Skip to main content
Log in

Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of heptabarbital using aperiodic EEG analysis

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The concentration EEG effect relationship of heptabarbital was modeled using effect parameters derived from aperiodic EEG analysis. Male Wistar rats (n=10) received an intravenous infusion of heptabarbital at a rate of 6–9 mg/kg per min until burst suppression with isoelectric periods of 5 sec or longer. Arterial blood samples were obtained and EEG was measured continuously until recovery of baseline EEG and subjected to aperiodic analysis for quantification. Two EEG parameters, the amplitudes per second (AMP) and the total number of waves per second (TNW), in five discrete frequency ranges and for two EEG leads were used as descriptors of the drug effect on the brain. The EEG parameters responded both qualitatively and quantitatively different to increasing concentrations of heptabarbital. Monophasic concentration effect curves (decrease) were found for the frequency ranges >2.5 Hz and successfully quantified with a sigmoidal Emax model after collapsing the hysteresis by a nonparametric modeling approach. For the parameter TNW in the 2.5–30 Hz frequency range the value of the pharmacodynamic parameters EC50, E max , and n (¯x± SD) were 78±7 mg/L, 11.4±1.7 waves/sec and 5.0±1.5, respectively. For other discrete frequency ranges, differences in EC50 were observed, indicating differences in sensitivity to the effect of heptabarbital. In the 0.5±2.5 Hz frequency range biphasic concentration effect relationships (increase followed by decrease) were observed. To fully account for the hysteresis in these concentration effect relationships, postulation of two effect compartments was necessary. To characterize these biphasic effect curves two different pharmacodynamic models were evaluated. Model 1 characterized the biphasic concentration effect relationship as the summation of two sigmoidal Emax models, whereas Model 2 assumed the biphasic effect to be the result of only one inhibitory mechanism of action. With Model 1 however realistic parameter estimation was difficult because the maximal increase could not be measured, resulting in high correlations between parameter estimates. This seriously limits the value of Model 1. Model 2 involves besides estimation of the classical pharmacodynamic parameters E max , EC50, and n also estimation of the maximal disinhibition Amax. This model is a new approach to characterize biphasic drug effects and allows, in principle, reliable estimation of all relevant pharmacodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. G. Holford and L. B. Sheiner. Understanding the dose-effect relationship: Clinical application of pharmacokinetic-pharmacodynamic models.Clin. Pharmacokin. 6:429–453 (1981).

    Article  CAS  Google Scholar 

  2. G. Levy. Pharmacokinetic and pharmacodynamic considerations in therapeutic drug concentration monitoring. In D. D. Breimer and P. Speiser (eds.),Topics in Pharmaceutical Sciences, Elsevier, Amsterdam, The Netherlands, 1983, pp. 43–50.

    Google Scholar 

  3. J. Dingemanse, M. Danhof, and D. D. Breimer. Pharmacokinetic-pharmacodynanic modeling of CNS drug effects: An overview.Pharmacol Ther. 38:1–52 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. J. Dingemanse, D. Thomassen, B. H. Mentink, and M. Danhof. Strategy to assess the role of (inter)active metabolites in pharmacodynamic studies in-vivo: A model study with heptabarbital.J. Pharm. Pharmacol. 40:552–557 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine.Clin, Pharmacol. Ther. 25:358–371 (1979).

    CAS  Google Scholar 

  6. N. H. G. Holford and L. B. Sheiner. Pharmacokinetic and pharmacodynamic modeling in vivo.CRC Crit. Rev. Bioeng. 5:273–322 (1981).

    CAS  Google Scholar 

  7. W. M. Herrmann and U. Irrgang. An absolute must in clinicopharmacological research: Pharmaco-electroencephalography, its possibilities and limitations.Pharmacopsychiatry 16:134–142 (1983).

    Article  CAS  Google Scholar 

  8. W. M. Herrmann and E. Schaerer. Pharmaco-EEG: Computer EEG analysis to describe the projection of drug effects on a functional cerebral level in humans. In F. H. Lopes da Silva, W. Storm van Leeuwen, and A. Rémond (eds.),Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2, Elsevier, Amsterdam, The Netherlands, 1986, pp. 386–445.

    Google Scholar 

  9. R. J. Hudson, D. R. Stanski, L. J. Saidman, and E. Meathe. A model for studying depth of anesthesia and acute tolerance to thiopental.Anesthesiology 59:301–308 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. D. R. Stanski, R. J. Hudson, T. D. Homer, L. J. Saidman, and E. Meathe. Pharmacodynamic modeling of thiopental anesthesia.J. Pharmacokin. Biopharm. 12:223–240 (1984).

    Article  CAS  Google Scholar 

  11. H. Schwilden, J. Schüttler, and H. Stoeckel. Quantitation of the EEG and pharmacodynamic modelling of hypnotic drugs: Etomidate as an example.Eur. J. Anaesthesiol. 2:121–131 (1985).

    CAS  PubMed  Google Scholar 

  12. T. D. Homer and D. R. Stanski. The effect of increasing age on thiopental disposition and anesthetic requirement.Anesthesiology 62:714–724 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. J. R. Arden, F. O. Holley, and D. R. Stanski. Increased sensitivity to etomidate in the elderly: Initial distribution versus altered brain response.Anesthesiology 65:19–27 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. J. Schüttler, H. Schwilden, and H. Stoeckel. Pharmacokinetic-dynamic modeling of diprivan.Anesthesiology 65:A549 (1986).

    Article  Google Scholar 

  15. J. Schüttler, D. R. Stanski, P. F. White, A. J. Trevor, Y. Horai, D. Verotta, and L. B. Sheiner. Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man.J. Pharmacokin. Biopharm. 15:241–253 (1987).

    Article  Google Scholar 

  16. R. P. Koopmans, J. Dingemanse, M. Danhof, G. P. M. Horsten, and C. J. van Boxtel. Pharmacokinetic-pharmacodynamic modelling of midazolam effects on the human central nervous system.Clin. Pharmacol. Ther. 44:14–23 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. D. J. Greenblatt, B. L. Ehrenberg, J. Gunderman, A. Locniskar, J. M. Scavone, J. S. Hramatz, and R. I. Shader. Pharmacokinetic and EEG study of intravenous diazepam, midazolam and placebo.Clin. Pharmacol Ther. 45:356–365 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. T. K. Gregory and D. C. Pettus. An electroencephalographic processing algorithm specifically intended for analysis of cerebral activity.J. Clin. Monit. 2:190–197 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. M. Danhof and G. Levy. Kinetics of drug action in disease states. V. Acute effect of urea infusion on phenobarbital concentrations in rats at onset of loss of righting reflex.J. Pharmacol. Exp. Ther. 232:430–434 (1985).

    CAS  PubMed  Google Scholar 

  20. M. C. Dementrescu. The aperiodic character of the electroencephalogram.Physiologist 18:189 (1975).

    Google Scholar 

  21. J. D. Unadkat, F. Bartha, and L. B. Sheiner. Simultaneous modeling of pharmacokinetics and pharmacodynamics with nonparametric kinetic and dynamic models.Clin. Pharmacol. Ther. 40:86–93 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. L. K. Paalzow, G. H. M. Paalzow, and P. Tfelt-Hansen. Variability in bioavailability: Concentration versus effect. In M. Rowland, L. B. Sheiner, and J. L. Steimer (eds.),Variability in Drug Therapy: Description, Estimation and Control, Raven Press, New York, 1985, pp. 167–185.

    Google Scholar 

  23. W. D. Winters. A review of the continuum of drug induced states of excitation and depression.Prog. Drug. Res. 26:225–258 (1982).

    CAS  PubMed  Google Scholar 

  24. S. C. Harvey. Hypnotics and sedatives. In A. Gilman, L. S. Goodman, T. W. Rall, and F. Marud (eds.),The Pharmacological Basis of Therapeutics, 7th ed., Macmillan, New York, 1985, pp. 339–371.

    Google Scholar 

  25. H. Büch, J. Knabe, W. Buzello, and W. Rummel. Stereospecificity of anaesthetic activity, distribution, inactivation and protein binding of the optical antipodes of two N-methylated barbiturates.J. Pharmacol. Exp. Ther. 175:709–716 (1970).

    PubMed  Google Scholar 

  26. M. van der Graaff, N. P. E. Vermeulen, R. P. Joeres, and D. D. Breimer. Disposition of hexobarbital enantiomers in the rat.Drug. Metab. Disp. 11:489–493 (1983).

    Google Scholar 

  27. G. Wahlström, H. Büch, and W. Buzello. Unequal anaesthetic potency despite equal brain concentration of hexobarbital antipodes.Acta Pharmacol. Toxicol. 28:493–498 (1970).

    Article  Google Scholar 

  28. T. J. Haley and J. T. Gidley. Pharmacological comparison of R(+), S(−) and racemic secobarbital in mice.Eur. J. Pharmacol. 9:358–361 (1970).

    Article  CAS  PubMed  Google Scholar 

  29. H. Downes, R. S. Perry, R. E. Ostlund, and R. Karler. A study of the excitatory effects of barbiturates.J. Pharmacol. Exp. Ther. 175:692–699 (1970).

    CAS  PubMed  Google Scholar 

  30. W. J. Waddel and R. Baggett. Anesthetic and lethal activity in mice of the stereoisomers of 5-ethyl-5-(l-methylbutyl)barbituric acid (pentobarbital).Arch. Int. Pharmacodyn. 205:40–44 (1972).

    Google Scholar 

  31. L.-Y. Huang and J. L. Barker. Pentobarbital: Stereospecific actions of (+) and (−) isomers revealed on cultured mammalian neurons.Science 207:195–197 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. F. Leeb-Lundberg, A. Snowman, and R. W. Olsen. Barbiturate receptor sites are coupled to benzodiazepine receptors.Proc. Natl. Acad. Sci. U.S. 77:7468–7472 (1980).

    Article  CAS  Google Scholar 

  33. G. Wahlström and L. Norberg. A comparative investigation in the rat of the anesthetic effects of the isomers of two barbiturates.Brain Res. 310:261–267 (1984).

    Article  PubMed  Google Scholar 

  34. M. K. Ticku, S. K. Rastogi, and R. Thyagarajan. Separate site(s) of action of optical isomers of 1-methyl-5-phenyl-5-propylbarbituric acid with opposite pharmacological activities at the GABA receptor complex.Eur. J. Pharmacol. 112:1–9 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. A. M. Allan and R. A. Harris. Anesthetic and convulsant barbiturates alter gammaaminobutyric acid-stimulated chloride flux across brain membranes.J. Pharmacol. Exp. Ther. 238:763–768 (1986).

    CAS  PubMed  Google Scholar 

  36. M. H. H. Chandler, S. R. Scott, and R. Blouin. Age-associated stereoselective alterations in hexobarbital metabolism.Clin. Pharmacol. Ther. 43:436–441 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. U. S. Vasthare, G. L. Irion, C. Carlsson, and R. F. Tuma. Differential effects of anesthetic agents on regional blood flow and central haemodynamic parameters in rats.Drug Devel. Res. 14:59–65 (1988).

    Article  CAS  Google Scholar 

  38. A. A. Artu. Dose-related changes in the rate of cerebrospinal fluid formation and resistance to reabsorption of cerebrospinal fluid following administration of thiopental, midazolam and etomidate in dogs.Anesthesiology 69:541–546 (1988).

    Article  Google Scholar 

  39. M. Danhof and G. Levy. Kinetics of drug action in disease states I. Effects of infusion rate on phenobarbital concentrations in serum, brain and cerebrospinal fluid of normal rats at onset of loss of righting reflex in rats.J. Pharmacol. Exp. Ther. 229:44–50 (1984).

    CAS  PubMed  Google Scholar 

  40. N. Dafny. Hypothalamic evoked responses altered by pentobarbital in freely behaving rats.Electroencephalog Clin. Neurophysiol. 36:123–130 (1974).

    Article  CAS  Google Scholar 

  41. M. B. MacIver and S. H. Roth. Barbiturate effects on hippocampal excitatory synaptic responses are selective and pathway specific.Can. J. Physiol. Pharmacol. 65:385–394 (1986).

    Article  Google Scholar 

  42. M. Willow and G. A. R. Johnston. Dual action of pentobarbitone on GABA banding: Role of binding site integrity.J. Neurochem. 37:1291–1294 (1981).

    Article  CAS  PubMed  Google Scholar 

  43. R. L. Macdonald and J. F. Barker. Anticonvulsant and anesthetic barbiturates: Different postsynaptic actions in cultured mammalian neurons.Neurology 29:432–447 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. D. W. Schulz and R. L. MacDonald. Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: Correlation with anticonvulsant and anesthetic actions.Brain Res. 209:177–188 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. P. E. Keane and K. Biziere. The effects of general anaesthetics on GABAergic synaptic transmission.Life Sci. 41:1437–1448 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. J. A. Richter and J. R. Holtman, Jr. Barbiturates: Their in vivo effects and potential biochemical mechanisms.Prog. Neurobiol. 18:275–319 (1982).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by MEDIGON Grant 900-521-106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandema, J.W., Danhof, M. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of heptabarbital using aperiodic EEG analysis. Journal of Pharmacokinetics and Biopharmaceutics 18, 459–481 (1990). https://doi.org/10.1007/BF01061705

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061705

Key words

Navigation