
Machine Learning, 14, 333-347 (1994) 
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Technical Note 
Statistical Methods 
Experiments 

for Analyzing Speedup Learning 

OPEN ETZIONI (ETZIONI@CS.WASHINGTON. EDU) 
Department of Computer Science and Engineering, FR-35, University of Washington, Seattle, WA 98195 

RUTH ETZIONI 
Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98104 and 
Department of Biostatistics, University of Washington, Seattle, WA 98195 

Editor: Steven Minton 

Abstract. Speedup learning systems are typically evaluated by comparing their impact on a problem solver's 
performance. The impact is measured by running the problem solver, before and after learning, on a sample 
of problems randomly drawn from some distribution. Often, the experimenter imposes a bound on the CPU time 
the problem solver is allowed to spend on any individual problem. Segre et al. (1991) argue that the experimenter's 
choice of time bound can bias the results of the experiment. To address this problem, we present statistical hypothesis 
tests specifically designed to analyze speedup data and eliminate this bias. We apply the tests to the data reported 
by Etzioni (1990a) and show that most (but not all) of the speedups observed are statistically significant. 
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1. Motivation 

Speedup learning systems are systems that automatically generate search-control knowledge 

(e.g., Etzioni, 1990b; Knoblock, 1990; Minton, 1988a; Mooney, 1989; O'Rorke, 1989; 
Shavlik, 1990). The effectiveness of a speedup learning system is typically evaluated by 

comparing the performance of a problem solver, guided by the learned knowledge, with 
the performance of the problem solver given no control knowledge, or given control 

knowledge acquired by a different learning system. The problem solver is run on a sample 
of problems randomly drawn from some distribution. In many experiments, the problem 

solver requires an inordinately long time to solve one or more of the problems due to the 
combinatorial nature of its search. To allow the experiments to complete in reasonable time, 

the experimenter imposes a bound on the CPU time that the problem solver is allowed 
to spend on any individual problem. When that bound is exceeded, the problem is marked 
"unsolved" and the problem solver moves on to the next problem. The same time bound 

The statistical tests described in this article are encoded as COMMON LISP routines. The routines, and the data 
analyzed in the article, are available by sending mail to ETZIONI@CS.WASHINGTON.EDU. We hope that other researchers 
will use the routines to validate their own speedup learning experiments. 
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is imposed on each individual problem under all experimental settings. The information 
available regarding that problem's solution time is said to be truncated or censored due 
to the time bound. 

In a recent paper, Segre et al. (1991) argue that the experimenter's choice of time bound 
can influence the results of the experiment. Segre et al. illustrate this point with a hypothetical 
example reproduced in tables 1 and 2. In table 1, using a time bound of 1000 CPU seconds, 
learning appears to increase total problem-solving time; in table 2, using a time bound 
of 3000 CPU seconds, learning is shown to actually reduce total problem-solving time. 

LL Analysis 

We agree with Segre et al. that this potential bias is undesirable. An obvious solution is 
to eliminate time bounds (or, more generally, resource bounds). In practice, this is not 
feasible, particularly as we scale our experiments to increasingly difficult problems. If  we 
accept that some of our data may be censored, due to a resource bound, we need to analyze 
the impact a bound can have on the results of our experiment. Ideally, since the bound 
is under the experimenter's control, the bound should have no impact on the results in 
order to ward off claims that the experimenter could have manipulated the experiment to 
yield a particular outcome. In section 1.2, we propose statistical methods for analyzing 
censored data that have this property. Initially, however, we present several alternative ap- 
proaches and identify their limitations. The fundamental question that all methods grapple 
with is this: how much weight should we assign to censored data? 

An extreme approach is to discard all censored data, assigning it zero weight; the im- 
plicit assumption is that the relative performance of the two systems, as observed in the 
uncensored data, will extrapolate to the censored data. However, as tables 1 and 2 illustrate, 
this assumption can lead to erroneous conclusions. 

Another alternative is to extend a standard test of average pairwise difference, such as 
the matched-pair t-test, which assumes that the observed differences between the pairs of 
solution times are drawn from a particular (e.g., normal) distribution. In such a test, even 

Table L Segre et al.'s hypothetical speedup learning experiment, where the learned knowledge appears to slow 
down problem solving using a time bound of 1000 CPU seconds. 

Problem 1 2 3 4 5 Total 

Before learning 100 200 300 900 1000 + 2500 
After learning 100 275 600 1000 + 1000 + 2975 

Table 2. The learned knowledge turns out to speed up problem solving (as revealed when the time bound is 
increased to 3000). 

Problem 1 2 3 4 5 Total 

Before learning 100 200 300 900 3000 + 4500 
After learning 100 275 600 1560 1078 3613 

+A problem whose solution time exceeds the bound. 
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though we do not know the true value of a censored difference (e.g., the difference in run- 
time due to learning on data points 4 and 5 in table 1), we impose a probability distribution 
on the possible difference, which enables us to compute the likelihood that a censored dif- 
ference will turn out to be sufficiently large to change the outcome of the experiment; we 
then factor this likelihood into the test's result. Unfortunately, the distributional assump- 
tion severely restricts the generality of the test. In fact, the actual distributions observed 
in many speedup learning systems have no straightforward mathematical characterization-- 
they are certainly not normal. Thus, using a test that presupposes a normal distribution, 
such as the matched-pair t-test (DeGroot, 1986), is inappropriate. 

The ideal statistical test would test for "average speedup," which is the intuitive notion 
employed in the machine-learning literature, without making distributional assumptions. 
It is easy to see that, given censored data, no such test exists. Consider a sample contain- 
ing at least one censored data point for each system. In the absence of distributional assump- 
tions, the impact of the censored data points on the average performance of the two systems 
cannot be bounded. As a result, the systems could turn out to have the same performance, 
on average, or either system may turn out to be considerably faster than the other. There 
is no way to tell without increasing the resource bound. 

To address this problem, we could posit an upper bound on the value of censored data 
points. We could then perform a worst-case analysis by replacing each censored data point, 
for the system purpored to be faster, with the upper bound and apply a standard statistical 
test for average difference to the transformed data set. This approach may be satisfying 
when a tight bound can be derived. However, when trying to investigate average speedup, 
a loose upper bound assigns too much weight to censored data points. Since the bound 
is under the experimenter's control, the experimenter would be open to claims that she 
manipulated the experiment. For illustration, refer back to table 1. If we replace each cen- 
sored data point with any upper bound that exceeds 1000, learning would appear to be 
ineffective. Yet, as table 2 illustrates, this conclusion is misleading. 

Worst-case analysis is appealing, in this context, because it could potentially eliminate 
any bias due to the experimenter's choices. However, we need to bound the impact of any 
single censored difference on the outcome of the experiment. Otherwise, assigning a worst- 
case value to a small number of censored data points will obscure a definitive trend in 
the rest of the data. We avoid this problem by reformulating the hypothesis being investigated. 
Instead of directly testing for average speedup, we use statistical methods that are not 
"swayed" by the value of a small number of data points. We return to this issue in section 
4.4, after providing the appropriate background and describing our approach. 

1.2. Maximally conservative tests 

Our approach is based on a combination of standard statistical methods and worst-case 
analysis. The key idea is to eliminate bias from an experiment by interpreting censored 
data in a maximally conservative manner, without assigning too much weight to censored 
data points. We introduce statistical hypothesis tests guaranteed to draw reliable conclu- 
sions from censored data. The guarantee is the following: 
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If  our test provides evidence for a particular conclusion, given a resource bound, the 
evidence for that conclusion would be at least as strong if the experiment was run to 
completion without any resource bound. 

We restate this guarantee in precise statistical terms at the end of section 2. 
The remainder of this article is organized as follows. Section 2 reviews the statistical 

background necessary to understand the article, describes standard statistical methods for 
analyzing censored data, and considers their strengths and weaknesses. Section 3 describes 
the data set we use to illustrate our approach. The data set, taken from Etzioni (1990a), 
compares the performance of PRODIGY, EBL, STATIC, and human experts on PRODIGY'S bench- 
mark tasks. Section 4 introduces the statistical tests we propose. We apply each test to 
our speedup learning data, and discuss the results. 

2. Statistical background 

This section provides a precise but accessible exposition of statistical hypothesis tests, and 
considers standard statistical methods for analyzing censored data. 

2.1. Hypothesis tests 

Statistical hypothesis testing has become an important tool in any discipline in which ob- 
served data are subject to uncertainty. We provide a brief description of the basic concepts 
and procedure below. See Gibbons (1971), Wilks (1962), or any standard statistics text- 
book for a detailed exposition. 

Broadly speaking, the goal is to estimate, using the data, a "state of nature," or an underly- 
ing data-generating mechanism from a finite space of possibilities. Consider the simple 
case of a coin toss, and let P(h) be the probability of the coin turning up heads. If  one 
is interested in whether the coin is biased in favor of heads or not, the two possible states 
of nature are P(h) > 1/2 or P(h) <_ 1/2. The aim of a hypothesis test is to use available 
data to decide which state prevails. 

In formulating a hypothesis test, the researcher typically designates the hypothesis she 
wishes to establish as the alternate hypothesis; its negation is called the null hypothesis. 
The null hypothesis is denoted Ho, and the alternate hypothesis is denoted H a. In our coin 
toss example, Ho might be P(h) < 1/2, and H a would then be P(h) > 1/2. In a speedup 
learning experiment, Ho might be that the problem solver with no control knowledge per- 
forms at least as well as, the problem solver with control knowledge, and the alternative 
hypothesis would be that the problem solver with control knowledge is superior. Note that 
the precise formulation of the null and alternative hypotheses is key to understanding ex- 
actly what conclusion is licensed by the test. See section 4.4 for further discussion of this 
issue. 

The crux of the hypothesis test is the decision whether the data provide sufficient evidence 
against Ho to allow one to reject it. In essence, a hypothesis test is the statistical analog 
of a "proof by contradiction." The idea is to assume, tentatively, that Ho is true and to 
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ask how unlikely is the experimental outcome observed, or one that favors H a even more. 
If  the likelihood of observing such extreme experimental outcomes is very low, then there 
is strong evidence for rejecting Ho. In the coin toss example, suppose that a coin turns 
up "heads" 5 out of 10 times. If  the coin is fair (i.e., H o holds), the probability that at 
least 5 out of 10 tosses will come out "heads" is 0.62. Thus, the evidence against Ho is 
weak. Suppose, on the other hand, that a coin turns up "heads" 98 out of 100. The prob- 
ability of an observation at least as large as this, assuming that the coin is fair, is prac- 
tically zero. Thus the evidence against tlo is very strong in this case. 

The p-value is the probability, assuming Ho holds, of encountering data that favors Ha 
as much as or more than the data observed in the experiment. Thus, a small p-value leads 
one to reject H o. 

I f  H o is rejected, the p-value is the probability that it has been rejeced in error; natur- 
ally, one would like this probability to be small. The threshold for the p-value is decided 
before the experiment and is called the significance level. If a test is performed at significance 
level c~, then Ho is rejected if the p-value is less than o~, and we say that the test is 
statistically significant at level c~. All this means is that we are rejecting the null hypothesis 
with the caveat that we are making an error with probability at most a.  Note that if H o 
is not rejected, we do not accept it; all we can conclude is that we do not have evidence 
to reject it. In general, we can never conclude that the null hypothesis is true; we can only 
conclude that it is probably false. 

In many cases, p-values are straightforward to compute. Consider a coin-tossing experi- 
ment where Ha is that P(h) > 1/2; h denotes that a coin turn up "heads." Suppose q out 
of n tosses turn up heads. The p-value is the probability of having q (or more) heads given 
that Ho is true, where H o is that P(h) <_ 1/2. Although Ho covers an interval rather than 
exactly one value (i.e., Ho : P(h) < 1/2 as opposed to Ho : P(h) = 1/2), the p-value cor- 
responding to the H o is bounded above by the p-value for Ho .~ Thus, we typically report 
this upper bound as the p-value in hypothesis tests with interval (or composite) null 
hypotheses. In the coin-tossing example, the p-value is simply the proportion of the n-long 
toss-sequences of a fair coin where q or more of the tosses turn up heads. This proportion 
can be computed using the binomial formula as follows: 

p-value = 
i=q i!(n -- i)! 

The normal approximation to the binomial distribution can be used if n is larger than 25 
(DeGroot, 1986). 

In many experiments, the significance level, a ,  is taken to be 0.05, but there is no reason 
that this value should be adopted in all situations. It is up to the experimenter to decide 
what significance level is appropriate. Factors to consider include the acceptable level of 
error and the number of tests being performed. If  several tests are being performed, each 
at significance level 0.05, then the chance that at least one null hypothesis will be rejected 
in error is substantially larger than 0.05; this is called the multiple comparisons problem 
(Brown & Hollander, 1977). For k independent tests, each conducted at level a ,  the prob- 
ability of at least one incorrect rejection of the null is 1 - (1 - or) k. For example, if we 
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conduct nine independent tests, each at level c~ = 0.05, then the probability of incorrectly 
rejecting the null hypothesis at least once is 37 %! To control the overall error probability 
in multiple testing, the experimenter has to reduce the significance levels in the individual 
tests. To achieve an overall significance level of 0.05, when conducting nine independent 
tests, the significance level of each test should be approximately one ninth of 0.05. 

2.2. Statistical tests for censored data 

The methodology described above applies to data that are not censored. Below, we con- 
sider statistical tests extended to analyze censored data. Censoring is not peculiar to speedup 
learning data. In fact, it abounds in reliability studies (where we encounter failure time 
data) and in medical studies (where we encounter survival or lifetime data). Consider, for 
instance, a clinical trial comparing two medical treatments. Patients are followed for five 
years, and their survival from the start of the trial is recorded. At the end of five years, 
some of the patients will have died, and their survival times will be known. However, the 
survival times of the patients who are still alive at the end of the trial will be unknown. 
These observed times are said to be censored at the end of the trial; all we know is that 
they exceed the trial duration. This is exactly the same situation as in a speedup learning 
experiment. The different treatments correspond to different problem solvers, or to the 
same problem solver with different control knowledge. The five-year length of follow-up 
corresponds to the resource bound. Problems that are solved within the resource bound 
are analogous to patients who die within the trial period; problems that remain unsolved 
at the resource bound are censored. Table 3 summarizes the analogy between survival 
analysis and speedup learning. 

A large body of statistical theory has been developed for survival analysis; Kalbfleisch 
and Prentice (1980) is a classic reference. However, we have found that the theory relies 
on stronger assumptions than are warranted in the analysis of speedup learning data. Con- 
sider, for example, doubly censored data in which the problem-solving time (or the sur- 
vival time) is truncated for both systems being studied? It is standard statistical practice 
to discard such data and only analyze the singly censored and uncensored pairs in the sam- 
ple (Holt & Prentice, 1974; Woolson & Lachenbruch, 1980). However, this practice amounts 
to assuming that the relative performance of the two systems as observed in the uncensored 
and singly censored data extrapolates to the doubly censored data. This assumption can 
introduce bias into the experiment? The assumption is made in the medical and reliability 

Table 3. The analogy between the speedup learning and survival analysis. 

Experiment 

Speedup Learning Trial Clinical Trial 

Elements compared Problem solvers Treatments 
Termination criterion Problem solved Death of patient 
Data Solution time Survival time 
Censoring due to Resource bound End of follow-up 
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contexts, where data may be extremely expensive to obtain, in order to enhance the ability 
of statistical tests to draw definitive conclusions from relatively small samples (samples 
containing only 20 to 30 data points are quite common). 

To avoid making this assumption, we take a maximally conservative approach and inter- 
pret each doubly censored data point as supporting the null hypothesis. As a result, a larger 
sample may be needed to reject the null hypothesis in the presence of doubly censored 
data. Our maximally conservative choice decreases the sensitivity (also known as power) 
of our tests 4 However, we feel that this tradeoff is appropriate because we can compensate 
for decreased sensitivity by increased sample size and, in speedup experiments, large samples 
are easy and inexpensive to generate. 

Finally, with this statistical background in place, we are able to restate our guarantee 
from section 1 in statistical terms: whereas a hypothesis test computes a p-value, our tests 
compute an upper bound on the p-value that would be derived if the experiment were run 
without a resource bound. If  this upper bound licenses the rejection of the null hypothesis, 
we can guarantee that the null hypothesis would have been rejected, with at least as much 
confidence, had the experiment been run without a resource bound. As with any hypothesis 
test, this guarantee is one-sided. If  we fail to reject the null hypothesis, our tests are in- 
conclusive; we can never conclude that the null hypothesis is true. 

3. Speedup learning data 

We demonstrate the value of our approach by applying it to speedup learning data taken 
from Etzioni (1990a). The data set compares the performance of the PRODIGY problem 
solver in the absence of control knowledge, to the performance of PRODIGY guided by the 
control rules generated by EBL, STATIC, and by human experts. Specifically, we analyze 
the pairwise comparisons PRODIGY versus STATIC, STATIC versus EBL, and EBL versus the 
human experts, on each of  PRODIGY'S benchmark tasks (the Blocksworld, Extended- 
Stripsworld, and Schedworld problem spaces). The problem sets, the human control rules, 
and the problem space definitions are taken from Minton (1988b). PRODIGV'S total problem- 
solving time and the number of censored data points, in each experimental setting, are 
summarized in table 4. To the untrained eye, the table seems to indicate that STATIC and 
the human "significantly" outperform EBL, and that all three sources of control rules outper- 
form PRODIGY, in each of the problem spaces. We will see how these intuitions fare under 
rigorous statistical scrutiny in section 4. 

Table 4. Total problem-solving time in CPU seconds and number of censored data points in each experiment. 

Blocksworld Stripsworld Schedworld 

Total Censored Total Censored Total Censored 

Human 46 0 193 0 948 4 
STATIC 47 0 226 0 685 1 
EBL 139 0 292 0 1262 6 
PRODIGY 2182 12 4347 18 4391 23 

Note: The number of problems in each problem set is roughly 100, and the resource bound is 150 CPU seconds 
on a SPARC Workstation. 
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From a statistical perspective, the central feature of speedup learning data is that they 
are censored. Another important feature of speedup learning data is that they are paired. 
Problems are generated at random, and both systems attempt to solve each problem. This 
is as opposed to unpaired, or independent data, where two sets of problems are generated 
and each system is allocated its own set of problems. The paired scenario is analogous 
to a trial comparing two opthalmic treatments, in which each patient receives both treatments, 
one in either eye. Applying both treatments to the same subject means that the two responses 
for a given subject are associated and cannot be treated as independent observations. Ig- 
noring the paired nature of the data would amount to overlooking a key relationship in 
the data, and would result in formulating an overly conservative test. We rely exclusively 
on paired data techniques. 

The third feature of our data is the presence of tied observations within a pair. If  data 
are continuous, the likelihood of such an occurrence is practically zero, but in our data 
set such pairs make up a nontrivial fraction of the total. Although the actual running time 
of each system is some real number, the data were recorded on an integer scale. As a result, 
run times that are within one CPU second of each other can appear to be identical. We 
discuss how our statistical procedures are adapted to handle ties in the following section. 

4. Statistical methods 

Statistical methods for analyzing paired data are typically based on the differences between 
the paired observations. Below we describe two nonparametric statistical tests ordered by 
the amount of information they extract from their samples: The first method, the sign test, 
relies only on the sign of the differences between pairs. The second method, the signed 
rank test, relies on both the sign and the rank, or order, of the differences. In this section, 
we apply both tests to our speedup learning data and discuss their limitations. 

The sign test is a conceptually straightforward procedure that is readily extended to 
speedup learning data. However, as we shall see, it may lack the sensitivity to detect dif- 
fernces between two systems. To address this problem, we turn to the more sensitive signed 
rank test. This test is a member of the class of linear rank methods, methods based on 
the rank of the observed pair differences (Hajek & Sidak, 1967). 

4.1. The sign test 

The sign test is based on the sign of the difference between the observations in a pair. 
Suppose that systems s and f are being compared. A pair difference is the difference in 
problem-solving time between system s and system f, on a given problem. The test's null 
hypothesis is that the probability of a positive pair difference is equal to the probability 
of a negative pair difference. That is, the probability that system f is faster than system 
s, on a given problem, equals 1/2. In what follows, we consider the one-sided alternative 
hypothesis Ha: the probability that system f is faster is greater than 1/2. 

Given the number of pairs, and assuming pairs are independent, the observed number 
of positive differences is a binomial random variable. Suppose that q out of n differences 
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are positive. Then the p-value is based on the binomial distribution with probability of 
success equal to 1/2, and is computed exactly as described in section 2. Note that the test 
considers the sign, but ignores the magnitude, of pair differences. 

The above formulation does not consider the possibility of tied observations within a 
pair. As noted earlier, such pairs make up a nontrivial fraction of our data. One solution 
to the problem is to discard the tied pairs and to perform the sign test on the remaining 
data. A second solution is to count half the tied pairs as positive differences and half as 
negative differences. (See Hemelryk (1952) and Lehmann (1975) for analyses of the two 
solutions.) We choose the second solution here because it is more conservative. Our tied 
observations are almost certainly run times that are very close, and counting half of these 
pairs as positive and half as negative supports the null hypothesis, providing a conservative 
test statistic. The discreteness of our data is an artifact of the integer scale on which they 
have been recorded. In future experiments, we would recommend preserving the continuous 
nature of the data as much as possible. Then the number of tied pairs should be small, 
and both solutions to the problem of ties should yield the same inference. 

4.1.1. Censored data 

In speedup learning experiments, where censoring occurs because of a resource bound, 
all censored observations clearly exceed all non-censored observations. Thus, singly cen- 
sored pairs represent complete data if all we are interested in is whether one member of 
a pair exceeds the other. On the other hand, doubly censored pairs represent no additional 
information whatsoever on the relative magnitudes of the observations within a pair. In- 
stead of discarding doubly censored pairs from the sample, we take a maximally conser- 
vative approach and interpret each doubly censored pair as supporting the null hypothesis. 

More precisely, we add the number of doubly censored pairs, d, to the number of negative 
differences, n- .  This extension has an elegant statistical interpretation: the test is now com- 
puting an upper bound on the p-value that would have been derived had the experiment 
been run without a time bound. This is precisely the figure we need in order to eliminate 
bias due to the experimenter's choice of time bound. If the p-value bound is sufficiently 
low, then we can guarantee that the null hypothesis would have been rejected even in the 
absence of the time bound. If the p-value bound is high, however, then, depending on the 
degree of double censoring, this high value may lead to a decision to increase the time 
bound and to repeat the experiment. Alternately, we may conclude that the experiment 
does not provide enough evidence to reject the null hypothesis. This conclusion may lead 
to a decision to run a substantially larger sample for greater sensitivity. 

4.1.2. Application 

We performed our censored-data extension of the sign test on the data described in section 
3. Table 5 gives the resulting bounds on p-values. We find that, with the exception of the 
EBL-STATIC Stripsworld comparison, each of the pairwise comparisons in table 5 is significant 
in the Blocksworld and the Stripsworld, and no comparison is significant in the Schedworld. 
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Table 5. Upper bounds on p-values for our sign test to three decimal places. 

Blocksworld Stripsworld Schedworld 

STATIC-EBL 0.000 0.04 > 0.5 
Human-EBL 0.000 0.000 > 0.5 
STATIC-PRODIGY 0.000 0.000 0.309 

Note: The null hypothesis states that the source of control rules listed second is at least as effective as that listed 
first ("PRODIGY" refers to the PRODIGY problem solver run without learned control rules). For example, the 
"STATIC-EBL" row reports p-value bounds on the null hypothesis that EBL is as effective as STATIC. The sign 
test enables us to reject this hypothesis in the Blocksworld and Stripsworld, but not in the Schedworld. 

The lack of a significant difference in the STATIC-PRODIGY Schedworld comparison is highly 
counter intuitive, considering that the STATICS total problem-solving time is 685 CPU seconds 
compared with 4391 CPU seconds for PRODIGY (table 4). A closer look at the data in- 
dicates that in 48 problems STATIC is faster than PRODIGY, and that the reverse is true in 
41 problems. 6 Thus, if  we only look at the signs of the differences, the number of positive 
differences is roughly equal to the number of  negative differences)--hence the lack of a 
significant result. However, it turns out that in this comparison, the negative differences 
are close to zero, while the positive differences are sizable, which explains the large dif- 
ference in total problem-solving time. 

These data illustrate an important limitation of the sign test. Since the sign test ignores 
all information about the magnitudes of the pair differences, it fails to reject the null 
hypothesis in such cases. This problem is particularly acute when measuring the impact 
of control knowledge on problem-solving time, as in the STATIC-PRODIGY comparison. Due 
to the overhead of utilizing control knowledge, we expect the unguided problem solver 
to run slightly faster on easy problems. I f  the control knowledge is effective, the unguided 
problem solver will be much slower on more difficult problems, but the sign test will not 
take this into account. The signed rank test, described below, is designed to remedy this 
deficiency of the sign test. 

4.2. The signed rank test 

The signed rank test weighs both the sign and magnitude of pair differences. The test pro- 
cedure is as follows. The absolute values of the pair differences are ranked in increasing 
order. The smallest value is assigned the rank of one, the second smallest is assigned the 
rank of two, and so on. The signs of the differences are recorded along with the ranks. 
The null hypothesis is that the distribution of the pair differences is symmetric about zero. 
The alternate hypothesis is that the pair differences are slanted towards positive (or negative) 
values, in a sense made precise by Lehmann (1975, p. 157). 

Under the null hypothesis, we expect the sum of the ranks corresponding to the positive 
differences to be at least as large as the sum of the ranks corresponding to the negative 
differences. The p-value is equal to the probability that sum of the positive ranks (denoted 
by T + ) is at least as large as that observed under the null hypothesis. Suppose there are 
n pairs. Then there are 2 n possible sign-rank configurations. In small samples, one can 
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enumerate the sign-rank configurations yielding a value of T + at least as large as that 
observed; assuming the null hypothesis, each one has a probability of 1/2 n. The p-value 
is the number of sign-rank configurations yielding a value of T + at least as large as that 
observed times this probability. If n is at least 25, a normal approximation to the distribu- 
tion of T + may be employed. 

As with the sign test, we handle zero pair differences by counting half the tied pairs 
as positive differences and half as negative differences. Since the value of the differences 
is zero, their rank is minimal. Thus, ties have less impact on the result of the signed rank 
test than on that of the sign test. 

4.2.1. Censored data 

The standard censored-data extension of the signed rank test is quite technical, so we omit 
its description here (see Woolson & Lachenbruch, 1980). We note, however, that the stan- 
dard extension makes two important assumptions. First, although the procedure is rank 
based, p-values are in fact computed under a distributional assumption about the pair dif- 
ferences. Second, doubly censored pairs are effectively dropped, leading to a potential bias 
in the analysis due to the choice of resource bounds. 

Instead of following the standard approach, we have developed a maximally conservative 
extension of the signed rank test for use with censored data. Specifically, if the alternate 
hypothesis is that systemfis  faster than system s, we assign a maximal negative rank to 
each difference in which system f is censored (including doubly censored pairs). This is 
the worst-case scenario that is still consistent with the data we have observed. In essence, 
we are checking whether the null hypothesis can still be rejected, if on each problem where 
systemfwas censored, fwould have in fact taken much longer to solve the problem than 
system s. If so, then we can be confident that changing or eliminating the bound will not 
lead us to retract the rejection of the null hypothesis. After computing the ranks in this 
manner, we perform the standard signed rank test. As in our sign test, the p-value thus 
obtained is an upper bound on the p-value that would have been obtained had the experi- 
ment been run to completion. 

4. 2.2. Application 

We performed our censored data extension of the signed rank test on our data set. The 
results appear in table 6. The comparisons that were statistically significant when using 
the sign test are significant here as well. In addition, the STATIC-PRODmV comparison in 
the Schedworld shows a reduced p-value bound, demonstrating the increased sensitivity 
of the signed rank test over the sign test. The reduced p-value bound is very small (0.006), 
leading us to be fairly confident that STATIC outperforms PRODIGY in the Schedworld on 
the problem distribution used in the experiment. 
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Table 6. Upper bounds on p-values for our signed rank test to three decimal places. 

Blocksworld Stripsworld Schedworld 

STATIC-EBL 0.000 0.009 > 0.5 
Human-EBL 0.000 0.000 > 0.5 
STATIC-PRODIGY 0,000 0.000 0.006 

Note: The null hypothesis states that the source of control rules listed second is at least as effective as that listed 
first ("PRODIGY" refers to the PRODIGY problem solver run without learned control rules). For example, the 
"STATIC-PRODIGY" rOW reports p-value bounds on the null hypothesis that STATIC fails to speed up PRODIGY. 
The signed rank test enables us to reject this hypothesis in each of the benchmark problem spaces. 

4.3. The effect of  censoring on significance 

As table 4 indicates, our data are very lightly censored. We can demonstrate that our tests 
are robust to heavier censoring by positing a lower time bound, resulting in additional cen- 
soring, and checking whether the differences observed remain significant. For example, 
in the Stripsworld STATIC-eRODtGV comparison, even if the time bound is reduced, resulting 
in 13 censored observations of s~nxIc's problem-solving time, the difference between STATIC 
and PRODIGY remains significant with p-value bound of 0.000 for both the sign and signed- 
rank tests. I f  the time bound is reduced further, and the number of censored observations 
of  STATIC increases to 23, the p-value bound remains 0.000 for the sign test, but becomes 
0.080 for the signed rank test. 

We see that the outcome of the signed rank test is more sensitive to the number of cen- 
sored data points than the sign test. This is not surprising, because the signed rank test 
assigns more weight to censored data. As in the sign test, censored data points count in 
favor of the system hypothesized to be slower but, in addition, these points are given a 
maximal rank that increases their weight. 

In general, given the sample size and a significance level, it is easy to compute an upper 
bound on the number of censorings allowed before a test becomes inconclusive. The result 
of a test is certain to be inconclusive if the number of  censored observations of system 
f (the faster system according to Ha) exceeds this bound. The upper bound is derived by 
calculating how many censored data points will cause the p-value bound to exceed the 
threshold a when the uncensored data maximally favor the alternate hypothesis. The calcula- 
tions reveal that the number of  censored data points should not exceed roughly 40% of 
the sample size for the sign test (o~ = 0.01), and roughly 20% for the signed rank test 
(~ = 0.01). We omit the exact calculations here, but emphasize that these are only upper 
bounds. In general, the impact of censored data depends on the strength of  the difference 
apparent in the uncensored data. If  the uncensored data provide only "luke-warm" support 
for rejecting the null, then a small amount of censored data may well result in an inconclusive 
test. Note that our tests will not yield erroneous conclusions in the presence of heavy cen- 
soring; the tests will merely fail to report a significant result. I f  the proportion of censored 
data points is too high, a less restrictive resource bound may be necessary. 
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4.4. Limitations of statistical tests 

While we advocate our tests as useful statistical tools, we caution the reader that the tests 
compare the total (or ranked total) of pair differences, not their actual magnitudes. This 
can potentially yield counterintuitive conclusions. For instance, a test can fail to find a 
significant difference in the rank metric when one appears to exist in the data metric. For 
instance, we were disappointed that our tests did not detect a statistically significant dif- 
ference between STATIC and EBL in the Schedworld, despite the fact that STATIC produces 
control rules that appear to be almost twice as effective as EBL'S (table 4). A close ex- 
amination of the data revealed that the large difference in total problem-solving time is 
due to large differences on only 5 of the 100 problems in the sample (the difference be- 
tween EBL and STATIC on these 5 problems is 649 CPU seconds). Since our tests place 
relatively little weight on any individual problem, it is not surprising that the tests were 
not "swayed" by large differences on 5 % of the problems. 

A more extreme consequence of outlying or atypical observations in the sample is the 
detection by the test of a significant difference in favor of one system when, according 
to the sample, the other system appears to be faster on average. A simple precaution, when 
interpreting a significant difference, is to make sure that the average problem-solving time 
of the system selected as faster by the test is in fact smaller than that of the competing 
system. Our software implementation of these tests enforces this restriction. 

The term significant difference refers to statistical significance as defined in section 2, 
not to the magnitude of the difference. Given enough data, even a tiny difference may turn 
out to be statistically significant, although the practical significance of that difference may 
be questionable. Again, the solution is to examine the actual difference between the two 
systems. For instance, our tests show that there is a statistically significant difference be- 
tween STATIC and EBL'S search-control rules in the Blocksworld; table 4 confirms that the 
difference--almost a factor of three--is nontrivial. 

Neither of our tests directly analyzes average problem-solving time. The sign test rejects 
the hypothesis that the number of positive differences is equal to the number of negative 
differences. The signed rank test rejects the hypothesis that the positive differences and 
the negative differences are of the same order. Only a parametric test, which assumes that 
differences are drawn from a particular (e.g., normal) distribution, can explicitly reject 
the hypothesis that the mean or average difference between the two systems is zero. However, 
both of our tests can be used as indirect evidence for an average speedup hypothesis. 

While we hope that other researchers will use our tests to validate their own speedup 
experiments (see, for example, Kambhampati & Chen, 1993; Knoblock, 1993; Minton, 
1993), we offer three final caveats. First, as with any statistical test, failure to reject the 
null hypothesis is inconclusive; it is not a basis for concluding that system s is at least 
as fast as systemf A more appropriate conclusion is that the experiment should be repeated 
with a higher resource bound or a larger sample size. If the sample size is already so large 
that the test is approaching maximal sensitivity (probability of detecting even small dif- 
ferences between the systems is greater than 90%), then failure to reject the null hypothesis 
can be regarded as suggestive that system s is at least as fast as sys temf  Second, as with 
any statistical tool, even when a significant result is obtained, the test does not substitute 
for a careful intuitive examination of the data, checking that the test is not "hiding" impor- 
tant characteristics of the data. 
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Finally, although statistical tests enable us to extrapolate from a small random sample 
of observations to the particular distribution from which the sample was drawn, the tests 
do not enable us to extrapolate from the behavior of the systems on small problems to their 
behavior on large problems without making further assumptions, namely, that the systems' 
relative behavior on small problems reflects their relative behavior on large ones. Thus, 
when carrying out statistical tests, it is important to generate a "representative sample," 
a sample that reflects the distribution of problems that the systems are expected to encounter. 

5. Conclusion 

We have described two statistical tests that determine whether observed differences in the 
performance of two systems are significant. The tests interpret truncated or censored data 
in a maximaUy conservative manner, eliminating bias due to the experimenter's choice 
resource bound. We applied both tests to the speedup learning data set taken from Etzioni 
(1990a) and have shown that most of the differences observed are statistically significant 
(see, in particular, the results of our extended signed rank test in table 6). We believe that 
this approach helps to allay the concerns regarding the use of resource bounds raised by 
Segre et al. (1991). Finally, although we have focused on speedup learning data, we note 
that our methodology can be used to analyze any quantitative comparison between two 
systems on a common set of problems. 
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Notes 

1. To see this, contrast the two null hypotheses P(h) = 1/2 and P(h) = 1/10. Under which null hypothesis 
are you more likely to see 60% heads? The answer is P(h) = 1/2, In general, we have that for all q > 
l/2, and for all k < 1/2. prob(_ q heads, given p = 1/2) is greater than prob(~ q heads, given p = k). 
Thus, computing the p-value relative to P(h) = 1/2 is a conservative, and hence appropriate, choice. 

2. Data point 5 in table 1 is an example of a doubly censored data point. 
3. We thank Charles Elkan and Craig Knoblock for making this point. 
4. See Cohen and Kim (1993) for a more sensitive statistical test, which is contrasted with our own. 
5. Nonparametric tests are generally valid for a far wider range of distributions than their parametric counterparts. 
6. Ten of the remaining 11 problems are ties, and one problem is doubly censored. 
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