Skip to main content
Log in

Someras-transformed cells have increased radiosensitivity and decreased repair of sublethal radiation damage

  • Published:
Somatic Cell and Molecular Genetics

Abstract

We examined the effect of60Co irradiation on the clonogenic survival of rat NRK cells, NRK cells carrying a temperature-sensitive viralK-ras oncogene (tsK-NRK), mouse NIH 3T3 cells, and NIH 3T3 cells transformed with the human bladder cancer (T24)H-ras oncogene (PAP2). We tested the hypothesis thatras oncogene expression renders cells more resistant to radiation, but found in both systems thatras-transformed cells were more, not less, sensitive to radiation. We also found indications of altered repair of sublethal radiation damage. PAP2 cells were more sensitive to radiation than NIH 3T3 cells. Increased sensitivity was reflected in a decreased shoulder region of the survival curve with little effect on its slope (D 0). TsK-NRK cells were also slightly more sensitive to radiation than NRK and exhibited decreased repair of sublethal damage at both the permissive and nonpermissive temperatures. Thus, we found that expression ofras oncogenes is not always associated with increased radiation resistance. In summary, our results suggest that (1)ras oncogene expression in some cells may be associated with increased, rather than decreased, radiation sensitivity, and (2)ras oncogene expression may alter the shoulder region of the does response curve, suggesting changes in the repair of sublethal radiation damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Sklar, M.D. (1988).Science 239645–647.

    Google Scholar 

  2. FitzGerald, T.J., Daugherty, C., Kase, K., Rothstein, L.A., McKenna, M., and Greenberger, J.S. (1985).Am. J. Clin. Oncol. 8517–522.

    Google Scholar 

  3. De Biasi, F., Del Sal, G., and Hand, P.H. (1989).Int. J. Cancer 43431–435.

    Google Scholar 

  4. Barbacid, M. (1989).Annu. Rev. Biochem. 56779–827.

    Google Scholar 

  5. Chambers, A.F., and Tuck, A.B. (1988). Anticancer Res.8861–872.

    Google Scholar 

  6. Shih, T.Y., Weeks, M.O., Young, H.A., and Scolnick, E.M. (1979).J. Virol. 31546–556.

    Google Scholar 

  7. Durkin, J.P., and Whitfield, J.F. (1987).Mol. Cell. Biol. 7444–449.

    Google Scholar 

  8. Hill, S.A., Wilson, S., and Chambers, A.F. (1988).J. Natl. Cancer Inst. 80(7):484–490.

    Google Scholar 

  9. Craig, A.M., Nemir, M., Mukherjee, B.B., Chambers, A.F., and Denhardt, D.T. (1988).Biochem. Biophys. Res. Commun. 157166–173.

    Google Scholar 

  10. Whitmore, G.F., Gulyas, S., and Kotalik, J. (1967).Natl. Cancer Inst. Monogr. 24141–156.

    Google Scholar 

  11. Elkind, M.M., and Whitmore, G.F. (1967).Radiobiology of Cultured Mammalian Cells. (Gordon & Breach, New York).

    Google Scholar 

  12. Elkind, M.M., and Sutton, H. (1959).Nature 1841293–1295.

    Google Scholar 

  13. Koch, C.J., Meneses, J.J., and Harris, J.W. (1977).Radiat. Res. 70542–551.

    Google Scholar 

  14. Utsumi, H., and Elkind, M.M. (1979).Radiat. Res. 77346–360.

    Google Scholar 

  15. Raaphorst, G.P., and Dewey, W.C. (1979).Radiat. Res. 77325–340.

    Google Scholar 

  16. Nolan, W.T., Thompson, J.E., LePock, J.R., and Kruw, J. (1981).Int. J. Radiat. Biol. 39195–205.

    Google Scholar 

  17. Little, J.B. (1971).Int. J. Radiat. Biol. 2087–92.

    Google Scholar 

  18. Kasid, U.N., Weichselbaum, R.R., Brennan, T., Mark, G.E., and Dritschilo, A. (1989).Cancer Res. 493396–3400.

    Google Scholar 

  19. Weichselbaum, R.R., Beckett, M.A., Dahlberg, W., and Dritschilo, A. (1988).Int. J. Radiat. Oncol. Biol. Phys. 14907–912.

    Google Scholar 

  20. Carmichael, J., Degraff, W.G., Gamson, J., Russo, D., Gazdar, A.F., Levitt, M.L., Minna, J.D., and Mitchell, J.B. (1989).Eur. J. Cancer Clin. Oncol. 25527–534.

    Google Scholar 

  21. Gazdar, A.F., Carney, D.N., Nau, M.M., and Minna, J.D. (1985).Cancer Res. 452924–2930.

    Google Scholar 

  22. Kelland, L.R., and Steel, G.G. (1988).Radiother. Oncol. 13225–232.

    Google Scholar 

  23. Tofilon, P.J., Vines, C.M., Meyn, R.E., Wike, J., and Brock, W.A. (1989).Br. J. Cancer 5954–60.

    Google Scholar 

  24. Kasid, U., Pfeifer, A., Brennan, T., Beckett, M., Weichselbaum, R.R., Dritschilo, A., and Mark, G.E. (1989).Science 2431354–1356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J.F., Chambers, A.F. & Tam, A.S.K. Someras-transformed cells have increased radiosensitivity and decreased repair of sublethal radiation damage. Somat Cell Mol Genet 16, 39–48 (1990). https://doi.org/10.1007/BF01650478

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01650478

Keywords

Navigation