Skip to main content
Log in

Effect of gas sparging on mass transfer in zinc electrolytes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of sparging on mass transfer is reported for zinc electrolytes containing antimony and antimony-free electrolytes. Comparative results with non-sparged electrolytes show, an enhancement in mass transfer. In the sparged electrolyte, the mass transfer coefficients,K Zn, increase with increasing current density, antimony additions, and sulphuric acid concentration. The deposition morphology is consistent with the mass transfer results. A relationship between the mass transfer coefficients for sparged and non-sparged systems is obtained. The relationship correlates satisfactorily with the data and provides a quantitative method for determining the degree of enhancement in mass transfer coefficients due to sparging. The correlation which best represents the mass transfer data for sparged zinc electrolytes is

$$Sh = 105(ReSc)^{0.23} $$

whereSh, Re, andSc are the Sherwood, Reynolds, and Schmidt numbers, respectively. The correlation represents the case where sparging is applied to a gas evolving electrode, hydrogen in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Johnson and L. E. Pfister, The Fourth AES Continuous Strip Plating Symposium, American Electroplater's Society, Inc., Winter Park, FL, May (1985) Dl.

  2. S. F. Chen, PhD Dissertation, University of Missouri-Rolla (1986) pp. 55–84.

  3. L. Sigrist, O. Dossenbach, and N. Ibl,Int. J. Heat Mass Transfer 22 (1978) 1393–9.

    Google Scholar 

  4. G. H. Sedahmed,J. Appl. Electrochem. 15 (1985) 777.

    Google Scholar 

  5. H. Vogt, in Comprehensive Treatise of Electrochemistry’, Vol. 6 (edited by E. Yeager, J. O'M Bockris, B. E. Conway, and S. Sarangapani), Plenum Press, New York (1983) p. 445.

    Google Scholar 

  6. V. A. Ettel, B. V. Tilak, and A. S. Gendron,J. Electrochem. Soc. 121 (1974) 867.

    Google Scholar 

  7. G. H. Sedahmed, H. A. Farag, A. A. Zatout, and F. A. Katout,J. Appl. Electrochem. 16 (1986) 374.

    Google Scholar 

  8. G. H. Sedahmed and L. W. Schmilt,Can. J. Chem. Eng. 60 (1982) 767.

    Google Scholar 

  9. G. H. Sedahmed,J. Appl. Electrochem. 8 (1978) 399.

    Google Scholar 

  10. 10 (1980) 351.

    Google Scholar 

  11. S. Mohanta and T. Z. Fahidy,7 (1977) 235.

    Google Scholar 

  12. J. R. Cuzmar, PhD Dissertation, University of Missouri-Rolla (1985) pp. 47–108.

  13. L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 18 (1973) 543.

    Google Scholar 

  14. A. Y. Hosny, PhD Dissertation University of Missouri-Rolla (1987).

  15. H. Vogt,Electrochim. Acta 23 (1978) 203.

    Google Scholar 

  16. R. Winand, Electrocrystallization, in ‘Application of Polarization Measurements in the Control of Metal Deposition’ (edited by I. H. Warren) Elsevier Science, Amsterdam, The Netherlands (1984) pp. 47–83.

    Google Scholar 

  17. E. W. Washburn, ‘International Critical Tables,’, McGraw-Hill, New York (1929) 65.

    Google Scholar 

  18. L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosny, A.Y., O'Keefe, T.J., Johnson, J.W. et al. Effect of gas sparging on mass transfer in zinc electrolytes. J Appl Electrochem 22, 596–605 (1992). https://doi.org/10.1007/BF01092607

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01092607

Keywords

Navigation