Yet Another Proof of the Cascade Decomposition Theorem for Finite Automata: Correction

by

PAUL ZEIGER

Dr. Jurg Nievergelt of the University of Illinois has pointed out that Method II can be blocked in a way not covered in lines 9 and 10 of page 227 (Math. Systems Theory 1 (1967), 225-228): if sgrp A consists entirely of permutations and resets, then T will be the ideal of resets and V the group of units; Method II will then produce a first component that is permutation-reset, and hence no simpler than the original automaton. To salvage the proof we eliminate the resets from this first component by modifying the method as follows: Let st $B_1 = V$ instead of T, then whenever u is in T, let p' = p (instead of \underline{u}), and $r' = p^{-1}$ (the state to which \underline{u} resets), instead of p(r). This method (call it IIA) then suffices to decompose a permutation-reset automaton into a permutation automaton followed by a reset automaton; since the methods as originally stated bring an arbitrary automaton to a cascade of permutation-reset automata, Method IIA finishes the job.

Invariance for Ordinary Differential Equations: Correction

by

James A. Yorke

We wish to make some corrections to our recent paper*. At the end of the statement of Theorem 2.3 on p. 357, add the words:

"... if g(x) is subtangential to V for all $x \in \Lambda$." On p. 360, line 4, insert $\overline{J} \cap \overline{I}$ between the words "so" and "is". On p. 361, line 16, add the phrase "... when $\varphi = w(\varphi(t), u(t))$ almost everywhere" after the word "Then", and, in the last display, replace the first equality sign by \leq , noting (1) that this display is valid for almost all τ , and (2) that it now follows that $V(\varphi(t), t)$ is an absolutely continuous non-increasing function.

On p. 363, line 6, the condition that $t_n \to \infty$ is needed, and in lines 19-20, $t + t_n$ should be replaced by $t + t_{n_i}$. On p. 368, the reference should be to Theorem 3.3, not Theorem 3.6.

^{*}Math. Systems Theory 1 (1967), 353-372.