h}-d \xi^{k} \xi^{k}\right)^{2}+\sum_{j}\left(d \xi^{j}\right)^{2} \tag{4.17}
\end{equation*}
$$

We observe that:

$$
\begin{equation*}
\sum_{i} \xi^{i} d \xi^{i}=\sum_{i} \xi^{i} D \xi^{i} \tag{4.18}
\end{equation*}
$$

From (4.16) and (4.18) we find that:

$$
\begin{equation*}
\left.d \xi^{i}\right|_{H_{w}}=\left.\left(1+\|\xi\|^{2}\right)^{-1}\left(D \xi^{i}+\xi^{i} \sum_{m} \xi^{m} D \xi^{m}\right)\right|_{A_{w}} \tag{4.19}
\end{equation*}
$$

Replacing (4.19) in (4.17), we get:

$$
\left.S\right|_{H_{\varphi} \times H_{\varphi}}=\left.Q_{\sigma G}\right|_{H_{\varphi} \times H_{\varphi}}
$$

Since ψ is a Riemannian submersion, we have: $\psi^{*} g_{\sigma G}=\left.g_{o M}\right|_{H_{\nu} \times H_{\psi}}$. We thus proved (4.15).

Remark 4.2. - From (4.15) we have a local expression of $g_{C G}$, namely:

$$
\begin{equation*}
g_{C G}=g+\frac{1}{1+\|v\|^{2}}\left\{\sum_{m}\left(D v^{m}\right)^{2}+\left(\sum_{m} v^{m} d v^{m}\right)^{2}\right\} \tag{4.20}
\end{equation*}
$$

Therefore, the metric induced on the fiber is

$$
\begin{equation*}
g_{F}=\frac{1}{1+\|v\|^{2}}\left\{\sum_{m}\left(d v^{m}\right)^{2}+\left(\sum_{m} v^{m} d v^{m}\right)^{2}\right\} \tag{4.21}
\end{equation*}
$$

which is not flat.

If $\operatorname{dim} M=2$, we get

$$
\begin{equation*}
g_{F}=d r^{2}+\left(1+r^{2}\right)^{-1} r^{2} d \alpha^{2} \tag{4.22}
\end{equation*}
$$

where $v^{1}=r \cos \alpha, v^{2}=r \sin \alpha($ see [OE], p. 146).
Remark 4.3. - The Cheeger-Gromoll metric on $T M$ is uniquely determined at the point (p, u) by the following conditions:

$$
\begin{align*}
& g_{C G}\left(X^{H}, Y^{H}\right)=g_{p}(X, \bar{Y}) \\
& g_{C G}\left(X^{V}, Y^{V}\right)=\left(1+\|u\|^{2}\right)^{-1}\left(g_{p}(X, Y)+g_{p}(X, u) g_{p}(Y, u)\right) \tag{4.23}\\
& g_{C G}\left(X^{H}, Y^{V}\right)=0
\end{align*}
$$

where $X, Y \in T_{p} M$, and X^{y}, X^{v} are the horizontal and the vertical lifts of X (see n. 2). It is a «natural metric» on $T M$ in the sense of [KWS].

5. - The group of isometries of g_{s}.

Let $G=I(M, g)$ denote the group of isometries of (M, g). There are two natural left actions of G on $T M$ and on $O M$ defined by:

$$
\begin{gather*}
L_{a}(q, v)=a(q, v)=\left(a q, d L_{a}(v)\right), \quad a \in G,(q, v) \in T M \tag{5.1}\\
L_{a}(u)=a u=\left(a q, d L_{a}\left(u_{1}\right), \ldots, d L_{a}\left(u_{n}\right)\right), \quad a \in G, u \in O M \tag{5.2}
\end{gather*}
$$

where $d L_{a}$ denotes the differential of the map $L_{a}: M \rightarrow M, q \rightarrow a q$.
Proposition 5.1. - g_{s} is a G-invariant metric on $T M$.
Proof. - First we extend the action (5.2) on $O M \times \mathbb{R}^{n}$ by setting:

$$
\begin{equation*}
L_{a}(u, \xi)=a(u, \xi)=(a u, \xi) \tag{5.3}
\end{equation*}
$$

The canonical 1-form θ and the Levi Civita connection form ω are G-invariant, i.e.

$$
\begin{align*}
& L_{a}^{*}\left(\theta^{i}\right)=\theta^{i} \tag{5.4}\\
& L_{a}^{*}\left(\omega_{j}^{i}\right)=\omega_{j}^{i} \tag{5.5}
\end{align*}
$$

Since G acts trivially on \mathbb{R}^{n}, the differential forms $D \xi^{i}$ are G-invariant. The projection $\psi: O M \rightarrow T M$ commutes with the actions (5.1) and (5.2):

$$
\psi \circ L_{a}=L_{a} \circ \psi, \quad a \in G
$$

From (4.11) we have that $\psi^{*}\left(g_{s}\right)$ is a G-invariant quadratic form. But:

$$
\psi^{*}\left(L_{a}^{*} g_{s}\right)=L_{a}^{*}\left(\psi^{*} g_{s}\right)=\psi^{*} g_{s}
$$

Since ψ is a submersion, we obtain for each a in G

$$
L_{a}^{*}\left(g_{s}\right)=g_{s}
$$

This proves the proposition.
Remark 5.1. - The same arguments hold if we exchange g_{s} with $g_{c G}$, hence the Cheeger-Gromoll metric $g_{c \theta}$ is G-invariant.

Let u_{0} be an orthonormal frame, and let $\sigma_{u_{0}}$ be the map defined by

$$
\begin{equation*}
\sigma_{u_{0}}: G \rightarrow O M, a \rightarrow a u_{0} \tag{5.6}
\end{equation*}
$$

Since the action (5.2) is free, the map $\sigma_{u_{0}}$ is an imbedding (see [KN], Vol. I, p. 4). Therefore $\operatorname{dim} G \leqslant \operatorname{dim} O M=\frac{1}{2} n(n+1)$, and the equality holds if and only if (M, g) is isometric to one of the following spaces of constant curvature:
i) the n-dimensional Euclidean space \mathbb{R}^{n};
ii) the n-dimensional sphere S^{n};
iii) the n-dimensional real projective space $\mathbb{R} P^{n}$;
iv) the n-dimensional hyperbolic space \mathbf{H}^{n}
(see $\left[\mathrm{KO}_{2}\right], \mathrm{p} .46$). In these cases the group G is transitive on $T_{1} M$.
This property is characteristic of two-point homogeneous spaces, in fact we have
Proposition 5.2 ([WO], p. 289). - G is transitive on the spherical tangent bundle if and only if (M, g) is a two-point homogeneous space.

From prop. (5.1) we see that $\left(T_{1} M, g_{s}^{\prime}\right)$ is an homogeneous Riemannian space if (M, g) is two-point homogeneous, although ($T M, g_{s}$) is never homogeneous unless g_{s} is flat.

Remark 5.2. - The orbits of the action (5.1) are M, regarded as the zero section of $T M$, and the spherical tangents bundles $T_{r} M$ of radius $r, r>0$. Then $\left(T M, g_{s}\right)$ is a Riemannian space of cohomogenity one. The spherical bundles $T_{r} M$ are the principal orbits of the action, moreover $T_{r} M$ is a submanifold with constant mean curvature [SA], whereas M is totally geodesic.

Remark 5.3. - The tangent bundle $T G$ of every Lie group G has a natural Lie group structure. Under the identification $T G=G \times g$ the product is defined by:

$$
\begin{equation*}
(a, A)(b, B)=\left(a b, B+A d\left(b^{-1}\right) A\right), \quad a, b \in G ; A, B \in \boldsymbol{g} \tag{5.7}
\end{equation*}
$$

If G acts on $M, T G$ acts on the tangent bundle $T M$ as follows:

$$
\begin{equation*}
L_{(a, A)}(q, v)=\left(a q, d L_{a}(v)+\left.(A d(a) A)^{*}\right|_{a q}\right) \tag{5.8}
\end{equation*}
$$

where, for each $X \in \boldsymbol{g}, X^{*}$ denotes the induced fundamental vector-field on M. If G is transitive on M, then $T G$ is transitive on $T M$. Clearly this does not mean that if g is a G-invariant metric on M, then g_{s} is $T G$-invariant. In fact, $L_{(e, A)}$ is an isometry of $\left(T M, g_{\delta}\right)$ if and only if $\nabla_{X} A^{*}=0$ for each vector field X on M.

6. - Tangent sphere bundle.

In section 5 we have already noted that the tangent sphere bundle of a two point homogeneous space endowed with the metric g_{s}^{\prime} is a Riemannian homogeneous space. In this section we will investigate the tangent sphere bundle $T_{1} S^{n}$ of the standard n-sphere, equipped with the induced Sasaki metric, and we will generalize some of the results proven in [KS].

First we need some general facts concerning the tangent sphere bundle of a Riemannian manifold.

Consider the map $\psi_{n}: O M \rightarrow T_{1} M$ defined by:

$$
\begin{equation*}
\psi_{n}:\left(q, u_{1}, \ldots, u_{n}\right) \rightarrow\left(q, u_{n}\right) \tag{6.1}
\end{equation*}
$$

(see $\left[\mathrm{CH}_{1}\right]$, p. 36). This map is a submersion whose fibers are diffeomorphic with $O(n-1)$, identified to the subgroup of $O(n)$ of the matrices $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right), a \in O(n-1)$.

Then $T_{1} M$ can be regarded as the quotient space $O M / O(n-1)$ and ψ_{n} is the natural projection. Now we shall prove the following proposition:

Proposition 6.1. - Let g_{s}^{\prime} be the induced Sasali metric on $T_{1} M$, then we have

$$
\psi_{n}^{*}\left(g_{s}^{t}\right)=\sum_{i}\left(\theta^{i}\right)^{2}+\sum_{i}\left(\omega_{n}^{i}\right)^{2}
$$

Proof. - First we observe that the following diagram

commutes. Hence, using (4.9) and (4.10) we get:

$$
\begin{gather*}
\left(i \circ \psi_{n}\right)^{*}\left(\pi^{*} e^{i}\right)=p^{*}\left(e^{i}\right)=\sum_{j}\left(\psi_{J}\right)_{j}^{i} \theta^{j} \tag{6.2}\\
\left(i \circ \psi_{n}\right)^{*}\left(\pi^{*} \Gamma\right)=p^{*}(\Gamma)=\psi_{\sigma} \omega \psi_{\sigma}^{-1}-d \psi_{\sigma} \psi_{U}^{-1} \tag{6.3}
\end{gather*}
$$

Because $\left(v^{i} \circ \psi_{n}\right)(u)=v^{i}\left(u_{n}\right)=\left(\psi_{\sigma}\right)_{n}^{i}(u)$, we obtain:

$$
\begin{equation*}
\left(i \circ \psi_{n}\right)^{*}\left(D v^{i}\right)=\sum_{j}\left(\psi_{\tau}\right)_{j}^{i} \omega_{n}^{j} . \tag{6.4}
\end{equation*}
$$

Since $\psi_{n}^{*}\left(g_{s}^{\prime}\right)=\psi_{n}^{*}\left(i^{*} g_{s}\right)=\left(i \circ \psi_{n}\right)^{*} g_{s}$ and ψ_{z} is an $O(n)$-valued function, the formulae (6.2), (6.3) and (6.4) imply proposition (6.1).

Remark 6.1. - It is an elementary matter to check that the quadratic form $Q=\sum_{i}\left(\theta^{i}\right)^{2}+\sum_{i}\left(\omega_{n}^{i}\right)^{2}$ is $O(n-1)$-invariant and $Q(X, Y)=0$ if one of X and Y is vertical for ψ_{n}. Hence Q is basic. As for n. 4, we may characterize g_{s}^{\prime} as the only metric on $T_{1} M$ satisfying $\psi_{n}^{*}\left(g_{s}^{\prime}\right)=Q$.

Moreover, from proposition 4.3 it follows that the metric $g_{c G}^{\prime}$ induced on $T_{1} M$ by the Cheeger-Gromoll metric is uniquely characterized by the following condition:

$$
\psi_{n}^{*}\left(g_{c \theta}^{\prime}\right)=\sum\left(\theta^{i}\right)^{2}+\frac{1}{2} \sum_{i}\left(\omega_{n}^{i}\right)^{2} .
$$

Proposition 6.2. - $\left(T_{1} S^{S_{n}^{\prime}}, g_{s}^{\prime}\right)$ is isometric to the Stiefel manifold $S O(n+1)$) $\mid S O(n-1)$ equipped with a metric induced from a biivariant one on $S O(n+1)$.

Proof. - Let $O_{+}\left(S^{n}\right)$ denote the bundle of positive orthonormal frames on S^{n}. Let u_{0} be a point of $O_{+}\left(S^{n}\right)$ and let p be the canonical projection from $S O(n+1)$ onto S^{n}, then the diagram

commutes. Hence $T_{1} S^{n}$ is diffeomorphic to the Stiefel manifold $S O(n+1) / S O(n-1)$.
Indeed, a point of $T_{1} S^{n}$ is given by a pair of orthonormal vectors in \mathbb{R}^{n+1}. To conclude the proof we must check a few facts.

First consider the 1 -forms on $S O(n+1)$ defined by:

$$
\begin{array}{ll}
\bar{\theta}^{i}=\sigma_{u_{0}}^{*}{ }^{i}, & i=1, \ldots, n, \tag{6.5}\\
\bar{\omega}_{i}^{i}=\sigma_{u_{0}}^{*}\left(\omega_{j}^{i}\right), & 1 \leqslant i<j \leqslant n .
\end{array}
$$

FACT 1. - $\left\{\bar{\theta}^{i}, \bar{\omega}_{\star}^{n}\right\}, 1 \leqslant h<j \leqslant n$ are left-invariant and linearly independent 1 -forms, therefore they are Maurer-Cartan forms of $S O(n+1)$.

Proof. - Let $S O(n+1)$ act on $O_{+}(M)$ (see (5.2)). Then, for each $a, b \in S O(n+1)$, we have:

$$
\begin{equation*}
\sigma_{u_{0}} \circ L_{a}=L_{a} \circ \sigma_{u_{0}} \tag{6.7}
\end{equation*}
$$

where in the left hand side of (6.7) L_{a} denotes the left translation of $S O(n+1)$.
Then we get

$$
L_{a}^{*}(\theta)^{i}=\left(\sigma_{u_{0}} \circ L_{a}\right)^{*} \theta^{i}=\sigma_{u_{0}}^{*} L_{a}^{*} \theta^{i} .
$$

In the same way,

$$
L_{a}^{*}\left(\omega_{j}^{i}\right)=\sigma_{u_{\mathrm{e}}}^{*} L_{a}^{*}\left(\omega_{j}^{i}\right) .
$$

Since $S O(n+1)$ acts as an isometry group on S^{n}, the canonical 1-form and the connection form ω are $S O(n+1)$-invariant. This implies Fact 1.

Taking the structure equations of S^{n} and making use of $\Omega_{j}^{i}=\theta^{i} \wedge \theta^{i}$ one may see that $\bar{\theta}^{i}$ and $\bar{\omega}_{j}^{i}$ satisfy the following equations:

$$
\left\{\begin{array}{l}
d \bar{\theta}^{i}=-\sum_{h} \bar{\omega}_{h}^{i} \wedge \bar{\theta} \tag{6.8}\\
d \bar{\omega}_{j}^{i}=\bar{\theta}^{i} \wedge \bar{\theta}^{j}-\sum_{h} \bar{\omega}_{h}^{i} \wedge \omega_{j}^{h}
\end{array}\right.
$$

FACT 2. - Let \vec{g} denote the quadratic-form $\sum_{i}\left(\bar{\theta}^{i}\right)^{2}+\sum_{i<j}\left(\bar{\omega}_{j}^{i}\right)^{2}$, then $2 n \vec{g}=-B$, where B is the Killing form of $S O(n+1)$. Therefore \vec{g} is a biinvariant metric on $\mathrm{SO}(n+1)$.

Proof. - so $(n+1)$ is isomorphic with the Lie algebra of left invariant vector fields on $S O(n+1)$. An explicit isomorphism can be defined taking the dual basis $\left\{\bar{E}_{k}, \bar{E}_{i}^{j}\right\}$ of $\left\{\bar{\theta}^{k}, \bar{\omega}_{i}^{j}\right\}$, hence any left invariant vector field X can be written in the form:

$$
\begin{equation*}
X=\sum_{i} \bar{\theta}^{i}(X) \bar{E}_{i}+\sum_{i<j} \omega_{j}^{i}(X) \bar{E}_{i}^{j} \tag{6.9}
\end{equation*}
$$

The isomorphism is given by the mapping:

$$
X \rightarrow(A, \xi)
$$

where

$$
(A, \xi)=\left(\begin{array}{cc}
A & \xi \\
r^{r} \xi & 0
\end{array}\right), \quad A=\left(\bar{\omega}_{j}^{i}(X)\right), \quad r \xi=\left(\bar{\theta}^{1}(X), \ldots, \bar{\theta}^{n}(X)\right)
$$

Then the Killing form is is given by.
$B\left(X, X^{\prime}\right)=-n \operatorname{tr}(A, \xi) \circ\left(A^{\prime}, \xi^{\prime}\right)=-2 n\left\{\sum_{i, i} \bar{\omega}_{j}^{i}(X) \bar{\omega}_{i}^{i}\left(X^{\prime}\right)+\sum_{i} \bar{\theta}^{i}(X) \bar{\theta}^{i}\left(X^{\prime}\right)\right\}, \quad$ q.e.d.
Proposition (6.2) follows from Facts 1 and 2, and from proposition (6.1).
Remark 6.2. - The above proposition implies that $T_{1} S^{n}$ with the metric g_{s}^{\prime} is a normal Riemannian homogeneous space, therefore ($T_{1} S^{\prime n}, g_{s}^{\prime}$) is naturally reductive. A naturally reductive decomposition of $s o(n+1)$ is given by

$$
\begin{equation*}
s o(n+1)=\boldsymbol{m} \oplus \boldsymbol{k} \tag{6.10}
\end{equation*}
$$

where

$$
\boldsymbol{m}=\left\{\left(\begin{array}{crc}
0 & \eta & \xi \tag{6.11}\\
-{ }^{r} \eta & 0 & \alpha \\
-{ }^{r} \xi & -\alpha & 0
\end{array}\right)=(\eta, \xi, \alpha) /{ }^{r} \xi,{ }^{r} \eta \in \mathbb{R}^{n}, \alpha \in \mathbb{R}\right\}
$$

and

$$
\boldsymbol{k}=\left\{\left.\left(\begin{array}{lll}
B & 0 & 0 \tag{6.12}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, B \in \operatorname{so}(n-1)\right\}
$$

The geodesics of $\left(T_{1} S^{n}, g_{s}^{\prime}\right)$ through the origin $\left(q_{0}, u_{0}\right)=\psi_{n} \sigma_{u_{0}}(e)$ are orbits of 1-parameter subgroups generated by elements X belonging to m. In the two-dimensional case all geodesics are closed (see [KS]). Of course, for $n \geqslant 3$ this property is no longer true. For instance, the curve

$$
\gamma(t)=\exp (t X)
$$

where $X=(\eta, \xi, 0),{ }^{T} \eta=(0, \ldots, a, 0),{ }^{T} \xi=(0, \ldots, 0, b)$ and a / b irrational, is a geodesic, dense in a torus contained in $T_{1} S^{n}$, which is not closed.

7. - Deformation of the metric g_{s}^{\prime}.

In section 6 we noted that on the spherical tangent bundle $T_{1} M$ we may define Riemannian metrics in analogy with section 4 (see remark 6.1). For instance, since θ^{n} is an invariant differential form under the $O(n-1)$ action on $O M$, and since θ^{n} vanishes on the vertical vectors of the fibration ψ_{n}, we may deduce that the quadratic form

$$
\begin{equation*}
Q_{t}=\sum_{i=1}^{n-1}\left(\theta^{i}\right)^{2}+t^{2}\left(\theta^{n}\right)^{2}+\sum_{i}\left(\omega_{n}^{i}\right)^{2}, \quad t \neq 0 \tag{7.1}
\end{equation*}
$$

induces a metric tensor g_{t} on $T_{1} M$ which is uniquely determined by the condition $\psi_{n}^{*}\left(g_{t}\right)=Q_{t}$.

In this section we will show that if (M, g) is a space of constant sectional cur vature $\sigma=1$, then the metric g_{t} is Einstein when $t^{2}=2 / n(n-1)$. Hence $g_{s}^{\prime}=g_{1}{ }^{-}$ can be an Einstein metric only if $\operatorname{dim} M=2$. Indeed (see [KS]), the Riemannian manifold ($T_{1} S^{2}, g_{s}^{\prime}$) is isometric to the real projective space $\mathbb{R} P^{3}$ endowed with a metric of constant positive curvature $\frac{1}{4}$.

The Einstein metrics $g_{t}, t^{2}=2 / n(n-1)$, on $T_{1} S^{n}$ was defined by S. Kobayashi in $\left[\mathrm{KO}_{1}\right]$ as a particular case of Einstein metrics on S^{1}-principal bundles. This construction was generalized by G. JENSEN ([Je]) to other homogeneous spaces, for instance if M is a Stiefel manifold.

Since ψ_{n}^{*} is injective, the Riemann and the Ricei curvature tensors are uniquely determined by their pull-backs on $O M$. Therefore we will work on $O M$, leaving the computational details to the reader.

First we put:

$$
\begin{equation*}
\varphi^{i}=\theta^{i}, \quad \varphi^{n}=t \theta^{n}, \quad \varphi^{n+i}=\omega_{n}^{i}, \quad i=1, \ldots, n-1 \tag{7.2}
\end{equation*}
$$

From now on we shall employ the following ranges of indices:

$$
i, j, k, h, \ldots=1, \ldots, n-1 ; \quad A, B, C \ldots=1, \ldots, 2 n-1 ; \quad a, b, c \ldots=1, \ldots, n
$$

We consider the following equations:

$$
\left\{\begin{array}{l}
d \varphi^{A}=-\sum_{B}\left(\varphi_{t}\right)_{B}^{A} \Lambda \varphi^{B} \tag{7.3}\\
\left(\varphi_{t}\right)_{B}^{A}+\left(\varphi_{t}\right)_{A}^{B}=0
\end{array}\right.
$$

To compute the differentials $d \varphi^{4}$ we make use of (7.2) and of the structure equations for the metric g on M. Recall that the structure equations of g can be written as follows:

$$
\left\{\begin{array}{l}
d \theta^{a}=-\sum_{a} \omega_{b}^{a} \wedge \theta^{b} \tag{7.4}\\
\Omega_{b}^{a}=d \omega_{b}^{a}+\sum_{c} \omega_{e}^{a} \wedge \omega_{b}^{c}
\end{array}\right.
$$

The 1 -forms $\left(\theta^{a}\right)_{a=1, \ldots, n},\left(\omega_{b}^{a}\right)_{a, b=1, \ldots, n}$ are respectively \mathbb{R}^{n}-valued and so(n)-valued differential forms globally defined on OM. Moreover:

$$
\begin{equation*}
2 \Omega_{b}^{a}=\sum_{a d} \bar{R}_{a b c d} \theta^{c} \wedge \theta^{a} \tag{7.5}
\end{equation*}
$$

where $\bar{R}_{a b c d}$ must be regarded as real-valued functions on $O M$ related to the Riemann curvature tensor R by the formula:

$$
\begin{equation*}
\bar{R}_{a b c a}(u)=\left.R\right|_{p(u)}\left(u_{a}, u_{b}, u_{c}, u_{d}\right), \quad u \in O M \tag{7.6}
\end{equation*}
$$

Now, using Cartan's lemma we see that (7.3) uniquely characterize the forms ($\left.\varphi_{i}\right)_{B}^{1}$: It is a routine matter to deduce the following expression:

$$
\left\{\begin{array}{l}
\left(\varphi_{t}\right)_{j}^{i}=\omega_{j}^{i}+\frac{1}{2} \sum_{h} \bar{R}_{i j n h} \varphi^{n+h} \tag{7.7}\\
\left(\varphi_{t}\right)_{n}^{i}=-\left(\varphi_{t}\right)_{i}^{n}=\frac{t^{2}+1}{2 t} \varphi^{n+i}-\frac{1}{2 t} \sum_{h} \bar{R}_{n i n h} \varphi^{n+h} \\
(\varphi)_{n+j}^{i}=-\left(\varphi_{\phi}\right)_{i}^{n+j}=-\frac{1}{2} \sum_{h} \bar{R}_{h i n j} \varphi^{\bar{h}}+\frac{t^{2}-1}{2 t} \delta_{j}^{i} \varphi^{n}-\frac{1}{2 t} \bar{R}_{n i n j} \varphi^{n} \\
\left(\varphi_{t}\right)_{n+j}^{n}=-\left(\varphi_{t}\right)_{n}^{n+j}=\frac{t^{2}-1}{2 t} \varphi^{j}+\frac{1}{2 t} \sum_{h} \bar{R}_{n h n j} \varphi^{n} \\
\left(\varphi_{t}\right)_{n+j}^{n+i}=\omega_{j}^{i}
\end{array}\right.
$$

Let $\left(\Phi_{t}\right)_{B}^{A}$ be the forms given by the equation:

$$
\begin{equation*}
\left(\Phi_{t}\right)_{B}^{A}=d\left(\varphi_{t}\right)_{B}^{A}+\sum_{\sigma}\left(\varphi_{t}\right)_{C}^{A} \wedge\left(\varphi_{t}\right)_{B}^{C} \tag{7.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
R_{t}=2 \sum\left(\Phi_{t}\right)_{B}^{A} \otimes\left(\varphi^{A} \wedge \varphi^{B}\right) \tag{7.9}
\end{equation*}
$$

is the pull-back of the Riemann curvature tensor of g_{t}. The pull-back of the Ricci tensor is given by

$$
\begin{equation*}
\varrho_{t}=\sum_{A, B}\left(\varrho_{t}\right)_{A B} \varphi^{A} \otimes \varphi^{B} \tag{7.10}
\end{equation*}
$$

where the components $\left(\varrho_{t}\right)_{A B}$ are given by the formula:

$$
\left\{\begin{array}{l}
\left(\varrho_{t}\right)_{i j}=\bar{R}_{i j}-\frac{t^{4}-1}{2 t^{2}} \delta_{i j}-\frac{1}{2 t^{2}} \sum_{k} \bar{R}_{n i n k} \bar{R}_{n j n k}-\frac{1}{2} \sum_{k r} \bar{R}_{i r n k} \bar{R}_{j r n k} \tag{7.11}\\
\left(\varrho_{t}\right)_{i n}=\frac{4 t-(t-1)^{2}(t+1)}{4 t^{2}} \bar{R}_{i n}-\frac{1}{2 t} \sum_{k r} \bar{R}_{i r n k} \bar{R}_{n r n k} \\
\left(\varrho_{t}\right)_{i n+j}=\frac{1}{2 t}\left(\nabla_{n} \bar{R}\right)_{n i n j}-\frac{1}{2} \sum_{r}\left(\nabla_{r} \bar{R}\right)_{i r n j}, \\
\left(\varrho_{t}\right)_{n n}=\frac{t^{4}-1}{2 t^{2}}(n-1)+\frac{1}{t^{2}} \bar{R}_{n n}-\frac{1}{2 t^{2}} \sum_{r s} \bar{R}_{n r n s} \bar{R}_{n r n s} \\
\left(\varrho_{t}\right)_{n n+j}=-\frac{1}{2} \sum_{r}\left(\nabla_{r} \bar{R}\right)_{n r n j}, \\
\left(\varrho_{t}\right)_{n+i n+j}=\left\{(n-2)-\frac{\left(t^{2}-1\right)^{2}}{2 t^{2}}\right\} \delta_{i j}+\frac{1}{2 t^{2}} \sum_{r} \bar{R}_{n r n i} \bar{R}_{n r n j}+\frac{1}{4} \sum_{r s} \bar{R}_{r s m i} \bar{R}_{r s n j}
\end{array}\right.
$$

with
(7.12) $d\left(\bar{R}_{a b c a}\right)=\sum_{m=1}^{n}\left\{\left(\nabla_{m} \bar{R}\right)_{a b c d} \theta^{m}+\bar{R}_{m b c d} \omega_{a}^{m}+\bar{R}_{a m c d} \omega_{b}^{m}+\bar{R}_{a b m d} \omega_{c}^{m}+\bar{R}_{a b c m} \omega_{d}^{m}\right\}$.

If (M, g) is a space of constant curvature λ, (7.11) may be re-written as follows:

$$
\left\{\begin{array}{l}
\left(\varrho_{t}\right)_{i j}=-\frac{t^{4}-2 \lambda(n-1) t^{2}+\lambda^{2}-1}{2 t^{2}} \delta_{i j} \tag{7.13}\\
\left(\varrho_{t}\right)_{n n}=\frac{t^{4}-(\lambda-1)^{2}}{2 t^{2}}(n-1) \\
\left(\varrho_{t}\right)_{n+j i n+j}=-\frac{t^{4}-2(n-1) t^{2}-\lambda^{2}+1}{2 t^{2}} \delta_{i j}
\end{array}\right.
$$

where the components that do not appear in (7.13) vanish identically on $O M$. From (7.13) we obtain

Proposition 7.1. - Let (M, g) be a space of constant curvature λ, then $\left(T_{1} M, g_{t}\right)$ is an Einstein space if either $\lambda=1$, and $t^{2}=2((n-1) / n)$ or else $\lambda=0$ and $n=1$, $t^{2}=1$.

Naturally, the latter case is trivial.
Remark 7.1. - Equation (7.1) may be written in the form

$$
\begin{equation*}
Q_{t}=\sum_{a}\left(\theta^{a}\right)^{2}+\sum_{i}\left(\omega_{n}^{i}\right)^{2}+\left(t^{2}-1\right)\left(\theta^{n}\right)^{2} \tag{7.14}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
g_{t}=g_{s}^{\prime}+\left(t^{2}-1\right) \gamma, \tag{7.15}
\end{equation*}
$$

where γ is the 1 -form induced on $T_{1} M$ by θ^{n}. Since $\psi_{n}^{*}(\gamma)=\theta^{n}$, we get

$$
\begin{equation*}
\left.\gamma\right|_{(r, v)}(X)=g_{q}(d \pi(X), v), \quad X \in T_{(t, v)}\left(T_{1} M\right) \tag{7.16}
\end{equation*}
$$

Then γ is the restriction to $T_{1} M$ of the Liouville form of $T M$ (see [BE], p. 21), i.e. γ is the canonical contact form on $T_{1} M$ (see $\left[\mathrm{CH}_{2}\right]$ or [BL]).

Thus the Einstein metric on $T_{1} \delta^{n}$ defined by Kobayashi can be obtained by deforming the induced Sasaki metric g_{s}^{\prime} along the direction of the canonical contact form of $T_{1} S^{n}$.

Clearly the projection $\pi: T_{1} S^{n} \rightarrow S^{n}$ is no longer a Riemannian submersion. This is the price to be paid for an Einstein metric. In context, see CALABI [CA] where the construction of Kähler metrics on holomorphic vector bundles is discussed.

BIBLIOGRAPHY

[BBG] E. Berger - R. Bryant - P. Griffiths, The Gauss equations and rigidity of isometric embeddings, Duke Math. Journal, 50 (1983), pp. 803-892.
[BE] A. L. Besse, Manifolds all of whose Geodesics are Closed, Springer-Verlag: Berlin, Heidelberg, New York (1978).
[BL] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., no. 509, Springer-Verlag: Berlin, Heidelberg, New York (1976).
[CA] E. Calabi, Métriques kähleriennes et fibrés holomorphes, Ann. Sci. Norm. Sup., 12 (1979), pp. 269-294.
[CE] J. Cheeger - D. G. Ebin, Comparison Theorems in Riemannian Geometry, NorthHolland Publ. Company, Amsterdam (1975).
[CG] J. Cheeger - D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. Math., 96 (1972), pp. 413-443.
$\left[\mathrm{CH}_{3}\right]$ S. S. Chern, Topies in Differential Geometry, Lecture Notes, Institute for Advanced Study, Princeton (1951).
$\left[\mathrm{CH}_{2}\right]$ S. S. Chern - R. S. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, Arbeitstagüng Bonn 1984 Proceedings, Lecture Note in Math., no. 1111, Springer-Verlag: Berlin, Heidelberg, New York (1985).
[DO] P. Dombrowski, On the geometry of the tangent bundle, J. reine und angew. Math., 210 (1962), pp. 73-78.
[JE] G. Jensen, Einstein metrics on principal fibre bundles, J. Diff. Geom., 8 (1973), pp. 599-614.
[KN] S. Kobayashi - K. Nomizu, Foundations of Differential Geometry, Intersc. Publ., New York (1963 e 1969).
[KO K_{1}] S. Kobayashi, Topology of positively pinched Kähler manifolds, Tôhoku Math. J., 15 (1963), pp. 121-139.
[KO2] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag: Berlin, Heidelberg, New York (1972).
[KS] W. Kungenberg - S. Sasaki, On the tangent sphere bundle of a 2-sphere, Tôhoku Math. J., 27 (1975), pp. 49-56.
[KW] 0. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. reine und angew. Math., 250 (1971), pp. 124-129.
[KWS] O. Kowalski - M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundle-a classification, preprint, Prague (1986).
[SA] A. Sanini, Applicazioni armoniche tra fibrati tangenti unitari, Rend. Sem. Mat. Univ. Pol. Torino, 43 (1985), pp. 159-170.
[SI] I. M. Srnger, Infinitesimally homogeneous spaces, Comm. on Appl. and Pure Math., 13 (1960), pp. 685-697.
[YI] K. Yano - S. Ishihara, Tangent and Cotangent Bundles, M. Dekker Inc., New York (1973).
[WO] J. A. Woif, Spaces of Constant Curvature, Publish or Perish, IV edition, Berkeley (1977).

