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Abstraet. The problem of learning from examples in an average case setting is considered. Focusing on the 
stochastic complexity, an information theoretic quantity measuring the minimal description length of the data 
given a class of models, we find rigorous upper and lower bounds for this quantity under various conditions. 
For realizable problems, where the model class used is sufficiently rich to represent the function giving rise to 
the examples, we find tight upper and lower bounds for the stochastic complexity. In this case, bounds on the 
prediction error follow immediately using the methods of Haussler et al. (1994a). For unrealizable learning we 
find a tight upper bound only in the case of learning within a space of finite VC dimension. Moreover, we show 
in the latter case that the optimal method for prediction may not be the same as that for data eompression, even in 
the limit of an infinite amount of training data, although the two problems (i.e. prediction and compression) are 
asymptotically equivalent in the realizable case. This result may bear consequences for many of the widely used 
model selection methods. 
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1. In t roduc t ion  

We consider in this paper the problem of learning a concept based on a finite set of examples, 

wbere learning is based on choosing hypotheses from some hypothesis class. Much of the 

recent work in the field of mathematical statistics (Vapnik, 1982) and computational learning 
theory (Natarajan, 1991) has been devoted to the study of worst case bounds on the expected 

error, where worst case refers to the worst possible choice of function to be learned and 
the worst possible distribution of training examples. More recently an elegant formulation 
of the problem of average-case learning and its connection to information theory has been 

made in (Haussler, et al., 1994a), where rather tight bounds for the expected error in terms of 
information theoretic quantities are obtained when certain assumptions about the function 
class to be learned are made. Most of the work cited above bas explicitly assumed that the 
so-called Vapnik Chernovenkins dimension (denoted as VC dimension) of the space from 
which the learning hypotheses are chosen is finite, the bounds mentioned above becoming 
tight as the number of examples relative to the VC dimension becomes large. 

One of the major limitations of the above mentioned results is that bounds are tight 
only in the limit where the sample size is very large, a typical drawback of the standard 
statistical analyses. It has become clear in recent years through the use of statistical physics 
methods that exact results for effectively finite sample sizes can be obtained in the so called 
thermodynamic limit, where the VC dimension of the hypothesis class is allowed to increase 
in such a way that the ratio between it and the number of examples is finite. This situation, 
reviewed for example in (Watkin, et al., 1993), has produced a plethora of types of behaviors 
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which are totally absent in the usual statistical analyses, where the VC dimension of the 
hypothesis class is finite. The major problem, however, with the statistical physics approach 
is that in deriving exact results for effectively finite sample sizes they have usually relied on 
a method known as the replica method (Mezard, et al., 1987) which is notoriously difficult to 
put on a rigorous basis. Furthermore, in many situations (particularly where the function 
to be learned is not realizable within the given hypothesis space) it has turned out that even 
the replica method itself may lead to effectively intractable computations due to the extreme 
complexity of the solution in these cases. Finally we comment that in claiming typicality 
of the results (meaning roughly that certain statements can be made with probability 1 in 
the thermodynamic limit) all the statistical physics results rely on the so-called assumption 
of self-averaging of extensive quantities (see section 6), having to do with the behavior of 
various random variables in the thermodynamic limit. This assumption is usually taken for 
granted, but has never in fact (to our knowledge) been established in the present context. 

Our alm in this paper is to derive upper and lower bounds for various quantities which 
are of interest from a learning theoretic perspective, both in the usual case where the VC 
dimension is finite as well as in the thermodynamic limit scenario discussed above, where the 
VC dimension is allowed to increase without limit. It is an explicit goal of this paper to avoid 
the use of the mathematically problematic replica approach, replacing exact calculations 
by upper and lower bounds and showing under what conditions these bounds become tight. 

The remainder of the paper is organized as follows. Section 2 is devoted to a definition and 
description of the learning scenario. In section 3 we then describe the (pseudo-) Bayesian 
framework within which our analysis takes place. The basic bounds studied are derived in 
section 4 in a general setting and specialized in section 5 to the case of hypothesis spaces 
of finite VC dimension, where the tightness of the bounds is established. Section 6 then 
considers the thermodynamic limit scenario where similar results are derived. We proceed 
then in section 7 to consider issues related to the optimal choice of a certain regularization 
parameter, and discuss the implications from the point of view of rnodel selection. The 
problem of the convergence of the loss function to its expected value is considered in section 
8 for the case of finite VC dimension. Finally, we summarize our results and mention several 
open questions in section 9. 

2. Definitions and Models 

The learning scenario considered in this paper is that of Bayesian decision theory. We 
follow here the notational conventions of (Haussler & Barron, 1993). Thus, let X, Y and 
A be sets, called the instance, outcorne and decision spaces, respectively. In this paper we 
consider binary classification and thus take Y = A = i l .  Learning from examples takes 
place in this framework through the following steps. 

• A function f : X  --> Y chosen and kept fixed thereafter. We assume f E ~ and refer to 
B as the target space. 

• A sequence of i.i.d, inputs xi c X, i = 1, 2 . . . . .  n, is chosen according to some 
(unknown) probability distribution D(x). 

• An outcome sequence is generated according to the target rule, by setting Yi = f ( x i ) .  

• A qearner' tries to find a hypothesis h E 7-/which 'best' explains the data. Here 7-/, 
the hypothesis space, is a known function space of some finite complexity. Nothing is 
assumed however about the st~ace ~r. 
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We stress that the learner only has available the data set x~ = {xl, x2 . . . . .  xn} and 
y f  = {yl, Y2 . . . . .  Yn} as well as the function class ~ .  No knowledge about f ,  ~" or D(x) 
are assumed. The only vague notion about the previous list concerns the exact meaning of 
the term 'best explains the data'. There are at least two possible definitions of this notion. 

Prediction. A test sample x~+l is presented. The objective is to find an h which predicts 
the label Yn+~ with as low a probability of error as possible. 

Compression. Here the objective of the learner is to provide as concise a description of 
the data as possible. This idea will be quantified shortly using the notion of stochastic 
complexity. 

In principle there does not seem to be any direct connection between the two notions above. 
However, it turns out that in some cases the two notions can be strongly linked giving rise to 
a quantitative Occam's razor principle. We focus in most of this paper on the compression 
objective, mentioning connections to the prediction objective in sections 7 and 9. We note 
that the problem addressed in this paper, namely learning with unknown target space Y:, is 
often referred to in the computational learning theory literature as agnostic learning (see 
Kearns, et al., 1992, for example). 

As a concrete example of learning in the above scenario we may consider ~ to be a 
class of feedforward neural networks of limited complexity. The simplest such example 
would be the single layered perceptron (Rosenblatt, 1962) but in principle any architectural 
constraints can be assumed. The hypothesis class 7~ is parametrized (perhaps redundantly) 
by a weight vector w. While neural networks have been shown to be universal function 
approximators (see for example Hornik, et al., 1989) and thus capable of approximating 
any function f (.) to arbitrary accuracy, the question arises as to the performance of limited 
complexity networks of this nature, especially when trained on finite size data sets. 

In an interesting recent paper Haussler, et al. (1994a) have performed an extensive inves- 
tigation of the average case performance of learning algorithms under the assumption that 
the hypothesis space ~ and the target space Y" are identical. In this paper we derive results 
for the realizable as weil as the unrealizable problem where the hypothesis space 7~ is a 
proper subspace of the target space 2-, namely 7~ C 5.  Thus, eren in the case where an 
infinite amount of data is available the expected error produced by any hypothesis in ~ is 
non-zero. The motivation for our work is threefold: (i) The realizable case has been studied 
extensively and is relatively well understood, (ii) Since in many cases the target space is 
unknown, the unrealizable situation arises naturally, (iii) The statistical mechanics results 
which have been shown to give the correct results in the realizable case, are very difficult to 
extend to the unrealizable case (mainly due to effects of replica symmetry breaking). Thus, 
as far is known to the present authors no good bounds are available in the average case 
setting for this problem. Worst case bounds have been derived in the unrealizable setting 
by Vapnik (1982). 

3. The Pseudo-Bayesian Framework 

In order to describe mathematically the process of learning in a statistical framework we 
take a Bayesian point of view. According to this view one first assigns aprior  probability 
P~(h)  to each hypothesis h 6 7~. The process of learning can then be viewed as one 
of modifying the distribution of hypotheses h based on the data (y~, x~). Formally, the 
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well-known Bayes rule allows us to express this idea mathematically as 

P~(h [ y~, x~) = P~(Y~ Ih'x~)P~(h [x~) 
P~(y~ I x~) ' 

with 

P7¢(y; Ix~) = f dP7~(h)P~(yf I h, x~). 

(1) 

The integration in Eq. (2) is over the hypothesis space 7¢ and is taken with respect to the prior 
probability dPa(h). The function P~(y~ I h, x~) appearing in the numerator of Eq. (1) 
is usually referred to as the likelihood function. The main reason we refer to the above 
framework as pseudo-Bayesian is that the hypothesis space 7¢ is not necessarily equal to the 
target space 5 c. In particular it is possible that the learner assigns zero a-priori probability 
to the 'true' function f .  The main motivation for this extension is twofold: (i) It is orten the 
case in practical applications that no knowledge is available concerning the target space and 
thus some assumption must be made, which may very orten be inadequate (namely ~ C 5c). 
(ii) The hypothesis space 7¢ may be limited in complexity for computational reasons, since 
too large a space will be very computationally expensive to search. 

Having clarified the reason for our terminology we focus now on the specific form of the 
likelihood function. First, following common wisdom the learner assumes that the data has 
been generated according to a Bernoulli process, namely each input xi is drawn at randorn 
according to D(.) and then labelled as Yi by an unknown function. Thus we have 

P~(y~' I h, x~) = 12-[ P7¢(Yi I h, xi) (independence assumption). 
i=1 

(3) 

Since we do not wish to restrict ourselves to realizable problems, we introduce a loss function 
)~(y, h(x)) measuring the loss incurred on predicting an incorrect label h(x). Using this 
function we express the likelihood as (Levin, et al., 1990): 

P~ (y~ 
e-~~.(yi ,h(xi)) 

h, xi) -=- ; ZÖ = E e-ß~(Yi'h(xi))" (4) 
z/3 {y« } 

The parameter fl appearmg in Eq. (4) is a regularization parameter, which is usually refet•ed 
to as the inverse temperature in the statistical physics literature. We note in passing that this 
particular form can be derived using maximum entropy principles. In the remainder of the 
paper we take )~(y, h(x)) to be the 0-1 loss function, defined by L(y, h(x)) = 0 if h(x) = y 
and unity otherwise. It is easy to see that in this case z~ = 1 + e -ô independently of h. 

We note that for the %1 loss function in the limit/~ ~ oc, the posterior distribution (1) 
is non-zero only for hypotheses h which minimize the empirical error 

"'h) ~ A(yf,  x 1 , ~- L(yi, h(xi)), 
i=l 

(5) 

measuring the number of misclassifications. Thus, this framework yields in the appropriate 
limit the well-known method of minimal empirical loss (Vapnik, 1982). Moreover, if the 
problem is realizable (i.e. the minimal empirical loss is zero) we recover the problem studied 

(2) 
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in (Haussler, et al., 1994a). In this paper, however, we restrict ourselves to the case/3 < c~ 
throughout. 

Having induced a posterior probability distribution P~(h [ yf, xT) on the hypothesis 
space, it is easy to compute the probability of a value Yn+l being assigned to a new input 
x~+l. This quantity is given simply by 

P~(y;+' Ix~ +~) 
PT-[(Yn+I [ Yf,XT,Xn+l) : P~(Y'~ Ix~) 

1 f dPT~(h) exp{ - /~A (y~+l, x~+l; h) } 

z~ f dP~(h)exp{ - /~A(yf ,x~ ;h)}  

(6) 
It will also be convenient in what follows to define the volume ratio, Z (Yf, xT), through 

X(y~+l,xT+l ) ex PT-[(Yn+I l yT,xT,x~+l), (7) 

and the expected loss through 

~(f, h) ex Eo[~.(f(x), h(x))], (8) 

where the expectation is taken with respect to the distribution D(x). 

4. Bounds on the Log-Loss Error Function 

In order to quantify the loss incurred on forming predictions using the (possibly incorrect) 
predictive distribution P~(Yn+1 I Yf, x~, Xn+l), we consider in this section the log-loss error 
function, defined as 

n--1 

L(yf, xT) = - E log X(y{ +I , xil+l), (9) 
i=0 

where the natural logarithm is assumed throughout the paper. Using Eq. (6) we note that 
the log-loss is given by the simple expression 

L(yf Ix] ~) = - l o g  PT~(yf ]xT) = -logfdP~(h)e -~a(yT'xT;h) + nlogz~, (10) 

where use has been made of the telescopic nature of the sequence Z (Yl, x]). It is interesting 
at this point to notice that the log-loss given by Eq. (10) is nothing but the stochastic 
complexity (Rissanen, 1986) of a class of models ~ with respect to a prior distribution 
Pro(h) and data set yf (see also Amari & Murata, 1993, for a recent contribution). This 
quantity can be interpreted as the shortest possible code length for the labels y~' (for a 
fixed input sequence xT) that can be achieved by the models in the class 7-t. We refer to 
L interchangeably as either the log-loss or the stochastic complexity, It is also useful to 
comment that the stochastic complexity is very closely related to the statistical mechanical 
free energy (see for example Meir & Fontanari, 1993). 

Up to this point the inputs x T have been fixed. Let us check now what can be gained 
by averaging over the input distribution D(x) as well. To do this we will first need the 
following lemma 1, which we refer to as the thermodynamic inequality due to its origin in 
statistical thermodvnamics. 
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LEMMA 1. The following inequality holds 

E D [ - - l l ° g f  dPn(h)e-~A(ybxT;h~] <----ll°gf (11) 

PROOF. Let us first assume that the vector x~' can only take on a finite set of K values, 
K K {x~}u= 1, each occurring with probability PtL and such that ~u = l  Pu = 1. We then find that 

K 

ED[A(yf,x~; h)] = S_~ptzAu(f,h), 
U=I 

where Au( f ,  h) = A(f(xu) ,  xu; h). Thus, we can write the argument of the logarithm on 
the right-hand side of Eq. (11) as 

f ~ f K dPT-t(h)e -~ Y~',=~ P'*Au(f'h) = dP~(h) I-I e-~P"a"(f'h)" 
u=l  

(12) 

Now, for any sequence of positive random variables X1 . . . . .  XK we have Hölder's inequal- 
ity (Hardy, 1952) 

E Xu <-- I - I  (EX1/q") q» q~ = 1 . 
B=l U=I 

(13) 

From (13) we immediately find upon setting X u = e -flpuAu(f 'h) , qu = Pu and using (12) that 

K 

= logf  dPa(h) I-I e-flP~~AIAf'h) 

u=l  

K 

= ~ Pu log f dPT~(h)e -/3a"(f'h) 
U=I 

log f dPT-t(h)e -fiE»[A(y~'x~;h)] 

~(f )~~ < log H dPTt(h)e-~a"(f'h) 
B=l 

= En log f dP~(h)e -~A(f'h). (14) 

Multiplying both sides (14) by - 1  we obtain the desired inequality (11). The proof for 
continuous probability densities follows by continuity arguments. [] 

Keeping in mind the Definitions (5) and (8) we can express this inequality as 

E » [ - l l o g  f dP~(h)e-aa(Y~',e, ;h~] <_-llog f dP~(h)e-a"f~(f,h~. (15) 

The bound (15) is general in that it makes no assumptions about the nature of the space ~.  
In fact, the expression appearing on the right hand-side of Eq. (15) is just the high- 
temperature free energy as derived previously in (Seung, et al., 1992). The point to note in 
the present case, however, is that here it is found to be an upper bound for all fi, while the 
usual interpretation treats the right hand side of Eq. (15) as an approximation to the average 
stochastic complexity, valid for small fi. 
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It is also useful at this stage to consider a lower bound to the stochastic complexity, which 
is easily derived using the so called annealed approximation based on Jensen's bound. This 
bound has often been used as a quick way to obtain useful qualitative results. As we show 
hefe however, the annealed approximation may lead to totally inadequate results in the case 
of learning unrealizable rules. This point has been observed by several authors (see for ex- 
ample Seung, et al., 1992, and Meir & Fontanari, 1992) but seems to have been ignored by 
many other workers. The lower bound is easily derived using the convexity of the logarithm 
function and Jensen's bound: 

ED -- log dP:~(h)e-~A(Y~'X7 ;h) > - - l o g  dP~(h)EDe-~a(Y~"x7 ;h). 
n 

(16) 

Finally, in order to compute many of the integrals appearing in this work we will repeat- 
edly make use of a variant of the well-known Laplace method for the asymptotic evaluation 
of integrals. Since the particular condition~, used in this paper are not the standard ones, 
we have included in Appendix B a proof o:,: ;',_e following result, which we refer to as the 
extended Laplace method (see Amari, et al., 1992, for similar results). Consider a function 
f (x )  defined over X C R k and let f (x )  achieve its global minimum, f~n,  at some point 
Xo, for which 

I f ( x ) -  f(x0) I 
lim = c  ( O < c < o o )  (17) 

x - ~ x o  I I x  - x0ll s 

for some positive s, referred to as the index of continuity of f at x0 (in the usual case where a 
quadratic expansion around the minimum is legitimate we have s = 2). Under appropriate 
conditions, spelled out in detail in Appendix B, one can show that the following asymptotic 
result holds: 

fx  2rrk/2 I" (~) dx g(x)« -nf(x> ~ s(«n)k/~ r (~~ g(x*)e-nfm~"' (18) 

where an ~ bn signifies that an~bh ~ 1 for n --+ oc. 

5. Finite-Dimensional Hypothesis Space 

Having established upper and lower bounds for the average stochastic complexity the ques- 
tion naturally arises as to whether they are asymptotically tight, namely whether they both 
approach the same limit as n ~ o0. In this section we assume that the hypothesis space 7-/ 
is of finite dimension, taken to mean that it can be parameterized by a parameter-vector of 
finite dimension. We also assume that ~ is of finite VC dimension, noting that the assumed 
finite-dimensionality of 7~ does not necessarily imply finite VC dimension (see Sontag, 
1992, for a counter-example). Using these assumptions we can show that the asymptotic 
tightness of the bounds (15) and (16) occurs only under very special circumstances. In 
fact, using the result (18) it is easy to see that as n -+ ec the right hand side of (15) 
converges to 

BX*(f) = fl min ~ (f,  h) (19) 
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while the right hand side of  Eq. (16) converges to 

- maxh log E D  e-[3)~( f (x) 'h(x) )  : - -  log mhax E»e -~x(f(x)'h(x)) . (20) 

It is clear that these two expressions are different in general except in the limit/3 ~ 0. 

It turns out in fact that in the case of the 0-I  loss-function considered in this paper, both 
the annealed and the thermodynamic bounds approach the same limit for any/3 as long as 
the problem is realizable. In particular we have: 

LEMMA 2. The upper bound (15) and the lower bound (16) are asymptoticaUy tight in 
the case of a 0-1 loss function, if the problem is realizable, namely ~ = ~. 

PROOF. For a 0-1 loss function )~ one can verify the simple identity 

e -~x = 1 - (1 - e-~)X. (21) 

Using this expression in Eq. (20) we see that the annealed bound is asymptotically equal to 

- l o g [ l  - (1  - e - ~ ) ~ . * ( f ) ] .  ( 2 2 )  

It is immediately obvious that Eqs. (22) and (19) agree for any/3 only if X*(f)  = 0 which 
corresponds to the realizable case. [] 

In fact, it will become apparent shortly that both the annealed and the thermodynamic 
bounds give rise to the same asymptotic rate of convergence to their limiting value in the 
case of  realizable rules. For the case of unrealizable rules (even for 0-1 loss) it is clear 
that the two bounds are asymptotically incompatible. Having established the gap between 
the two bounds in general, the question arises as to whether either of the bounds leads 
asymptotically to the correct value. As we see from the next theorem, the upper bound (15) 
is in fact asymptotically tight as long as the hypothesis class ~ is of a finite VC dimension, 
whether the problem is realizable or not. 

THEOREM 1. Ler ~ be a class of binary valued decision functions of finite VC dimension. 
Then the upper bound (15) becomes an equality for n ~ c~. In particular we have 

l i B  ED[- - l logPT~(Yf lX~) I  =/3mihnED[)~(f(x),h(x))]+logz ~. (23) 

PROOF. From the obvious inequality - A ( y ~ ,  xT; h) < - minh [A(yf ,  x~'; h)] it follows 
that 

~» [-¼ ~o~ fù,,~(~)«-,~(~;,x':~~, 1 >__E~I--¼logfdP~(h)e--'~~»'~(Y:'~;;~~ ] 
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where we have used the fact that f dPa(h) = 1. Combining this result with the bound (11) 
we have 

< 1 log f dP~(h)e -h~Æ»z(f(x)'h(x)) (25) 
n j 

Keeping in mind that A(yf,  x~; h) = ~ i  )v(f(xi), h(xi)) and using the Eq. (18) to evaluate 
the integral on the right hand side of the equation, we find in the limit n --+ oo that 

'~2 [¼ f ] riEb min-- ~ . ( f ( x i ) ,  h ( x i ) )  Æ ED -- log dP~(h)e-~A(Y['X~ ;h) 
h /'l i=l  

_</3 min ED[~.(f(x), h(x))] (26) 

where terms of order log n/n have been suppressed on the right hand side of the equation. At 
this point we make use of the well known result of Vapnik and Chernovenkins (see Vapnik, 
1982) stating that a sufficient condition for the uniform convergence of the empirical loss to 
the expected loss is that the VC dimension of ~ be finite. Thus, the order of the operations 
on the left hand side of the equation can be interchanged demonstrating that the two sides 
of the equation become identical in the limit n --> oo. [] 

The above observations help to explain why many of the results obtained using the an- 
nealed approximation yield qualitatively the correct results obtained from the full quenched 
theory using the (non-rigorous) replica method. Moreover, the lack of asymptotic tightness 
of the annealed bound in the case of unrealizable rules helps explain why this approximation 
has usually yielded completely wrong results when compared with the exact replica results. 
Examples of both of these observations can be found in Seung, et al. (1992) and Meir & 
Fontanari (1992). 

Having established the asymptotic tightness of the upper bound (15), we proceed now 
to establish the rate of convergence to its limiting value. Assume 7-g is finite-dimensional, 
pärameterized by some vector w of dimension k. It is of interest hefe to compute the 
asymptotic behavior of the stochastic complexity. Using Eqs. (15) and (18) we may 
directly proceed to evaluate the relevant integral in our case (slightly abusing the notation 
by identifying ~.(f, h) and ~(f,  w)), 

f dPx (h)e -~n-~(f'h) = f dwP (w)e -~n J,(f,w) 

2zr k/2 F (}) p ( w , ) e _ ~ n m i n , .  ' ~.(f,w) 
s(h,,) ' , / ,  r (-~) (27) 

where w* is the minimum point of ~. (f ,  w), and we have assumed that 

~ ( f ,  w)  = ~ ( f ,  w*) + clrw - w'H" (s > 0) 
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in the neighborhood of w*. Taking the logarithm of this equation, dividing by n and using 
Eq. (15) we obtain an upper bound valid for realizable as well as unrealizable problems, 

ED I l l ° g P ~ ( y ~  ] x ~ ) ] < B m i n  ~ ( f , w ) + l o g z ~  + k l o g n  ( 1 )  _ _ m + 0 . ( 2 8 )  
w s r/ 

In view of the annealed lower bound, Eq. (16), we can similarly compute a lower bound 
to the stochastic complexity. It is clear from the above derivation, that the only modification 
to the derivation of the upper bound, Eq. (28), is in the function appearing in the exponent 
of the integral (27). In view of the observations of the previous section concerning the 
asymptotic equality of the two bounds in the case of realizable rules, and making use of 
Eq. (21) together with log(1 - x) ~ - x  for small x, it is easy to see that in the realizable 
case the upper and lower bounds agree to order log n/n. Thus we have: 

T H E O R E M  2 .  

asymptotically given by 

[ 1 )]  k logn  (nl_) Eo - logP~t(y] I x7 = logz~ + - - -  + 19 , 
s n 

where s is the index of continuity of ~(f, w) at w* = arg minw ~.(f, w). 

The stochastic complexity for the O-1 loss function in the realizable case is 

(29) 

6. The Thermodynamic Limit 

From the previous analysis we note that the extended Laplace method, Eq. (18), used to 
derive the asymptotic expression (29) was strictly permissible only if two conditions are 
met: (i) The dimension of the hypothesis space 7-t is finite, and (ii) The sample size n 
increases to infinity. An interesting question arises as to whether any useful bounds can be 
derived forfinite sample size n. Bearing in mind the stochastic nature of the problem it is 
hard to believe that any useful results can be derived in the case where both d (the dimension 
of 7-0 and the sample size n are finite. However, recent work using ideas from statistical 
physics (see Watkin, et al., 1993, for a review) has focusëd on the so-calted thermodynamic 
limit where both d and n are allowed to increase without limit, keeping their ratio fixed to 
some finite value «. Specifically we consider the limit 

A n 
c~ = lim < cx~. (30) 

d-+o~ 

It is clear from this definition that ot is a measure of the normalized sample size. For 
example, consider a simple perceptron with d inputs and weights trained on a sample of 
size n = cd  with 0 < ~ < cx~. 

While many results have been derived in recent years using the thermodynamic limit, 
most of these have relied either on the replica method or the annealed approximation. Un- 
fortunately, the replica method is notoriously difficult to justify in a rigorous way, while 
the annealed approximation produces incorrect results even asymptotically in the unrealiz- 
able case as we have seen in the previous section. Very recently, Haussler, et al. (1994b), 
have been able to derive rigorous upper bounds on learning curves in the thermodynamic 
limit under the assumption that the hypothesis space is countable. It is our aim hefe to show 
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that similar bounds can be derived for the somewhat different problem studied in this paper. 
In fact, the discreteness of ~ plays no role in our analysis. 

Although the extended Laplace method cannot be used as it stands in this case, it turns 
out that under rather mild conditions we can transform the expression for the stochastic 
complexity into an expression for which extended Laplace integration is permissible in the 
thermodynamic limit. In order to demonstrate this point we make the following assumption. 

ASSUMPTION 1. The following transformation holds 

f dwP(w)e-~nX(f'w)=cd f d q e  -dG(f'q)-fln~(f'q), (31) 

where Cd depends on d polynomially, q is a k-dimensional vector with k finite and G(f, q) 
is singular only at a finite number of points. 

We can in fact view the transformation in Eq. (31) as a coordinate transformation from 
w to q, in which case the function G(f, q) is related to the Jacobian of the transformation. 
The exact details of the transformation depend on the problem at hand through the specific 
form of the functions G(f, q) and 2(f ,  q) assumed to be independent of d and n. Many 
examples where the specific form of the function G(f, q) can be computed have been 
studied in the literature (see for example Seung, et al., 1992, and Watkin, et al., 1993) and 
as rar as we know all comply with the assumption. We note that the computation of G(f, q), 
referred to in the statistical physics community as the entropy function, can be done in a 
perfectly rigorous way and depends in no way on the replica method. In order to clarify the 
transformation in Eq. (31) we describe in Appendix A an explicit calculation for a simple 
realizable problem as weil as an unrealizable case, where the exact asymptotic scaling of 
the stochastic complexity is derived. As a final comment we remark that the variable d 
appearing in (31) need not be the Euclidean dimension of the parameter vector w, although 
this is the case in all cases we know of. 

Using the Definition (30) above we may express the integral in Eq. (31) as 

c~ f dq e -n[flL(f'q)+~G(f'q)]. (32) 

Since q is finite-dimensional, taking the limit n -+ ~ we can use Eq. (18) to evaluate the 
upper bound on the stochastic complexity (see Eq. (15)), obtaining the following result: 

THEOREM 3. Under the conditions of Assumption 1, the stochastic complexity is upper 
bounded in the thermodynamic limit as follows: 

lim ED [--llogPT~(y~ [x~)] < lim [-llog f dwP(w)e-l~n2(f'w)] +logzô 
n,d--~~ n,d-+oo 

=minIfl2(f,q)+lG(f,q)]+logz ~ . q  (33) 

For • --+ ec the error term 2(f ,  q) becomes dominant and we obtain the same limit 
derived previously in Eq. (28) for the finite-dimensional case. For finite values of o~, 
however, one taust take into account the interplay between the error term ~.(f, q) and the 
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entropy term G(f, q) arising from the integration over parameter space. We note that the 
entropy term appearing in this equation is unique to the thermodynamic limit and does 
not appear in the finite dimensional case, since all volumes in that case are finite and thus 
contribute negligibly as compared to the error term ~., in the limit of large sample size. We 
thus expect, and indeed find, that the asymptotics of the stochastic complexity can display a 
variety of different forms depending on the interplay between the loss-function [ ( f ,  q) and 
the entropy term G(f, q). For comparison we note that the bound in the finite-dimensional 
case depended on the space ~ only through its dimension k. 

A natural question that arises at this point is whether the upper bound (33) is tight for 
« -+ ~ .  A very simple analysis shows that the asymptotic tightness of (33) holds in the 
case where the problem is realizable, as long as the conditions of Assumptiõn 1 are met. 

THEOREM 4. If the conditions in Assumption 1 above hold and the problem is realizable, 
then the bound (33) is asymptotically tight for any lossfunetion )~ (., .), becoming an equality 
for  ol---~ oo. 

PROOF. First let us assume that G(f, q) possesses no singularities. Then for ot --~ ec 
the upper bound of Eq. (33) becomes simply minq ~(f ,  q) + logz~. Using an argument 
similar to that used in Theorem 1, we then have the following upper and lower bounds on 
the stochastic complexity, valid in the limit « --+ e~: 

B E D n ~ m l A ( y f , x ~ ; h ) ~ E D I - 1 1 o g P ~ ( y f l x ~ ) ] - l o g z ~  <Bmin~( f , q ) . q  (34) 

In the realizable case both the left-hand side and the right-hand sides of Eq. (34) are 
identically zero, thus establishing the claim, irrespective of what particular loss-function is 
used. In the case where G(f, q) is singular at q* = arg min ~(f ,  q) we can always take a 
small 6 such that G(f, q* + 3) is finite. Then previous argument still holds and an upper 
bound differing at most by the arbitrarily small term 3 from the previous case is obtained. 

[] 

Using Eq. (16) and very similar arguments to those used to derive the upper bound (33), 
we can show that in the case of a 0-1 loss function the annealed bound provides a tight 
lower bound in the case of realizable problems. As in the finite-dimensional case, the upper 
and lower bounds agree in the realizable case since minq ~.(f, q) = 0. It should be stressed 
however that for a general loss function (differing from the 0-1 loss function) the annealed 
bound does not provide a tight lower bound even for realizable problems, as was the case 
in the finite-dimensional problem studied in section 5. 

While we have shown that in the finite-dimensional case the upper bound (15) is tight 
whether the problem is realizable or not, we have only been able to demonstrate the tightness 
9f the upper bound in the theormodynamic limit in the case ofrealizable problems. Although 
Fheorem 4 made no use of Vapnik and Chernovenkins' results on uniform converegence, 
which are not guaranteed to hold in the present setting, we can immediately see that the 
proof applies only to the realizable case in which the minimal empirical error is identically 
zero for any input sequence x~. The proof of the asymptotic tightness (of lack thereof) in 
the unrealizable case remains an open problem. 
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7. On the Optimal Temperature for Compression 

As we have shown in the previous section the expected stochastic complexity can be bounded 
from above using Eq. (28) in the finite dimensional case and Eq. (33) in the thermodynamic 
limit. Since the temperature-like variable/5 is a free parameter, the question arises whether 
there is an optimal value which minimizes the stochastic complexity and thus the description 
length in the coding interpretation. 

Considering first the finite-dimensional case, Eq. (28), and computing the value of/5 
which minimizes the stochastic complexity we find to leading order that 

f l * (n )  ~ l o g (  .1 - )~mi" ) b 
Xmin rt ' 

(35) 

where )~mi~(f) = minw ~.(f, w) is the minimal value of the expected error and b is a 
constant. It is interesting to observe that for the realizable case t5"(oc) = oo since ~.~ù = 0 
while fi*(oQ) is finite for the unrealizable case. Observing that/5 = oc corresponds to 
nlinimizing the empirical loss defined in (5), it seems that in the unrealizable case the 
minimal description length is achieved by a strategy that does n o t  aim at minimizing the 
empirical error even asymptotically. Since minimizing the empirical error is asymptotically 
equivalent to minimizing the expected error, out results imply that in the unrealizable case 
the notions of minimal description length and minimal expected error are obtained by 
different strategies, at least in the case of noise free learning considered here. This result 
should have implicatiõns for model selection schemes in cases where the hypothesis space 
is inadequate. Note that in the realizable case we find that the optimal temperature for 
compression is fi = oQ for any sufficiently large n (where the asymptotic expansion holds). 
It is interesting to note that Opper & Haussler (1991) have obtained the optimal temperature 
in the case of learning a realizable rule where the labels Yi are corrupted by noise such that 
Yi ---> - Y i  with probability 1 - ~. They find/5* = log((1 - r])/~), which is exactly the 
same asymptotic expression we obtained if we identify r; and )-min. 

Having discussed the finite-dimensional case we proceed now to the case where the 
dimension of ~ is allowed to increase with n0 the so called thermodynamic limit discussed 
in section 6. Starting from the bound (33) and minimizing it over/3 we find the rather 
simple result that the minimum is achieved for 

( 1 - )~* ] (36) B*= log \  )« / ,  

where ,k* = ~.(f, q*), and q* is obtained from 

E ' ] q * = a r g m i n  H ( ~ ( f , q ) ) + ~ G ( f , q )  . 
q 

(37) 

Here H ( Z )  is the binary entropy function given by 

H(~.) = - ~. log ~. - (1 - 2) log(1 - Z). 

The comments made above about the behavior of/3o0 in the realizable and unrealizable 
cases apply here as well. 
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8. On the Almost Sure Convergence of the Stochastic Complexity 

Since the stochastic complexity depends explicitly on the realization of the random sequence 
x~, two basic questions arise: (i) Does the stochastic complexity converge to a limit? (ii) In 
the case that convergence can be guaranteed, is the convergence to a random or deterministic 
limit? 

In order to show almost sure convergence to a deterministic limit, we limit ourselves in 
this section to the case where the space 7-t isfinite dimensional and of finite VC dimension, 
bearing in mind the comments made in section 5 concerning the re|ationship between finite- 
dimensionality and finite VC dimension. B efore addressing our particular problem we recall 
a basic result of Vapnik and Chernovenkins which we reproduce here for convenience (see 
Vapnik, 1982, for a proof). 

THEOREM 5 (Vapnik 82). Let h(x) be a class of decision rules of bounded VC dimension 
dvc, and let v(h) be the frequency of errors computed from the sample (yf, x~). Then 
for any ~ > 0 with probability at least 1 - ~ one may assert that for all n >__ dvc, and 
simultaneously for all rules h E 7-g, the probability of erroneous classification, Pa(h), is 
within the limits 

<PT~(h )<v(h )+2  dvc lOgd---~c+l - - l ogg  

n 
(38) 

With this theorem in hand we can now prove the almost sure convergence of the stochastic 
complexity. Before presenting the theorem we note that in the case of the 0-I loss function 

1 A -  n X n . the normalized empirical error ~ (Yl, 1, h) is simply the fraction of errors, while the 

expected error is simply ~.(f, h). 

THEOREM 6. In the case of a 0-1 loss function, the random variable -¼ log P~(y~ [ x~) 
converges almost sürely to its mean value for n -+ ¢~ if the hypothesis space ~ is finite- 
dimensionaI. In particular we have 

_ 1 log f dPT~(h)exp{-/3A(yf ,  x~; h)} a.,-D firr~m L(f,  h) 
n d 

(39) 

PROOF. Since the empirical error assumes only discrete values, it divides the space 
lA . . . .  h) = L where 7-t into subspaces characterized by the finite set of values ~ tYl, Xl, 

~. = 0, L 1 We can thus decompose the integral of interest as follows 

f dP~(h)e -ôA(y;'x"~;h) -= ~ P~(L; y~, x~)e -~n~', 
L 

(40) 

with )~ assuming n + 1 discrete values as above. Hefe 

n n fh  dPa(h), (41) PT-/( ~;  Y l '  X1) ~--- :¼A(y;,x~;h)=~.} 
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is the measure of hypotheses h 6 ~ with empirical error frequency 3.. Now, using Eq. (40), 
the following upper and lower bounds are immediate: 

mxax [P~('~; Y~' x~)e-~"~] <- f dPT~(h)exp{ - flA(yf, x~; h)} 

< (n + 1) m ax [PT~(~-; Yf, x~)e -~nz] (42) 

Taking logarithms, dividing by n and using max f (x)  = - m i n ( - f ( x ) )  we obtain 

min [ - l l o g P ~ ( X ; ~  y ~ , x ~ ) +  fl)~? log(n+n 1) 

1 / n. 
< - - l o g  dP~(h)exp{ -/~a(yf, x 1 , h ) }  

n 

< min [ - 1  log P~(~.; y~, x ~ ) +  ~ fi~.] (43) 

Now, according to the results of Vapnik and Chernovenkins described in the previous the- 
orem, the normalized empirical error, ¼ ~i'~=1 ~(f (x i ) ,  h(xi)) can be bounded with proba- 
bility 1 - 3 for large n as follows 

)~(f(xi), h(xi)) < ~.(f, h) + ~.(f, h) -- aa~/--fr-  - < n .= - a~v n ' 

where a8 can be read oft from the Theorem 2. From this result it is easy to see that with 
probability 1 - 8 

dPg(h) - b ~ ~ / - ~  < P~ yf, ~') 

< dPa(h) +be~/ n ' (44) 
: )-(f,h)=)O} 

where b~ is a constant (independent of n). In any event we have found that with probability 1 
a s  n --+ o o  

where the first term on the right hand side of the equation is a deterministic finite number 
independent of n. Taking logarithms of the inequality (44) and dividing by n we note 
that two cases may arise depending on whether P~()~; yf,  x~) is zero or whether it can be 
bounded below by a constant c > 0. In the prior case the logarithm becomes infinite, and 
it is clear from (43) that the minimum over ~. cannot be achieved. Assuming therefore 
that P~(,k; y~~, x]') can be bounded below by a positive constant as long as )~ > )~min(f) = 
minh )~(f, h) it is easy to see from (43) that 

- l l ° g f  - f iA (y f ,  x~;h)} ~s'-~Dfirnihn 2 ( f , h )  (46) 
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It is clear from the proof of Theorem 5 that the realizability or lack thereof did not enter 
the proof. It seems therefore that the distinction between these two problems in the finite- 
dimensional case is not of major importance, although it seems to play a major role in the 
thermodynamic limit scenario described in section 6. 

9. Discussion 

We have focused in this paper on bounding the stochastic complexity for learning binary 
valued classification problems, both for realizable as well as unrealizable problems. Con- 
sidering the widespread use of the minimum description length principle in model selection 
methods, we have found it useful to focus our attention, following Rissanen (1986), on the 
shortest description length of the data, given a class of models. Our main results can be 
summarized as follows. First, we have shown that a widely used bound, namely the an- 
nealed bound of Eq. (16) becomes tight only under very stringent conditions, in particular 
for 0-1 loss functions and realizable problems. Thus, our results imply that use of this 
lower bound should be avoided unless its tightness can be established. Second, we have 
shown that for the case of realizable rules, the upper bound (15) is asymptotically tight 
and thus yields a consistent limiting behavior for all sample sizes. This result is true both 
for finite-dimensional hypothesis classes as well as for the thermodynamic limit scenario 
considered in section 6. The case of unrealizable learning, however, poses some difficulties. 
While we have shown (Theorem 1) that the upper bound (15) is asymptotically tight for 
finite-dimensional spaces we have not been able to demonstrate this in the thermodynamic 
limit fi'amework for unrealizable problems. A further result of out work is related to the 
optimal choice of the regularization parameter/3. As we have shown, in the case of learning 
unrealizable rules the best choice for/3 is given by/3 = log(1 - ~ . r n i n ) / ~ , m i n  where L~n 
is the minimal possible expected error within the hypothesis space ~.  We have argued 
in this case that the method of minimizing the stochastic complexity and that of mini- 
mizing the expected error are incompatible, even asymptotically. This result is significant 
for model selection methods. Finally, we have shown that the stochastic-complexity ap- 
proaches asymptotically a deterministic limit, a property often referred to as self-averaging 
in the statistical physics community (Mezard, et al., 1987). The more difficult problem of 
establishing self-averaging for the thermodynamic limit scenario remains open. 

The most obvious inadequacy of our results concerns the analysis of unrealizable learning 
in the thermodynamic limit. We believe that an important step still needs to be made in 
understanding this situation. The work of Haussler, et al. (1994b) constitutes an important 
step in this direction, although limited to finite cardinality hypothesis spaces. A further 
inadequacy of our results is concerned with the relationship between compression and pre- 
diction alluded to in section 2. One of the most interesting questions one may ask is whether 
models which compress the data optimally are those which make the best predictions. This 
question becomes particularly important when minimum description length principles are 
used to select models from a complexity-limited class of functions, based on a finite data set. 
In the case of learning realizable rules, tight upper and lower bounds relating the prediction 
error to the stochastic complexity have been established in (Haussler, et al., 1994a), thus 
effectively answering the above question. While some of the results in (Haussler, et al., 
1994a) can be used in the unrealizable case, they turn out not to be asymptotically tight. 
We have been able to improve on their bounds relating the prediction error to the stochastic 
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complexity for unrealizable rules (Meir & Merhav, 1994), but have unfortunately not been 
able to establish the asymptotic tightness of the bound. In view of the ambiguity of unreal- 
izable problems and the importance of model selection criteria, we believe that establishing 
asymptotically tight bounds in this case is of paramount importace. 

Appendix A 

We show here, following the derivation in (Seung, et al., 1992), how the coordinate trans- 
formation in Eq. (31) may be derived for a simple model. Although this derivation appears 
in the statistical physics literature, we present it here for completeness. In particular, we 
assume the target function is given by a single-layer perceptron f (x )  = sgn(wó - x) with 
the same expression applying to the hypothesis h, namely h(x) = sgn(w r - x). Since the 
signum function is unaffected by the normalization of its argument we fix the norms of the 
respective weight vectors, taking in particular IIw0 il 2 _- Ilwl12 = d. The expected loss for 
any spherically symmetric distribution, D (x), can easily be c omputed (Watkin, et al., 1993) 
and yields 

= - - C O S  -1  WÓ " W  . 
J~ 

From Eq. (31) we need to evaluate the following integral: 

f ,7 = dwP(w) e -~nz(w°'w). 

(47) 

(48) 

In view of the normalization requirement []wl] 2 = d we let P(w) be a uniform distribution 
on the hypersphere of radius v/-d, given specifically as 

P(w) d w = 3 ( ~ w 2 - d )  fii=l 2V/~ë'dwi (49) 

Introducing an integration variable R through the identity 

l = f ' d R S ( R - l w r . w ) ,  (50, 

and making use of the Fourier representation of the Dirac delta function, 

f_ i~ d,~ *x 
B(x) = ~~/e  , (51) 

ic~ 

we may transform the integral (48) into the following form: 

f_l f_i~d~f_i~dEe_~tkR+dE/2_~n~.(R ) J= dR 1 i~ 2rci/d ioo 47ri 
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Note that the integration region in Eq. (50) is R 6 [ -1 ,  1] since by the Schwarz inequality 
i w ~ . wl < 1. The integrals over wi factorize, and since they are simple Gaussian integrals : 0 

may be calculated exactly, giving rise to the expression 

fl f'~ dl{  f_:oo d E  e_d[kR_½e+«~~,(R)_k2/2E+½:og(ee) ] (53) 
,7 = a-1 d R  a-ioo 2 ~ t / d  im 47ri 

Note that the dependence on the target vector Wo has dropped out from the calculation, 
by using the normalization requirement IIw0112 = d. Now, in order to compute the 3- 
dimensional integral in Eq. (53) we note that in the limit d --+ oo it takes the form of 
a saddle-point integral in the complex planes of/~ and E, and can thus be computed by 
deforming the contours of integration so that they pass through the point where the argument 
of the exponent is minimal (de Bruijn, 1981). The minimum with respect to the variables/~ 
and E can be obtained easily, and is given simply by/~ = R / ( 1  - R 2) and E = 1/(1 - R 2 ) ,  

from which we are left with the simple one-dimensional integral 

f f  = C d R  e -n[~ 2(e)-~ log(a-R2)], (54) 
1 

where C is a constant which is independent of d in the present case. It is clear that this 
expression is of the correct form of Eq. (31) and fulfills the conditions in Assumption 1. 
Note that although the function log(1 - R 2) is singular, this singularity occurs at a single 
point, as stipulated. From these results one may proceed to compute the upper bound to the 
stochastic complexity, which in this case yields 

E D -  logP~(YflX~ < l o g z ~ +  («--->oe), (55) 
0~ 

a result previously derived by Györgi & Tishby (1990) (replacing the inequality by an 
equality sign) using the replica method. Although the above derivation can be obtained via 
a simple geometrical argument in the present case (Seung, et al., 1992), we have presented 
the full derivation hefe since the geometrical argument does not generalize to more complex 
situations. 

As a second example we follow Watkin & Rau (1992) and consider a simple unrealizable 
problem, differing from the previous case in that the target function f (x )  is a perceptron 
with a threshold 5, namely f (x )  = sgn(wó • x -  ~v/-d). The hypothesis space again consists 
of simple perceptrons without the threshold term. Clearly the problem is unrealizable for 

# 0. Taking D(x) to be a multivariate normal distribution with zero mean and unit d x d 
covariance matrix, one finds 

- D x  erf , (56) 
2(Wo, w) = ~ I 2(1 Z R 2) 

2 u _ t  2 where erf(u) = ~ fó dt  e , D x  is the Gaussian measure (e-X2/2/ ,v~-~)dx and R = 
1 vt/T 2 0 " w. The minimal error is obtained by letting R --+ 1 in Eq. (56) obtaining ~.min = 

½erf(I 6 I /v~) .  Note that ~ = 1/2 for ~ = 4-00, as expected. The calculation discussed 
previously for the realizable case, ~ = 0, follows almost unchanged, giving rise to Eq. (54) 
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with the only modification being that ~(R) is replaced by Eq. (56). Computing the upper 
bound on the stochastic complexity to leading order in 1/« we find 

I 1 ] l°g l°g°l (°t --> cx~)" (57) E D -  l o g P ~ ( y f l x 7  ) <BXmin(~)+logz~+ 2e~ 

Note that the decay of the stochastic complexity to its limiting behavior isfaster in this case 
than in previous realizable case. These calculations may be repeated for many different 
models (see Watkin, et al., 1993, and the references therein), resulting in similar expressions 
which depend of course on the details of the problem, as discussed in section 6. 

Appendix B 

In this appendix, we extend the usual Laplace method of asymptotic integration to deal 
with integrals whose integrand may be non-analytic, and thus not expandable into the usual 
Taylor series. In particular, we consider integrals of the form 

I (n) = f x  dx g(x)e -nf(x), (58) 

where X C R k is the integration region and the function f (x )  attains its global minimum 
at afinite set of points {xi} 6 X. We now establish the following result (see Amari, et al. 
(1992) for a different proof under slightly different conditions). 

THEOREM. Let f (x )  and g(x) be continuous real functions with domain X C R k. We 
assume the following to hold: 

1. f ( x )  attains its global minimum, fmin, at a finite set of points { i}i=I'X K 
2. The function f (x )  may be expanded near its respective minima as a homogeneous (but 

not necessarily analytic) function of degree si in the Euclidean norm IIx - xi II, namely 

[ f (x) - f (xi) [ 
lim = c i  (O < ci < e t ) .  

x--- , i  IIx - x i  Il s' 

3. The integral (58) exists for all positive integers n. 
4. There is a positive constant b such that f (x )  - fmin > b for x outside some bounded 

subset of X. 
5. The function g (x) is integrable and can be expanded in a convergent power series around 

any of the minima of f (x). 

Then, the leading asymptotic behavior of I (n) is given by 

2rck/2 r (~) g(x*)e-n¢;"~", (59) l (n)  s(cn)k/--------ss r (~----~ 

where s = max(sl . . . . .  sx), c is the value of ci at the minimum with the highest value of si 
and x* is the corresponding value of x. 

PROOF. We first establish the theorem in the one-dimensional case assuming a single global 
minimum at x0. The extension of the theorem to the multi-dimensional case comprising 
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multiple global minima will then be sketched. Our proof follows that of de Bruijn (1981), 
except where details specific to our case apply. Thus, assume the integration region in the 
one-dimensional case is a < x < b, with a < x0 < b (the case of a minimum at a boundary 
can be similarly treated but will not be spelled out here). In order to simplify the proof we 
assume that fmin = 0 and g(x) = 1. The former restriction is easily removed by defining 
f l  __ f _ fmin, and the latter causes no problems due to the regularity assumption (5) above. 
Now, given e > 0 one can find a 8 > 0 such that 

I f ( x ) - c l x - x o l S [ < ~ l x - x o l  s (I x - x 0  I_< 8), 

keeping in mind that f ( x o )  = 0. As in the standard approach to Laplace integration, one 
splits the integration region as follows 

f,~ (fx°,fxX°+,fó) I (n) A= dx  e -nf(x) = + o-8 + 0+8 dx  e -nr(x). (60) 

It is easy to see at this point that under the assumptions of  the the theorem (see de Bruijn, 
1981) the first and third integrals in (60) contribute vanishingly small terms in the limit 
n --+ ~ .  The integral around the minimum x0 may then be bounded as follows: 

f~o+~ fxo+, fxo+, dx  e -n(c+e)lx-x°l" < dx  e - n f ( x )  < d x e  -n(c-'e)lx-x°l~ (61) 
d Xo--~ d Xo --8 d xo--~, 

[] 

Once again the standard arguments can be applied showing that the limits of  all integrals 
may be extended to infinity at the price of introducing exponentially small terms. Using 
the identity 

iS (~) dx x k - l  e -nxs  1 - - ~ F  k>0,  n>0 ,  s >0, (62) 

we immediately find that 

s (n (c  + e)) l/~~ I" < I ( n )  < s (n (c  - e)) 1/s I~ " (63) 

Since e is arbitrarily small we immediately obtain the desired result. The extension to 
the multi-dimensional case can be easily made by noting that since the integrand near the 
minimum, x0, depends by assumption only on the Euclidean norm IIx - x01l, one may 
transform to spherical coordinates, rk- ldrdS2 ,  obtaining 

Jò0~f I ( n )  ~ dr  d a  rk_le_Cnr., _ 2rrk/__.....~ 2 - - , F  (.~) (64) 
,(«n)~/s r (~) 

where we have used the result f dS2 = 2rrk/2/I ' (k /2) .  Including the function g(x) and 
relaxing the requirement that fmin = 0, immediately yields the desired result, Eq. (59). 
Finally, the extension to the case of  multiple discrete global minima can be obtained by split- 
ring the integration region into small volumes around each minimum, applying the above 
argument to each such integral and retaining only the leading contribution in the limit 
n --+ ec. The standard result for Laplace integration (where the function f ( x )  can be ex- 
panded quadratically around the minimum) can be obtained by setting s = 2 in Eq. (59). 
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