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Abstract. This paper presents results comparing three simple inductive learning systems using different repre- 
sentations for concepts, namely: CNF formulae, DNF formulae, and decision trees. The CNF learner performs 
surprisingly weil Results on five natural data sets indicates that it frequently trains faster and produces more 
accurate and simpler concepts. 
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1 lntroduction 

Most empirical research on symbolic concept induction has focussed on learning decision 
trees (Quinlan, 1986; Breiman et al., 1984; Buntine & Niblett, 1992; Fayyad & Irani, 1992) 
or disjunctive normal form (DNF) expressions (Michalski & Chilausky, 1980; Michalski 
et al., 1986; Clark & Niblett, 1989; Pagallo & Haussler, 1990). Very little experimental 
research has been done on learning conjunctive normal form (CNF). This paper presents 
empirical results comparing simple CNF, DNF, and decision-tree learners on five natural 
data sets. The decision-tree system is a version of ID3 (Quinlan, 1986), the DNF system 
is a propositional version of FOIL (Quinlan, 1990), and the CNF system is the logical dual 
of the Foto system. In the domains tested, the CNF learner consistently obtains greater or 
equal classification accuracy and generally runs faster and produces less complex concepts. 

The success of the CNF-learning system is somewhat surprising, since CNF seems to 
have a reputation as an "unnatural" concept representation. Although computational learn- 
ing theorists frequently examine CNF representations (e.g. kCNF, k-clause CNF) (Valiant, 
1984; Pitt & Valiant, 1988), there are no popular, practical algorithms for learning CNF. Ac- 
tually, CNF is a quite natural representation for "nearly conjunctive" concepts. In addition, 
our results indicate that the dual of Foto is an efficient and effective CNF learner. 

2 Learning algorithms 

2.1 DNF learner 

The DNF learner is a propositional version of FOIL (Quinlan, 1990), which we call PFOIL. 
FOIL is a system for learning first-order Horn clauses; however, the basic algorithm is a 
heuristic covering algorithm for learning DNF similar to AQ (Michalski, 1975) or GREEDY3 
(Pagallo & Haussler, 1990). Pseudocode for PFolL is shown in Table 1. The primary sim- 
plification compared to FOIL, is that it only needs to deal with fixed examples rather than 
expanding tuples. Each execution of the outer loop adds one term to the final DNF expres- 
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Table 1. DNF learning algorithm: PFoIL. 

Ler Pos be all the positive examples. 

Let DNF be empty. 

Until Pos is empty do: 

Ler Neß be all the negative examples. 

Set Term to empty and Pos2 to Pos. 

Until Neg is empty do: 

Choose the feature-value pair, L, that maximizes DNF-gain(L, Pos2,Neg2) 

Add L to Term. 

Remove from Neg all examples that do not satisfy L. 

Remove from Pos2 all examples that do not satisfy L. 

Ädd Term as one term of DNF. 

Remove from Pos all examples that satisfy Term. 

Return DNF 

Function DNF-gain(L,Pos,Neg) 

Let P be the number of examples in Pos and N the number of examples in Neg 

Ler p be the number of examples in Pos that satisfy L. 

Ler n be the number of examples in Neg that satisfy L. 

Return p*(log(p/(p+n)) - log(P/(P+N))) 

sion and removes the positive examples that it covers. Each execution of the inner loop 
adds one literal to the current term, using an information-gain metric to determine the best 
literal. The metric computes the total information gained regarding the current positive 
examples, which is given by the number of them that satisfy the literal multiplied by the 
information gained regarding each one of them (Quinlan, 1990). 

The current system only handles discrete-valued features, in which a "literal" is a specific 
feature-value pir, such as color:red, pregnant=true, or iDregnant=false. No 

special processing is used to handle missing values. An example that is missing a value for 
a particular feature is simply assumed n o t  to satisfy any specific feature-value pair for that 
feature. If due to noise, missing values, or local minirna, there is no literal with positive 
information gain, the incomplete term is simply returned. This happened relatively rarely 
in the current experiments, training set accuracy alrnost always averaged over 99%. Finally, 
there is currently no pre-pruning or post-pruning of terms or clauses to avoid overfitting. 

When learning from data with multiple disjoint categories, PFom learns a separate DNF 
description for each non-negative category using the examples of that category as positive 
instances and the examples of all other categories as negative instances. During testing, 
if an example satisfies the DNF description of more than one category, it is assigned to 
the matching category with the most training examples. If a test example doesn't match 
any of the category descriptions, it is assigned to overall most common category, or to the 
n e g a t i v e  category, if one exists. 

To help ensure that PFom was a representative DNF learner, we ran several experiments 
comparing it to a comparable version of AQ (Michalski, 1975). In almost all cases, there - 
was no statistically significant difference in predictive accuracy; however, AQ generally 
took significantly longer to run. If  AQ's beam-width was set to one (therefore forcing it to 
hill-climb like PFOIL), its run timë was similar to PFOlL's but it's DNF expressions were - 
significantly more complex. 
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Table 2. CNF leaming algorithm: PFoIL-CNF. 

Ler Neg be all the negative examples. 

Ler CNF be empty. 

Until Neg is empty de: 

Ler Pos be all the positive examples. 

Set Clause to empty and Neg2 to Neg, 

Until Pos is empty de: 

Choose the feature-value pair, L, that maximizes CNF-gain(L,Pos,Neg2) 

Add L to Clause. 

Remove from Pos all examples that satisfy L. 

Remove from Neg2 all sxamples that satisfy L. 

Ädd Clause as one elause of CNF. 

Remove from Neg all examples that de not satisfy Clause. 

Return(CNF) 

Function CNF-gain(L,Pos,Neg) 

Ler P be the number of examples in Pos and N the number of examples in Neg. 

Ler p be the number of examples in Pos that de not satisfy L. 

Let n be the numbsr of examples in Neg that de not satisfy L. 

Return n*(log(n/(p+n)) - Iog(N/(P+N))) 

2.2 CNF learner 

There has been a noticeable absence of heuristic algorithms for learning CNE The standard 
PAC algorithm for learning kCNF (Valiant, 1984) requires a fixed limit on the size of clauses 
(k) and its time complexity is exponential in k. Therefore, it is not practical for most realistic 
problems. 

The current experiments employ a logical dual of PFEIL, which we call PFOlL-CNF. 
Pseudocode for PFOIL-CNF is shown in Table 2.1 While PFEIL learns terms until all 
of the positive examples are covered, PFOlL-CNF learns clauses until all of the negative 
examples are removed. While PFO1L learns terms one literal at a time until all the negatives 
are removed, PFOm-CNF learns clauses one literal at a time until all of the positives are 
covered. PFolL-CNF's information gain metric is also the dual of PFom's. It computes 
the total information gained regarding the current negative examples, which is given by the 
number of them that are removed by the current literal multiplied by the information gained 
regarding each one of them. 

All of the comments about PFEIL regarding discrete features, missing values, pruning, 
and multiple categories apply in corresponding form to the current version of PFolL-CNF. 
In every sense, PFEIL and PFOlL-CNF are exact duals. 

2.3 Decision tree learner 

The decision-tree learner is a version of ID3 (Quinlan, 1986). The same version was used 
in the experiments reported by Shavlik et al. (1991). It learns a single tree for classifying 
examples into rnultiple categories and uses the normal information-gain splitting criterion. 

Missing feature values are handled according to the methods recommended in (Quinlan, 
1989). When evaluating a potential splitting feature, the system adjusts its information 
gain by distributing examples with unknown values across the possible values according to 
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their frequency. When considering partitioning the training set along a particular attribute, 
if a training example has an unknown value for this attribute, a fraction of the example is 
assigned to each subset based on the frequency ofits corresponding value. When classifying 
a new case with an unknown value for the attribute being tested, all branches are explored 
and the results are combined to refiect the relative probabilities of the different outcomes. 

In order to make it comparable to PFOIL and PFOIL-CNF, no pruning is performed. If  
the system is eventually left with examples with the exact sarne features but in different 
classes, it creates a leaf labelled with the majority class. 

3 Data sets 

This section briefly describes the data sets used in the experiments. All of them are available 
through the UCI repository of machine learning databases (Murphy & Aha, 1993). 

The soybean data set is the original data for soybean disease diagnosis (Michalski & 
Chilausky, 1980). It contains 630 examples of 15 different diseases described using 35 
features in which 5.1% of the feature values are missing. A few features can be viewed as 
discrete-valued numerical attributes; however, these are simply treated as nominal in the 
current experiments. 

The congressional voting data set contains records from the U.S. House of Represen- 
tatives from the year 1984 (Schlimmer, 1987). It consists of 435 examples from two 
classes (Democrat and Republican) with data from 15 key votes in which 5.8% of the 
feature values are missing. Like Buntine and Niblett (1992), we deleted the feature 
physician-fee-freeze in order to make a more interesting problem. Otherwise, 
the most reliable concept description is a trivial test of this single attribute. PFom and 
PFOlL-CNF were tun with Democrats as positive and Republicans as negative. Similar 
results were obtained when Republicans were considered positive. 

The audiology data set consists of hearing-disorder cases from the Baylor College of 
Medicine (Porter et at., 1990) in Quinlan's standardized form available from the UCI repos- 
itory. There are 226 examples of 24 categories of hearing disorders using 69 features in 
which 2% of the feature values are missing. 

The promoter data set consists of 106 DNA sequences, each represented as a string of 57 
nucleotides (one of A, G, T, or C). Half of these are examples of a gene-starting sequence 
called a promoter (Towell et al., 1990). There are no missing values. 

The splice-junction data set is another DNA sequence database (Noordewier et al., 1991). 
It consists of 3190 sequences of 60 nucleotides each. Only 0.03% of the feature values 
are missing. There are three categories. Two of them represent different boundary re- 
gions between protein-coding sections (exons) and non-coding sections (introns) of a DNA 
sequence. The third category is negative. 

4 Experiments 

4.1 Method 

In order to compare the performance of the three systems, learning curves were generated 
for each of the five data sets. Each system was trained in batch fashion on increasingly 
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Figure 1. Test accuracy for soybean data. 

larger fractions of a fixed training set and repeätedly tested on thesame disjoint test set. At 
each point, the following statistics were gathered: training set accuracy, test set accuracy, 
training time, and concept complexity. For concept complexity, we recorded the number of 
literals for CNF and DNF formulae and the number of leaves for decision trees. Although, 
literal and leaf counts are not directly comparable, they provide a reasonable measure of 
relative complexity. 

All of the results were averaged over 25 trials, each with a different randomly selected 
training and test set. In most domains, the test set consisted of all remaining examples; 
however, a random set of 200 test examples was used for the larger splice-junction data. 
The results were statistically evaluated using a two-tailed paired t-test. For each training 
set size, each pair of systems was compared to determine if their differences in accuracy, 
time, and complexity were statistically significant (p < 0.05). 

4.2 Results 

Representative curves for test accuracy, concept complexity, and train time for some of 
the domains are shown in Figs. 1-7. Run times are for a SPARCstation 2 running Lucid 
Common Lisp. Due to the specifics of the implementations, when given zero training exam- 
ples, PFOIL classifies everything as negative, PFolL-CNF classifies everything as positive, 
and ID3 returns a random class. Differences at zero training examples are not particularly 
meaningful and will not be discussed. If other specific differences are not mentioned, they 
should be assumed to be statistically insignificant. When orderings of systems are given, it 
is always from "best" to "worst." 

On the soybean data, PFom-CNF performed quite well. Its accuracy was significantly 
greater than PFOIL's after 80 examples, and significantly greater than ID3's except at 300 
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Figure 2, Concept complexity for soybean data. 
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Figure 3. Test accuracy for audiology data. 

examples .  PFoIL was significantly better than ID3 at 20 and 40 examples  and significantly 

worse  at 300 examples .  With  respect  to training time, all differences after 80 examples  were  

significant,  wi th  the ordering: ID3, P F o m - C N F ,  PFoIL. Regarding  concept  complexi ty ,  
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Figure 4. Concept complexity for audiology data. 
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Figure 5. Test accuracy for splice junction data. 

PFOlL-CNF a lways  p r o d u c e d  s imple r  resul t s  than  PFOIL. C o m p a r i n g  leaf  and  l i teral  

coun t s  is p rob l ema t i c ,  bu t  ID3 did  s igni f icant ly  worse  than  the o ther  two excep t  at 300  

examples .  
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Figure 6. Concept complexity for splice junction data. 
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Figure 7. Training time for splice junction data. 

On the congressional voting data there were no striking differences. The graphs are not 
shown; however, data was gathered for 20, 50, 100, 180, and 300 training exarnples. The 
only significant difference in accuracy was that PFOIL did slightly worse than the other two 
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at 300 examples. All training times after 50 examples were significant, with the ordering: 
PFOIL, PFoIL-CNF, ID3; however, the difference between PFO1L and PFOIL-CNF was min- 
imal. All differences in concept complexity were significant with the ordering: ID3, PFom, 
PFOIL-CNF; however, the difference between PFOIL and PFOIL-CNF were again minimal. 

On the audiology data, CNF showed some advantages. Regarding accuracy, PFOm-CNF 
was better than ID3 at 20 examples and better than PFOIL at 140 and 200 examples. PFom 
was better that ID3 at 20 examples but consistently worse after 90 examples. All training 
times were significantly different, generally with the ordering: PFOlL-CNF, PFOIL, ID3; 
except that ID3 was laster than PFOIL at 200 examples and PFOIL was faster than PFoIL- 
CNF at 20 and 50 examples. All differences in concept complexity after 50 examples were 
significant with the ordering: ID3, PFOIL-CNF, PFOIL; but ID3 was significantly worse 
than the other two at 20 examples. 

On the promoter data, CNF again showed a slight advantage. The graphs are not shown; 
however, data was collected for 10, 20, 40, 60 and 80 training examples. The results 
are qualitatively similar to the splice junction results but the differences are smaller. With 
respect to accuracy, PFOIL-CNF was significantly better than PFOIL at 40 examples and better 
than ID3 at 40 and 60 examples. All training times were significantly different with the 
ordering: PFoIL-CNF, PFolL, ID3; except that there was no significant difference between 
PFOIL and PFOIL-CNF at 40 and 60 examples. A|I differences in concept complexity were 
also significant with the ordering: PFOlL-CNF, PFoIL, ID3; except there was no significant 
difference between PFOm and PFOIL-CNF at 10 and 20 examples. 

On the splice-junction data, CNF shows a fairly strong advantage. On accuracy, PFOlL- 
CNF is consistenfly bettet than the other two systems, with differences as large as ten 
percentage points. PFolL is significantly better than ID3 at 100, 200, and 300 examples 
but significantly worse than ID3 at 500. On training time, PFOm-CNF is again consistently 
bettet, except it is slower than PFOIL at 20 examples. PFOlL is significantly faster than ID3 
up to 200 examples, but significantly slower for 500 examples. All differences in concept 
complexity are also significant with the ordering: PFOIL-CNF, PFOIL, ID3; except for PFom 
and PFom-CNF at 20 examples. 

4.3 D i s c u s s i o n  

Overall, the CNF-learner performed surprisingly well. With respect to classification ac- 
curacy, it was n e v e r  statistically significantly worse than the other two systems and was 
frequently superior. In addition, PFOlL-CNF ran fastet and produced simpler concepts than 
PFOlL, except on the congressional voting data, where the difference was minimal (less 
than 10%). Except on the soybean data, PFOIL-CNF also ran fastet than ID3. It also pro- 
duced simpler concepts in three of the five domains, assuming literal and leaf counts are 
comparable measures. 

Since all of the algorithms are "top down" and "grow" concept descriptions until they are 
consistent with the training data, their run time is a function of their concept complexity. 
Consequently, PFoIL-CNF's laster run time is explained by the fact that it is learning simpler 
concepts. The fact that PFOIL-CNF frequently learned more accurate, simpler concepts 
indicates that CNF was a somewhat better bias for the domains tested. Apparently, the 
assumption that the concepts in these domains could be represented as simple CNF formulae 
was frequently slightly more appropriate than the assumption that they could be represented 
as simple DNF formulae or simple decision trees. 
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Table 3. Sample DNF and CNF concepts in the splice-junction domain. 

D N F  for Intron-Exon border (26 literals) 

P-2=A A P-I=G A P-9=T A P-7=C V 

P-2=A A P-I=G A P-21=C A P-25=C V 

P-2=A A P-I=G A P2=G A P-3=C V 

P-2=A A P-I=G A P-10=T A P-14=T V 

P-2=A A P-I=G A P-8=C A P-20=T V 

PI9=A A PI0=C A P-13=C V 

P-21=G A P-19=A A P-26=A 

CNF for Intron-Exon border (17 literals) 

P-2=A V P3=T A 

P-I=G V P20=C A 

P-3=C V P-10=T V P23=A A 

P-7=C V P-21=C V P-19=T V P25=A V PI2=A A 

P-18=C V P-15=C V P6=G V PI6=A V P-10=G 

Table 4. Sample DNF and CNF concepts in the audiology domain.  

DNF for Norm~ Ear (34 limr~s) 

AIR=NORMAL A 0-AR-U=ABSENT A AR-U=NORMAL A MDD-GT-4K=FALSE V 

AIR=NORMAL A 0-AR-C=ELEVATED A N01SE=FALSE A 0-AR-U=ELEVATED V 

AIR=NORMAL A 0-AR-C=ABSENT A AR-U=ELEVATED A TYMP=A V 

AIR=NORMAL A NOISE=FALSE A AGE-GT-60=FALSE A BONE=UNMEASURED A 0-AR-U=ELEVATED V 

AIR=NORMAL A NOISE=FALSE A 0-AR-C=ELEVATED A SPEECH=VERY-G00D V 

AIR=NORMAL A SPEECH=NOBMAL A AR-C=ELEVATED A NOTCH-AT-4K=FALSE V 

AIR=NORMAL A SPEECH=NORMAL A NDISE=FALSE A NAUSEA=FALSE A AR-U=NORMAL 

A DIZZINESS=FALSE A AGE-GT-60=FALSE A NOTCH-AT-4K=FALSE A AR-C=NORMAL 

CNFfor Norm~ Ear(131iterals) 

AIR=NORMAL A 

NOISE=FALSE A 

0-AR-U=ABSENT V 0-AR-C=ELEVATED V SPEECH=NORMAL A 

M-SN-GT-2K=FALSE A 

M-SN-GT-4K=FALSE A 

TYMP=A A 

DIZZINESS=FALSE V 0-AR-C=ELEVATED A 

NOTCH-AT-4K=FALSE A 

M-SN-2-3K=FALSE A 

MOD-GT-4K=FALSE 

Specific examples of  DNF and CNF concepts learned from the same data are given 
in Tables 3 and 4. Notice that the DNF formulae contain repeated patterns of literals 
across disjuncts. The DNF results for the soybean and promoter domains show similar 
but less pronounced replication. Since representing a CNF concept in DNF generally 
requires such duplication, this is another indication that CNF may be a superior bias in 
these domains. Pagallo and Haussler (1990) discuss similar duplication resulting from 
representing DNF formulae as decision trees. 

It should be noted that using intervals on linear features and internal disjunction (allowing 
disjunctions of values for the same feature in the "literals" of a DNF formula) (Michalski, 
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1983), can help relieve the replication problem for DNF. However, most of the clauses in 
the sample CNF formulae are not amenable to either of these approaches. 

Unlike DNF formulae, decision trees can "share" conceptual structure across multiple 
disjuncts and avoid some of the duplication problems discussed above. However, decision 
trees have their own replication problem in which subtrees taust be duplicated in order to 
represent certain disjunctions (Pagallo & Haussler, 1990). An examination of a number of 
decision trees produced for the current data sets revealed a few, small, duplicated subtrees. 
However, replication was more clearly indicated by the repeated use of the same features 
in different parts of the trees. 

Unfortunately, the differences between decision Irees and DNF/CNF formulae make 
direct comparisons of these representations somewhat difficult. In particular, a single 
decision tree can discriminate any number of categories, while separate DNF and CNF 
formulae are needed for each category. This allows decision trees to share conceptual 
structure across multiple categories in a way that CNF and DNF representations cannot. 
This explains why ID3 learns less complex concepts in the audiology domain, since it has 
the largest number of categories (24) and therefore the greatest opportunity for sharing 
structure across categories. 

5 Related research 

As previously mentioned, there has been very little experimental research on learning 
CNF. Some extensions to the FRINGE (Pagallo & Haussler, 1990) and CITRE (Matheus & 
Rendell, 1989) work on constructive induction in decision trees include feature-construction 
heuristics appropriate for learning CNF. Pagallo (1990) explored a dual version of FRINGE 
which constructs disjunctive features from negative leaves and a symmetric version which 
constructs features appropriate for both DNF and CNF. Yang et al. (1991) present an 
improved version of symmetric FRINGE called DCFRINGE. However, unlike PFOm-CNF, 
these systems do not directly construct CNF formulae in a single pass. Also, the authors 
do not present results comparing CNF and DNF biases on natural data. 

6 Future research issues 

Decision-tree methods for discretizing continuous attributes (Quinlan, 1986; Fayyad & 
Irani, 1992) could be employed to handle real-valued features. The effect of using numerical 
thresholds and internal disjunction in DNF formulae needs to be determined. Also, the 
relative effects of pruning on different representations should be examined. 

As previously mentioned, for some purposes it is difficult to compare multi-category, 
n-ary decision trees to DNF and CNF formulae. A learner that induces a separate de- 
cision tree for each category and is restricted to binary splits on specific feature val- 
ues would be easier to compare. Factoring out these additional differences might allow 
the relative advantages and disadvantages of decision tree representations to be studied 
more clearly. 

Although it did not arise frequently in the current experiments, CNF, not surprisingly, 
has its own replication problem. An example from the current experiments is shown in 
Table 5, in which the literal STEM-CANKERS:ABOVE-SEC-NDE is repeated in six clauses. 



90 MOONEY 

Table 5. Example of replication in CNF. 

CNFforFrog EyeLeafSpot(281~erNs) 

FRUIT-SPOTS=COLORED V LEAFSPOT-SIZE=>-I/8 A 

EXTERNAL-DECAY=FIRM-AND-DRY v LEAF-SHREAD=ABSENT A 

EXTERNAL-DECAY=FIRM-AND-DRY V TEMP=NORM V STEM-CANKERS=ABOVE-SEC-NDE A 

FRUIT-PODS=DISEASED V SEED-TMT=FUNGICIDE V HAIL=N0 V AREA-DAMAGED=SCATTERED A 

STEM-CANKERS=ABOVE-SEC-NDE V PLANT-GROWTH=NORM A 

STEM-CANKERS=ABOVE-SEC-NDE V SEED=NORM A 

STEM-CANKERS=ABOVE-SEC-NDE V DATE=8 V DATE=9 V DATE=f0 V HAIL=NO A 

STEM-CANKERS=ABOVE-SEC-NDE V GERMINATION=80-89% V DATE=9 V AREA-DAMAGED=LOW-AREAS V 

PRECIP=NORM A 

STEM-CANKERS=ABOVE-SEC-NDE V PLANT-STAND=NORMAL V CROP-HIST=SAME-LST-SEV-YRS 

However, even in this case, the learned DNF representation was more complex (33 literals 
versus 28). There are obviously concepts that can be represented more compactly in DNF 
than CNF; however, these did not seem to arise in the current experiments. 

A standard representation that can completely avoid replication is multi-level Horn- 
clause theories. By appropriately introducing new intermediate terms, replication can be 
prevented. Inverse resolution operators like intra-construction and inter-construction (Mug- 
gleton, 1987) introduce new terms in order to remove redundancy and to compact concept 
representations. However, there has been little research on efficient, oracle-free methods 
for inducing multi-level Horn-clause theories. The symmetric FRINGE and DCFRINGE 
algorithms discussed above are possible exceptions but typically require many passes 
through the data. An integration of PFOIL and PFoIL-CNF seems like an alternative promis- 
ing approach. 

7 Conclusions 

This paper has presented experiments comparing inductive concept learning using three 
different representations: DNF formulae, CNF formulae, and decision trees. In four out of 
five domains, the CNF learner produced more accurate concepts than the other two learners. 
In most cases, it also ran faster and produced simpler concepts. This is an indication that 
CNF may be a useful bias for real-world problems. However, there has been little focus 
on developing practical algorithms for learning CNF. The promising results reported in this 
paper will hopefully encourage more research in this and related areas. 
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Notes 

1. One can easily show that the time complexity of both PFoil and PFoil-CNF is O (nec) where n is the number 
of possible literals, e is the number of examples, and c is the complexity of the final learned concept in number 
of literals (i.e. adding each literal in the definition requires determining the galn of each possible literal which 
requires examining each remaining example). The complexity of the learned eoncept, c, is in turn bounded 
by O(ne), since each term in a DNF formula has some subset of the n possible literals and covers at least 
one new positive example in order to have positive galn (a dual argument holds for CNF). Therefore, both 
algorithms are O (rt2e2). 
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