Skip to main content
Log in

Optimization of an electrochemical hydrogen-chlorine energy storage system

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A mathematical model is presented for the optimization of the hydrogen-chlorine energy storage system. Numerical calculations have been made for a 20 MW plant being operated with a cycle of 10 h charge and 10h discharge. Optimal operating parameters, such as electrolyte concentration, cell temperature and current densities, are determined to minimize the investment of capital equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A ex :

design heat transfer area of heat exchanger (m2)

a F :

electrode area (m2)

\(C_{p,Cl_2 } \) :

heat capacity of liquid chlorine (J kg−1K−1)

\(C_{V,H_2 } \) :

heat capacity of hydrogen gas at constant volume (J kg−1 K−1)

c p,hcl :

heat capacity of aqueous HCl (J kg−1 K−1)

C $acid :

cost coefficient of HCl/Cl2 storage ($ m−1.4)

C $ex :

cost coefficient of heat exchanger ($ m−1.9)

C $F :

cost coefficient of cell stack ($ m−2)

\(C_{\$ ,H_2 } \) :

cost coefficient of H2 storage ($ m−1.6)

C $j :

cost coefficient of equipmentj ($/unit capacity)

C $pipe :

cost coefficient of pipe ($ m−1)

C $pump :

cost coefficient of pump ($ J−0.98 s−0.98)

E :

cell voltage (V)

F :

Faraday constant (9.65 × 107 C kg-equiv−1)

F j :

design capacity of equipmentj (unit capacity)

G D :

design electrolyte flow rate (m3 h−1)

\(H_{f,Cl_2 }^0 \) :

heat of formation of liquid chlorine (J kg-mol−1 C12)

H 0f ,HCl :

heat of formation of aqueous HCl (J kg-mol−1HCl)

H m :

total mechanical energy losses (J)

I :

total current flow through cell (A)

i :

operating current density of cell stack (A m−2)

L :

length of pipeline (m)

N :

number of parallel pipelines

ΔnHCl :

change in the amount of HCl (kg-mole)

P :

pressure of HCl/Cl2 storage (kPa)

p 1 :

H2 storage pressure at the beginning of charge (kPa)

p 2 :

H2 storage pressure at the end of charge (kPa)

Q ex :

heat removed through the heat exchanger (J)

R :

universal gas constant (8314 J kg-mol−1 K−1)

\(S_{Cl_2 } \) :

the solubility of chlorine in aqueous HCl (kg-mole Cl2 m−3 solution)

T :

electrolyte temperature (K)

T 2 :

electrolyte temperature at the end of charge (K)

T max :

maximum electrolyte temperature (K)

T min :

minimum electrolyte temperature (K)

t :

final time (h)

t ex :

the length of time for the heat exchanger operation (h)

Uit ex :

overall heat transfer coefficient (J h−1 m−2 K−1)

V acid :

volume of HCl/Cl2 storage (m3)

\(V_{H_2 } \)}:

volume of H2 storage (m3)

v :

design linear velocity of electrolyte (m s−1)

\(W_{Cl_2 } \) :

amount of liquid chloride at timet (kg)

\(W_{Cl_2 ,0} \) :

amount of liquid chlorine at timet 0 (kg)

w hcl :

amount of aqueous HCl solution at timet (kg)

W p :

design brake power of pump (J s−1)

X :

electrolyte concentration of HCl at timet (wt fraction)

X f :

electrolyte concentration of HCl at the end of charge (wt fraction)

X i :

electrolyte concentration of HCl at the beginning of charge (wt fraction)

X 0 :

electrolyte concentration of HCl at timet 0 (wt fraction)

Y :

objective function to be minimized ($ kW−1 h−1)

α j :

the scale-up exponent of equipmentj

ε :

overall electric-to-electric efficiency (%)

ε acid :

safety factor of HCl/Cl2 storage

\(\varepsilon _{Cl_2 } \) :

fractional excess of liquid chlorine

η p :

pump efficiency

\(\bar \rho _{HCl} \) :

average density of HCl solution over the discharge period (kg m−3)

References

  1. E. Gileadi, S. Srinivasan, F. J. Salzano, C. Braun, A. Beaufrere, S. Gottsfeld, L. J. Nuttal and A. B. LaConti,J. Power Sources 2 (1977) 191.

    Google Scholar 

  2. D. -T. Chin, R. S. Yeo, J. McBreen and S. Srinivasan,J. Electrochem. Soc. 126 (1979) 713.

    Google Scholar 

  3. R. S. Yeo and J. McBreen,J. Electrochem. Soc. 126 (1979) 1682.

    Google Scholar 

  4. R. S. Yeo, J. McBreen, A. C. C. Tseung, S. Srinivasan and J. McElroy,J. Appl. Electrochem. in press.

  5. R. S. Yeo and D. T. Chin,J. Electrochem. Soc. 127 (1977) 549.

    Google Scholar 

  6. D. Lucesoli and P. Degobert,Ann. Combust. Liquides 25 (1970) 1037.

    Google Scholar 

  7. A. P. Sharaevskii, L. I. Stolyarenko and V. A. Kasatkina,Industrial Laboratory 38 (1972) 411.

    Google Scholar 

  8. J. Ceynowa and R. Wodzki,J. Power Sources 1 (1976) 323.

    Google Scholar 

  9. Y. A. Brovalskii and V. V. Sinyavskii,Sov. Phys. Tech. Phys. 17 (1973) 1530.

    Google Scholar 

  10. L. Belove and A. B. Mundel,Proc. 22nd Power Sources Symp., The Electrochemical Society, Princton, N.J. (1968) pp. 46–50.

    Google Scholar 

  11. K. V. Kordesch and M. B. Clark,Proc. 24th Power Sources Symp., The Electrochemical Society, Princtone, N.J. (1970) p. 207.

    Google Scholar 

  12. H. S. Spacil and F. G. Will,Proc. Symp. on Battery Design and Optimization, Vol. 79-1 The Electrochemical Society, Princeton, N.J. (1979) p. 222.

    Google Scholar 

  13. H. Shimotake, E. C. Gay and P. A. Nelson,ibid (1979) p. 408.

    Google Scholar 

  14. A. P. Hardt, H. M. Cota, J. L. Fick and T. Katan,Electrochim. Acta 8 (1963) 815.

    Google Scholar 

  15. H. B. Urbach, D. E. Icenhower and R. J. Bowen,Proc. 25th Power Source Symp., The Electrochemical Society, Princeton, N.J. (1972) p. 182.

    Google Scholar 

  16. H. Cnobloch and H. Kohlmueller,Chem. -Ztg. 97 (1973) 502.

    Google Scholar 

  17. L. Oniciu and S. Agachi,Ser. Chem. 19 (1974) 76.

    Google Scholar 

  18. R. L. Hadley and A. J. Catotti,Proc. 22nd Power Sources Symp., The Electrochemical Society, Princeton, N.J. (1968) p. 42.

    Google Scholar 

  19. V. M. Alashkin, B. P. Nesterov and N. V. Korovin,Electrokhimiya 13 (1977) 311.

    Google Scholar 

  20. J. Newman,Electrochim. Acta 24 (1979) 223.

    Google Scholar 

  21. N. Ibl and P. M. Robertson,Electrochim. Acta 18 (1973) 897.

    Google Scholar 

  22. N. Ibl,ibid 22 (1977) 465.

    Google Scholar 

  23. P. Gallone and G. Messner,Electrochem. Technol. 3 (1965) 321.

    Google Scholar 

  24. M. M. Jaksic,Electrochim. Acta 21 (1976) 1127.

    Google Scholar 

  25. M. S. Peters and K. D. Timmerhaus, ‘Plant Design and Economics for Chemical Engineers’, McGraw-Hill, New York (1968).

    Google Scholar 

  26. K. L. Hsueh, MS Thesis, Clarkson College of Technology, Potsdam, New York (1979).

    Google Scholar 

  27. J. McElroy, ‘Hydrogen-Halogen Energy Storage Systems Development’, Phase I Summary Report, Contract No. 410127-S, General Electric Co., Direct Energy Conversion Programs, Wilmington, Massachusetts (1977).

    Google Scholar 

  28. G. S. G. Beveridge and R. S. Schechter, ‘Optimization Theory and Practice’, McGraw-Hill, New York (1970).

    Google Scholar 

  29. A. Perego, private communication, Oronzio de Nora Impianti Elettrochimici SpA, Milano, Italy (1979).

  30. E. E. Ludwing, ‘Applied Process Design for Chemical Plants’, Gulf Publishing Co., Houston, Texas (1965).

    Google Scholar 

  31. P. M., Spaziante, G. C. Sioli, R. Trotta and A. Perego, ‘Hydrogen/Chlorine Energy Storage System Safety Assessment and Plant Cost Estimate’, Final Report on BNL contract No. 451857-S, ODN Job No. 018/BNL, Oronzio de Nora Impianti Elettrochimici SpA, Milano, Italy (1979), Brookhaven National Laboratory Upton N.Y. Report No. BNL-51070.

    Google Scholar 

  32. A. Pikulick and H. E. Diaz,Chem. Eng. 21∶:84 (1977) 106.

    Google Scholar 

  33. J. C. Bailer, H. J. Emeleus, S. R. Nyholm and A. F. Trotman-Dickenson, ‘Comprehensive Inorganic Chemistry’, Pergamon Press, New York (1973).

    Google Scholar 

  34. R. H. Perry, ‘Chemical Engineering Handbook’ 5th edn, McGraw-Hill, New York (1973).

    Google Scholar 

  35. E. W. Washburn, ‘International Critical Tables of Numerical Data, Physics, Chemistry and Technology’, 1st edn, Vol. 5, McGraw-Hill, New York (1929).

    Google Scholar 

  36. J. W. Mellor, ‘A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Supplement II, Part I’, Longmans, Green Co., New York (1956).

    Google Scholar 

  37. B. S. Gottfried and J. Weisman, ‘Introduction to Optimization Theory’, Prentice-Hall, Englewood Cliffs, New Jersey (1973).

    Google Scholar 

  38. J. L. Kuester and M. H. Mize, ‘Optimization Techniques with Fortran’, McGraw-Hill, New York (1973).

    Google Scholar 

  39. R. Hooke and T. A. Jeeves,J. Assoc. Computer Machines 8 (1961) 212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsueh, K.L., Chin, D.T., Mcbreen, J. et al. Optimization of an electrochemical hydrogen-chlorine energy storage system. J Appl Electrochem 11, 503–515 (1981). https://doi.org/10.1007/BF01132439

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01132439

Keywords

Navigation