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1. Introduct ion 

The goal of this article is to investigate the complexity of on-line learning for the basic 
classes of geometrical objects over a discrete domain. The learning model that we con- 
sider is the most common one for on-line learning (introduced by Angluin, 1988). It may 
be viewed as a machine-independent version of the classical paradigma for learning from 
mistakes on perceptrons (Rosenblatt, 1962; Nilsson, 1965; Minsky & Papert, 1988) and 
neural networks (Nilsson, 1965; Rumelhart & McClelland, 1986; Lippmann, 1987). 

A learning process in the learning model that we consider is a dialog between the "learner" 
and the "environment." The learner proposes "hypotheses" H from a fixed "concept class" 
G _ 2 x over a finite domain X. The goal of the learner is to "learn" an unknown "target 
concept" CT fi G' that has been fixed by the environment. Whenever the learner proposes 
some hypothesis H ~ C with H ~ CT, the environment responds with some "counter- 
example" x E H z~ CT : =  (Cr - H) U (H - Cr). The counterexample x is called a 
"positive counterexample" if x ~ C r - H, and x is called a "negative counterexample" 
if x ~ H - CT. A learning algorithm f o r  C is any algorithm A that produces new 
hypotheses 

/-/7+1 : =  A(Xl  . . . .  , xi; IliA, . . . ,  N A )  

in dependence of counterexamples xj E Hj A A C r  for the preceding hypotheses Hj A. One 
also refers to these hypotheses as "equivalence queries" (Angluin, 1988). 
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The "learning complexity" LC(A) of such a learning algorithm A is defined by 

LC(A) := max{i ~ N I there is some Cr E G and some choice of counterexamples 

xj ~ I-Ij A A C t  f o r j  = 1 . . . .  , i - 1 such that Hi A # CT}. 

The "learning complexity" LC(G) of a concept class G is defined by 

LC(G) := min{LC(A) I A is a learning algorithm for G}. 

Thus, analogous to the analysis of algorithms for computational problems, one carries out 
a worst-case analysis for each learning algorithm A. The learning complexity LC(G) of 
the concept class G is then defined as the learning complexity of the best learning algorithm 
Afor  G. 

One says that a hypothesis H is a consistent with a positive (negative) counterexample 
x ~ X i f x  E H ( x  ~ H).  

The concept classes G that are considered in this article are classes of "digitized" ver- 
sions of basic geometric objects (similar to Minsky & Papert, 1988). For any fixed finite 
dimension d, we fix as domain the set Xff := {0, . . . ,  n - 1} d (one may view Xff as the 
set of "pixels" of a digital image representation device). Over this domain we consider 
the following concept classes: 

BOX~ "= {C c Xff I there is a d-dimensional axis-parallel rectangle 
R c R dwi thR  M Xff = C} 

d 
{ X {ik, . . . , j k }  l 0  <-- ik <--Jk --< n -- 1 for 

k=l 

k = 1, . . . , d }  U {fl}, 

GP-BOX~ a ' =  {C ~ X~ ] there is a d-dimensional rectangle R c R a with 
R f7 Xff = C (R need not be axis parallel)}, 

HALFSPACE~ := {C c Xff I there is a halfspace F c_ R d with F f'l And = C}, 

2-HALFSPACE~ := {C rl c ' l  c ,  c ' f i  HALFSPACE~a}, 

BALL~a : = {C c Xn a I there is a ball B ~ R a with B (3 X a = C}, 

and k-SEMI-ALGEBRAIC-SETSn a (defined in section 4). 
As an aside, we would like to mention that concepts from the concept class BOX~ also 

occur in contexts other than geometry. As an example, we would like to point to the 
hypothetical situation where one wants to learn from counterexamples the target concept 
"average-built person," which may be defined as the set of all persons whose weight 
lies in a certain interval [wb w2] and whose size lies in a certain interval Is1, s2] (with 
unknown parameters Wl, w2, sl, s2). 
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We show in this article that for any fixed dimension d _> 2 one has LC(BOXn d) = O 
(log n) (section 2), LC(HALFSPACEn d) = O(log n) (section 4), LC(k-SEMI-ALGEBRAIC- 
SETS~) = O(log n) for any fixed k fi N (section 4), and LC(BALL~) = O(log n) (sec- 
tion 5). All these upper bounds are realized by computationally feasible algorithms. 

On the other hand, we show that for any d _ 2, GP-BOX~ a and 2-HALFSPACE~ a re- 
quire exponentially more learning steps than the classes mentioned above: one has for 
d = 2 LC(GP-BOX~) = ~(n) (section 3) and LC(2-HALFSPACE~) = fl(n) (section 4). 

Finally, in section 6 we present a list of open problems. 
It turns out that for those concept classes G for which we prove LC(G) = O(log n), 

the derived bound O(log n) is very robust with regard to changes of the model for on-line 
learning. We prove the upper bound O (log n) in the rather weak model where the learner 
may only propose hypotheses from G. However, the lower bound f~(log n) also holds for 
the strongest model for on-line learning where the learner may propose arbitrary subsets 
H _ X as hypotheses, and where he can also ask membership queries. In fact, one even 
has LC-PARTICAL(G) = fl(log(chain(G)) = fl(log n) for those classes G (see Maass 
& Turin, 1989, 1992) (in the model LC-PARTIAL, the learner may ask arbitrary hypotheses 
with "don't cares" for arbitrary elements of the domain; chain (G) is the length of the 
longest chain in G under inclusion). 

The parameter log n denotes (up to constant factors) the size of an instant, i.e., the number 
of bits needed to specify an arbitrary point in the underlying domain Xff. Thus a concept 
class G may be viewed as "polynomially on-line learnable" only if LC(G) is polynomial 
in log n. Hence, one may interpret the results of the present article as saying that rectangles 
in general position and intersections of halfspaces are not "polynomially learnable" in the 
on-line learning model considered, whereas all the other classes of geometrical objects 
mentioned above are polynomially (in fact: linearly) on-line learnable. 

For any fixed dimension d, the concept classes G that are considered in this article have 
a constant VC-dimension. Therefore any computationally feasible algorithm that assigns 
to an arbitrary set of positive and negative examples (for a target concept C r E G) some 
concept C fi G that is consistent with these examples provides for these concept classes 
G a polynomial learning algorithm in the pac-learning model (see Blumer, Ehrenfeucht, 
Haussler, & Warmuth, 1989; Haussler, Kearns, Littlestone, & Warmuth, 1991). It also 
provides a satisfactory prediction strategy in the associated probabilistic prediction model, 
where one assumes that the probability distribution over instances is time invariant (Haussler, 
Littlestone, Warmuth, 1987, 1988; Haussler, Kearns, Littlestone, & Warmuth, 1991). In 
contrast, it is easy to see that the common algorithms for assigning to a sequence of ex- 
amples some consistent concept C E G (e.g., the OCCAM-algorithm that assigns the smallest 
consistent C ~ G in the case of BOX~; see section 2) are not sufficient to provide a poly- 
nomial learning algorithm for on-line learning in a non-stochastic setting. Instead, an effi- 
cient on-line learning algorithm for the considered concept classes G has to issue hypotheses 
H that provide a more sophisticated interpolation between the available positive and negative 
(counter-) examples (in this respect, the hypotheses of an efficient on-line learning algorithm 
resemble more closely the kinds of hypotheses that a human learner might propose). 

The learning algorithms that we present in this article are computationally feasible and 
consistent (i.e., they only issue hypotheses that are consistent with all preceding counter- 
examples). Hence they may also be used as efficient learning algorithms in the pac-learning 
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model, or in the associated probabilistic prediction model (Haussler, Littlestone, & War- 
muth, 1987, 1988). In fact, these learning algorithms appear to be preferable to other effi- 
cient pac-learning algorithms for the probabilistic prediction model. They have in addition 
to their favorable average-case behavior an optimal worst-case behavior. Hence they are 
more robust than other pac-learning algorithms insofar as they also provide good error 
bounds if the relatively strong assumptions of this probabilistic model are not met (in par- 
ticular, if the underlying probability distribution of examples changes over the considered 
time period). Furthermore their (absolute) error bound of O(log n) is lower than the upper 
bound on the number of errors among m trials that can be derived for an arbitrary consis- 
tent pac-learning algorithm (see Haussler, Littlestone, 8,: Warmuth, 1987, 1988), provided 
that m is not too small. 

Some of the results in this article have previously been announced in the extended abstract 
of Maass and Tumn (1989). 

2. Learning of axis-parallel rectangles 

In the first theorem, we consider the concept class 

d 
BOX~:= { X {ik, . . . , j k } }  I 0 

k=l  
<_ ik <_jk <_ n - -  1 

for k = 1, . . . ,  d} U {0}, 

which consists of all rectangular axis-parallel "boxes" that are contained in the discrete 
d-dimensional space Xnd: = {0 . . . . .  n -- 1} d. It is obvious that BOXff = {C _ X ff I there 
is a d-dimensional axis-parallel rectangle R c_ R d with R f7 X ff = C}. 

Remark. Perhaps the simplest on-line learning algorithm for BOX ff is the "Occam-algor- 
ithm," which always chooses as next hypothesis the smallest C E BOXff that is consistent 
with all preceding counterexamples (see Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989). 
It is easy to see that this algorithm needs in the worst case O(n) learning steps for BOX ff 
(for any dimension d >_ 1): choose as (positive) counterexample always a point that is just 
outside of the proposed hypothesis. 

Theorem 1. Consider any fixed dimension d E N - {0}. Then LC(BOX d) = O(log n). 
Furthermore, there exists a learning algorithm A for BOX d with LC(A) = O(log n) that 
uses altogether at most O(poly(log n)) computation steps. 

Proof. In order to design a learning algorithm for BOX d that learns substantially faster 
than the naive algorithm (which always outputs the minimal consistent hypothesis), one 
has to generate hypotheses that interpolate between the minimal consistent hypothesis and 
some maximal consistent hypothesis. 
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In the case d = 1, there exists always a unique maximal consistent hypothesis (provided 
that some point in CT is already known). Therefore it is trivial to construct for d = 1 a 
learning algorithm A with LC(A) = O(log n): the next hypothesis of A always interpolates 
halfway between the minimal and the maximal consistent hypothesis ("binary search"). 

This method cannot be generalized to the case d > 1, since for d > 1 there is in general 
no unique maximal box that is consistent with the previously received counterexamples. 
For d = 2, some maximal consistent box may run to the right of some negative counter- 
example x, while another one avoids x by running below x to the left. This ambiguity cor- 
responds to conflicting "theories" why x is not in the target box (or more precisely, which 
of the defining conditions for points in the target box are not met by x). For BOXff, as 
well as for most other concrete concept classes that are discussed below, the interesting 
point in the design of an efficient learning algorithm lies in the construction of a next 
hypothesis H that guarantees substantial progress (from any counterexarnple to H),  no matter 
which of the conflicting "theories" about the explanation of the previously received counter- 
examples are true. 

Technically, this amounts to giving the right definition of "progress" for learning in the 
considered concept class. 

For BOX d, it is useful to measure the learning progress in terms of the number of points 
in X d that could be a corner-point of the target box (on the basis of all counterexamples 
received so far). 

In the following, we write [i, j ]  for the set {m fi N I i _< m ___ j}  (we assume that 
0 fi N). For an arbitrary box 

d 
C = x [ak, bk] ~ BOXff 

k=l 

and an arbitrary binary string v = (v, . . . .  Vd) E {0, 1} d, we write Cv for the "v-corner" 
(hi  . . . .  , hd) E {0, . . . ,  n -- 1} d of C, which is defined by 

; ak, if Vk = 0 
hk 

bk, if V k = 1. 

At any point during a learning process, we write Sv for the set of all points in Xff that 
could still be the v-corner of  the target concept, i.e., 

Sv = {Cv ] C ~ BOXff is consistent with all counterexamples received so far}. 

The next hypothesis H ~ BOX ff of the learning algorithm is defined in such a way that 
any counterexample to H removes at least 1 ]Svl points from Sv for some v ~ {0, 1} d 
(we write IS] for the number of elements of a set S). Obviously, this guarantees that altogether 
at most 2 d • lOg(d+l)/d n d = O(log n) counterexamples are needed. 

In order to make the idea of the learning algorithm more perspicuous, we discuss first 
the special case d = 2 (see figure 1). The general case is quite similar. For d = 2, the 
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i VERTICAL<o 1> 

HORIZONTAL<o 1> 
. . . . . . . . . . . . . . . . . .  r . . . . .  

no~oyr .~ ,~  

z 
z 

x = p o s i t i v e  e o u n t e r e x a m p l e  i V E R T I C A L < ° ,  °> 

O = negative eounterexample ! (= left borderline of the next hypothesis 14) 

s,1,1, 

S,I,~, 

Figure 1. The special case d = 2. 

set S(o,o) (respectively, S(o,1>, S0,0 ), S/1,1 )) consists of all points that coincide with the south- 
west (respectively, northwest, southeast, northeast) corner of some rectangle C fi BOX2n 
that is consistent with all preceding counterexamples. Let IN be the smallest C ~ BOX 2 
that contains all preceding positive counterexamples. 

The learning algorithm A for the case d = 2 starts with the hypothesis H~ = 0. After 
step i, it constructs a hypothesis H := H~+I such that any counterexample to H reduces 
the size of at least one of the sets S(o,o), S(0,1), S0,o ), S<1,1> by one third. We fix a vertical 
line VERTICAL(o,0 ) that is rightmost with the property that at least one third of the points 
of S<o,o> lie on or to the right of VERTICAL(o,o ). Then we fix a horizontal line HORI-  
ZONTAL(o,o ) that is high as possible with the property that at least one third of  the points 
of S(o,o)lie on or above HORIZONTAL(o,0). For S(o,1), one fixes a vertical line VERTI- 
CAL(o,1) that is rightmost with the property that at least one third of the points of S(o,1 ) 
lie on or to the right of VERTICALto,1/. HORIZONTAL(o,1 ) is chosen as low as possible 
such that at least one third of the points of S(0,1> lie on or below it. VERTICAL(1,1 / is chosen 
leftmost such that at least one third of the points of S<I,1) lie on or to the left of  it. The 
remaining lines are chosen in an analogous fashion. 

One chooses as left borderline of the next hypothesis H the rightmost one of VERTI- 
CAL(o,o ), VERTICAL(o,1>, and as right borderline of H the leftmost one of VERTICAL<I,o), 
VERTICAL<l,1>. Analogously, the upper borderline of H is determined by the lower one 
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of the lines HORIZONTAL(o,1), HORIZONTAL0,1), and the lower borderline of H by the 
higher one of HORIZONTAL(o,0 ), HORIZONTAL0,0). 

It is obvious that a positive counterexample that lies strictly to the left of VERTICAL(o,0) 
(VERTICAL(o,1)) will eliminate at least one third of S(o,o) (S(o,1)). Analogously, any positive 
counterexample that lies strictly above the upper borderline of H will eliminate at least one 
third of S(o,1) or S(1,1); etc. From any negative counterexample to H, one can derive for one 
of the corners of  H (say: the (0, 0) corner) that it does not belong to Cr. This implies 
that besides this (0, 0)-corner (h, v) also all points (i, j )  ~ S(o,o) with i _< h and j _< v 
can be eliminated. Hence, all points of  S(o,o ) can be eliminated that lie neither strictly to 
the right nor strictly above this (0, 0)-corner of H. By the construction of H (and of 
VERTICAL(0,o ), HORIZONTAL(0,o)), at most (in fact: less than) one third of  the points 
of  S(o,0) lie str ict ly  to the right of  this (0, 0}-corner (respectively, str ict ly  above this (0, 0)- 
corner). Hence this negative counterexample eliminates at least one third of the points of 
S(o,o). This finishes the sketch of the learning algorithm for the case d = 2. 

In the general case d _> 2, one also starts with the hypothesis H A = 0. After i steps (at 
which we have received i counterexamples), we construct the next hypothesis H := H ~ I  
as follows. First, we define for every v = (Vl . . . .  , Vd) E {0, 1} d a point h v = ~Vl, . . . ,  hVd) 

X d. I f  vk = O, then we choose h i  ~ {0, . . . ,  n - l} maximal with the property that 

1 ISvl ]{(Xl, . . . ,  Xd) Sv [Xk h }l d + 1 " 

I f  vk = 1, then we choose h~ ~ {0 . . . .  , n - 1} minimal with the property that 

1 ]S l [{(Xl, . . . ,  Xd) Sv [xk hY¢}l d + 1 " 

Next, we define for every k fi {1, . . . ,  d} 

a n : =  max{h~ ] v = ( v i  . . . .  , Vd) ~ {0, 1} d and vk = 0} 

and 

b f f  :=  min{h~ ] v = ( V  1 . . . .  , Vd) E {0, 1} d and Vk -=- 1}. 

Finally, the next hypothesis H is defined as 

d 
H :  × [aft, /4 = b k ]. 

k=l 

= × d r IN b~N] be the smallest set C E BOX d that is consistent with all of the Let IN k=ltak , 

preceding i counterexamples (such smallest box exists, because BOX d is closed under 
intersection). 

It is easy to verify that IN ~ H (i.e., that H contains all preceding positive counterex- 
amples): Consider an arbitrary v = (v 1 . . . . .  vd) ~ {0, 1} d and an arbitrary point x = 
(xa, • . . ,  Xd) E Sv. Then x = C~ for some box C = ×k=l[ak,d C b c ]  ~ BOXn d that is consis- 
tent with all i preceding counterexamples. By definition of IN, we have IN c_ C, and therefore 
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vk = 0 = Xk = ak c <-- a IN, 

and 

vk = 1 = Xk = b c - >  b IN • 

This implies (by the definition of h~) that for every k E {1, . . . ,  d}:  

(v k = 0 ~ hVk <_ a~ N) 

and 

(vk = 1 = h~ >- biN). 

Since the preceding inequalities hold for every v ~ {0, 1} d, they imply that for every 
S < akin and /4 biN. k E {1 . . . . .  d}:  a k _ b k >_ 

Assume that c = (c 1 . . . .  , Cd) E HACT is an arbitrary counterexample to the hypothesis 
H (we write CT for the target concept). Assume first that c is a positive counterexample, 
i.e., c ~ CT -- H. Then there exists some k E {1, . . . ,  d} with c k ~ [aft, b k/4]. Assume 
that ck < aft (the case c k > b~ is analogous). By definition of aft, there exists some v = 

• , v _ x d  * T T 
( V l ,  . . V d )  E {0, 1} d with vk = 0 and aft = h k. Since c ~ CT -- k=ita k, bk], we have 
for this v that a k T _ < ck < ak~ = hVk. Therefore, all points (X l ,  . . . ,  Xd) ~ Xn d with xk - > h~ 
are eliminated from Sv (by the definition of h~, this eliminates at least (1/d + 1) 1 Sv I points 
from Sv). 

Assume now that c is a negative counterexample, i.e., c ~H - CT. Define v = (v 1 . . . .  , 
Vd) ~ {0, 1} d as follows: if CK < b~ N, set Vk = 0; otherwise, set vk = 1. This definition 
of v implies immediately that the v-corner H v of H is not in CT. If  H v E CT, then we would 
get from c ~ H the contradiction that c ~ CT (for k with Vk = 0, we would get that a T 
_< aft < ck < b~ N < bT; for k with v k = 1, we would get that aT < bIk N <- Ck < b~ 

< bE). 
We want to show that the negative counterexample c eliminates from Sv (for v as de- 

fined above) the set 

L : =  {(Xl . . . .  , Xd) ~ Sv ] ¥ k  E {1, . . . ,  d}((Vk = 0 = xk --< h~) 

A (vk = 1 = xk >- h~))}. 

This will be sufficient, since the definition of h~ implies that 

1 Iavl I{(xl . . . . .  Xd> ~ Sv I xk > hVk}l ~ d + 1 

if v~ = 0 (by the maximality of h~). Furthermore, 

1 Is~l I{<xl . . . . .  Xd> ~ Sv I xk < h~}l ~ 
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if vk = 1. Thus Sv results from Sv be subtracting from Sv d sets of size < 1/(d+l)lSvl; 
therefore, ILI -> l/(d+l)lSvl. In order to show that the counterexample c eliminates from 
Sv all points in S~, assume for a contradiction that the v-corner (Cr)v of the target concept 
Cr lies in Sv. Then we have for all k with vk = 0 that 

a r <_ h~ <_ aft <- a p  <_ b r, 

and for all k with vk = 1 that 

b r >_ h~ >_ bff >- b IN >- a r. 

This yields a contradiction to the fact that Hv ¢ Cr, which has been verified before. This 
completes the proof of the upper bound for theorem 1. 

In order to prove that LC(BOX d) = f~(log n), one uses the simple result that LC(C) 
= ~(log(chain(G))) for any concept class G (Maass & Tur~[n, 1989, 1992), where chain(C) 
is the maximal e ~ N such that there exists a chain C1 C C2 C 6'2 ~-C . . .  -t-C Ce of con- 
cepts in G. It is obvious that chain(BOXn a) _> n. [] 

3. The difficulty of learning rectangles in general position 

It is shown in this section that the learning of rectangles in general position equires ex- 
ponentially more learning steps than the learning of axis-parallel rectangles (for dimen- 
sion d = 2). 

We write Xn for the two-dimensional grid {0, . . . ,  n - 1} 2. The class of rectangles in 
general position is defined by 

GP-BOXn := {C ___ X n I there is a rectangle R ~ R 2 with R n x~ = c 
(R need not be axis-parallel)}. 

Note that 0 ~ GP-BOX~ according to this definition. It is obvious that LC(GP-BOXn) -< 
Ix l = n 2 

Theorem 2. LC(GP-BOX~) = f~(n). 

Proof. We design an adversary strategy. The idea of the proof is to fix subsets P and N 
of the domain Xn so that one can apply for {C n N ] C ~ GP-BOXn and P a_ C} a adver- 
sary strategy similar to the following well-known one for the concept class SINGLETONSn 
:= { {i } I 1 < i < n } (see Maass & Turdn, 1989, 1992). This adversary strategy forces 
the learner to use n - 1 hypotheses for learning an arbitrary target concept from SINGLE- 
TONS,, by responding to each hypothesis {i } ~ SINGLETONSn with the negative counter- 
example i. Obviously, this adversary strategy for SINGLETONSn relies on the fact that 
0 ~ SINGLETONSn, which prevents the learner from issuing the hypothesis 0. 

The situation for learning GP-BOXn is different, since 0 ~ GP-BOX~. However, we 
choose subsets P and N of the domain Xn such that {C n N I C ~ GP-BOX~ and 
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p c C} does not contain 0. Furthermore, we make sure that one can give for any hypothesis 
C E GP-BOX n with P G C a negative counterexample that does not eliminate too many 
other concepts of this type (in analogy to the situation in the adversary strategy for 
SINGLETONSn). 

We choose P :=  Ball (7 Xn and N :=  Ring A Xn for certain sets Ball, Ring that are 
defined below. Let dist(x, y)  be the Euclidean distance between points x, y ~ R 2. We ap- 
proximate the center of the domain X,, by the point m :=  ( rn/27 , rn/27 ). The follow- 
ing ball and ring with center m will be considered (see also figure 2): 

Ball "= x ~ 112 ] dist(x, m) _< ~ + 2 , 

Ring "= x ~ 112 I ~/2" ~ - 4 _< dist(x, m) _< ~/2'  ~ + 2 . 

We assume that n is sufficiently large so that Ball A Ring = 0 and Ring _c {x ~ R I 0 
__<_ x _< n - 1} 2. A vertical and a horizontal line through m divided 112 into four quadrants. 
We will focus on the northwest quadrant Q c_ R 2 (assume that Q contains the points on 
the horizontal line left of m, but no points from the vertical line). 

Our adversary strategy proceeds as follows: 

* If  (Ball Cl Xn) g H for the current hypothesis H, then one gives an arbitrary point from 
(Ball N Xn) - H as a positive counterexample. 

. I f  (Ball N Xn) c_ H, then one gives a point from H N Ring Cl Q as negative counter- 
example, provided that there exists some Cr E GP-BOXn that is consistent with this and 
all preceding counterexamples. 

_ _  some minimal C ~ GP-BOX n 

with Ball -~ C 

Figure 2. Ball and ring with center m. 
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Note that all the technical complications of this proof are caused by the fact that the 
considered geometrical objects (Ball, Ring, etc.) have to be intersected with the discrete 
domain Xn = { 0 , . . . ,  n -  1} 2 . 

We will show in claim 2 that this adversary strategy is well defined (i.e., (Ball n X,) c 
H implies H n Ring n Q ~ 0). Claim 3 will imply that no learning algorithm can iden- 
tify arbitrary target concepts from GP-BOX n in o (n) steps if counterexamples are chosen 
according to this adversary strategy. Claim 1 will be needed for the proof of claim 2. 

Claim 1. Consider any z fi {y ~ R I 1/~/2 < y < n - 1 - 1/'~/-2} 2. Then the ball B z := 
{x ~ R 2 ] dist(x, z) -< 1/~/2} contains some point from X~. 

Proof  of claim 1. B z contains a closed axis-parallel square with sides of length 1 that is 
contained in {x ~ R I 0 < x < n - 1} 2. Any such square contains a point from Xn. [] 

Claim 2. Assume that H ~ GP-BOX n and Ball O X n c_ H. Then H n Ring O Q ~ 0. 

Proof  of claim 2. Let R c R 2 be a rectangle with R n xn = H. Then it need not be 
the case that Ball c R, although Ball n x n c__- H. However, claim 1 implies that the 
slightly smaller set Ball '  := {x fi R 2 ] dist(x, m) < n/4} is contained in R. Otherwise, 
Ball - R contains a ball B of radius 1/~/2. Claim 1 implies that B O X n ~ 0, which yields 
a contradiction to our assumption that Ball n xn ~ H = R n Xn. 

Since Ball '  ~ R, there exists a square R' _c R 2 with sides of length n/2 and center m 
such that Ball '  c R' _ R. Obviously, R' has a corner CO E Q with dist(CO, m) = ~/2 
• n/4. Let R" c R' be a square with sides of length x/g which has the same corner CO. 

By the definition of Ring, we have R" ~ Ring. Hence it is sufficient to show that R" n 
Q n X, ~ 0. We partition R" by the line from m to CO into two triangles. The size of 
R" has been chosen large enough so that each of these two triangles contains a ball with 
radius 1/,/2. By claim 1, each of these two balls contains a point from X,. Since CO E Q, 
at least one of these two points from X~ lies in Q. [] 

Claim 3. Partition Ring n Q into sectors by drawing from the center m in such a way 
that the Euclidean distance between the intersections of any two adjacent rays with the outer 
boundary of Ring is 60. Then any square S with center m and sides of length n/2 + 4 

intersects Ring O Q in at most two of these sectors (which are necessarily adjacent), pro- 
vided that n is sufficiently large. 

Proof  of claim 3. Let CO be the comer of S that belongs to the quadrant Q. It is obvious 
that CO lies on the outer boundary of Ring. Pick one of the two sides of S that are incident 
with CO, and let A be its intersection point with the inner boundary of Ring. Let B be 
the point where the line m .,{ intersects the outer boundary of Ring. In order to prove the 
claim, it is sufficient to show that dist(CO, B) < 30. 

Let D be the point on m CO such that the angle CO D A is orthogonal. By definition 
of A, the angle A CO D is equal to 7r/4. For sufficiently large n, one has 
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dist(CO, D)  < 2 " ( 4  + 2 " ~ )  < 14 

(note that 4 + 2 • ~ is the difference in radius between the inner and the outer boundary 
of Ring). Hence, 

dist(CO, A) = ~/2 dist(CO, D)  < 1 4 ~ ,  thus 

dist(CO, B) < dist(CO, A) + dist(A, B) 

< 1 4 . ~ / 2 +  ( 4 + 2 . ~ / 2 )  < 2 0 . ~ / 2 <  30. [] 

In order to complete the proof of theorem 2, we observe that the partition of claim 3 
partitions Q into > c -  n sectors (for some constant c > 0). Hence there are > [cn/2J 
disjoint pairs of adjacent sectors in Q. For each of these pairs, there exists some C ~ GP- 
BOX n with Ball f7 X~ c_ C such that C f') Ring f7 Q is contained in this pair of sectors. 
This observation implies that as long as not more than Icn/2] - 2 negative counter- 
examples have been given by our adversary strategy, there are at least two different pos- 
sible target concepts C E GP-BOX, that are consistent with all preceding counterexamples. 
Thus we have shown that LC(GP-BOX~) > Icn/2J - 2 = ~(n). [] 

R e m a r k .  It is shown in Bultman and Maass (1991) that LC-MEMB(GP-BOXn) = 
@(log n). Thus rectangles in general position can be learned fast in the stronger on-line 
learning model where the learner can ask (besides equivalence queries with hypotheses 
from GP-BOXn) membership queries "x E CT?" for arbitrary elements x of the domain. 

4. Halfspaces, intersections of halfspaces, and semi-algebraic sets 

In this section, we analyze the learning complexity of the concept classes 

HALFSPACE~ : =  {C _c {0, . . . ,  n - 1} d I there is a halfspace 
F c _  R d w i t h F N  {0, . . . , n  - 1} d = C} 

= ~I  C c {0, . . . ,  n - 1} d I :lw1 . . . . .  Wd, t R 

VXl . . . . .  xd E {0, . . . ,  n -- 1} 

I ~X1, • . 

2 -HALFSPACE d :=  {C rl c '  

, xd l  ~ C ~ ~ w m  >- t , 
i=1 

C, C ' E  HALFSPACEna}, 
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k-SEMI-ALGEBRAIC-SETS~ "= {C c {0, . . . ,  n - 1} d I there exist coefficients 

E R for arbitrary tuples (il . . . . .  id) ~ N d Wil,. . .,i d 

d 

with ~ ij < k ,  and there exists some t ER such 
j=l 

that for all x l ,  . . . ,  xa E {0, . . . ,  n - 1} 

( (X l , . . . ,  Xd) ~ C = Z Wil . . . . .  i d X i l *  

i 1+. .. +id<_k 

>_ t)},  

for an arbitrary fixed dimension d E N - {0} and for arbitrary k ~ N - {0}. 
It has been shown that without loss of generality, the coefficients w i, wil . . . . .  ia and the 

thresholds t in these definitions can be chosen to be integers (Muroga, 1971; see also Maass 
& Turdn, in press). 

Theorem 3. LC(HALFSPACEn d) = @(log n) for every fixed dimension d ~ N - {0}~ 

Proof. It is shown in Maass and Turdn (in press) that LC(HALFSPACEn a) = O(d2(log 
d + log n)) and that LC(HALFSPACE~) = f~(d 2 log n). [] 

Remarks. 1. It is an open question whether there is an e l e m e n t a r y  geometric construction 
(as for theorem 1) that shows that LC(HALFSPACE~) = O(log n). The learning algorithm 
from Maass and Turin (in press) (which is computationally feasible) employs nontrivial 
tools from combinatorial optimization for the dual space of HALFSPACE~ a. 

2. The learning algorithm for HALFSPACE~ a from Maass and Tur~in (in press) is not 
necessarily consistent. However, it is very easy to make it consistent without affecting its 
computational feasibility or its error bound: if the algorithm maintains a list of all preceding 
counterexamples, then for any hypothesis H (be fore  it issues H), the algorithm can check 
whether or not H is consistent with all preceding counterexamples. If it is not consistent 
with a preceding counterexample g, it does not issue hypothesis H. Instead, it proceeds 
(internally) as if g would be the counterexample to this hypothesis H. In this way, it moves 
to its next hypothesis. 

3. One can also show (Maass & Turin, in press) that LC(HALFSPACE~) = O ( d  2 • 

log [X[) for arbitrary finite domains X ~ R d, where 

HALFSPACE~ :=  {C ___ X [ there is a halfspace H c R d with H fq X = C}. 

The learning algorithm proving this upper bound does not appear to have a computation- 
ally feasible implementation. 

Theorem 4. LC(k-SEMI-ALGEBRAIC-SETS~) = O(log n) for every fixed k, d E N - {0}. 
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Proof .  The upper bound follows from the preceding result, since one can view each prod- 
uct x~l • . . .  • x~d as a new variable that ranges over {0, . . . ,  (n - 1)d}. Hence one can 
apply a learning algorithm for HALFSPACE p(k'd) where p (k, d) :=  1{(il, • idl ] 

(n-1)d+l  ' • . 

il, . . . ,  id E N and ~J=l ij < k}]. 
In order to prove the lower bound, one exhibits a chain of concepts from k-SEMI- 

ALGEBRAIC-SETS~ of length n. [] 

In contrast to the preceding positive results, we show in the following theorem that one 
needs exponentially more learning steps to learn the intersection of two halfspaces (see 
also Maass & Turdn, 1990). 

T h e o r e m  5. LC (2-HALFSPACE2n) = ~(n) .  

Proof .  Analogously to the proof of theorem 2, we choose sets P, N c Xn :=  {0 . . . . .  
n - 1} 2 (here: P := Square n xn, N :=  Perimeter n x~) and apply for 

{C n N ] C ~ 2-HALFSPACE 2 and P c C} 

a similar adversary strategy as for SINGLETONSn. 

We define 

Square :=  ~ + i, ~ + j  i = 0, 1, j = 0, 1 , 

:=  ~(Xl ,  X2) ~ N 2 I (xl E {0, n - 1} a n d 0  < x2 < n - 1) or Perimeter 
t,, 

(x2~ {0, n - 1} a n d 0  ___ xl --- n - 1 ) ~ .  

The adversary strategy proceeds as follows: 

I f  Square ~ H for the current hypothesis H, then one gives an arbitrary point from 
Square - H as positive counterexample. 

I f  Square c_ H, then one gives an arbitrary point from Perimeter n H as a negative 
counterexample (provided that there exists some C r E 2-HALFSPACEn 2 that is con- 
sistent with this and all preceding counterexamples). 

Cla im 1. Assume C1, C2 ~ HALFSPACE ] and Square c Ca O C2. Then q N C2 n 
Perimeter ;~ 0. 

P roof  of  claim 1. Fix aj, by, tj E R such that Cj : Sj N Xn for Sj : {(u, v) ~ 112 ] aju + 
bjv >_ tj }, j = 1, 2. Since the convex hull of Square contains a circle of radius 1, S 1 O $2 
either contains one of the four corner points of {0, . . . ,  n - 1} 2, or it contains a segment 
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of length at least 1 on one of the sides of the square determined by these four corner points. 
Hence, it contains a point from Perimeter. [] 

Claim 2. For some constant c > 0, there exists for every sufficiently large n a family 
D 1 . . . . .  D Lc~j of concepts from 2-HALFSPACE ] such that Square c Di for i E {1, . . . ,  
LcnJ} andDi N Dj f3 Perimeter = 0 for every i, j f i  {1, . . . ,  L c n ] } , i  ~ j .  

Proof of claim 2. Consider concepts D E 2-HALFSPACEn 2 with Square c D which are 
defined as the set of points in Xn between two parallel lines touching the circle that goes 
through the four points of Square. Clearly, there are ~2(n) concepts of this type with pair- 
wise empty intersection on Perimeter. [] 

We can now complete the proof of theorem 5. It is obvious that as long as not more 
than Lc" n ] - 2 negative counterexamples have been given according to the adversary 
strategy, there are at least two of the Lcn ] concepts D i from claim 2 that are consistent 
with all preceding counterexamples. This implies that 

LC(2-HALFSPACE 2) ___ Lcn] - 1. [] 

5. The complexity of learning balls 

For the domain Xff := {0, . . . ,  n - 1} a, we consider the concept class 

BALLna : = {C __ x~al there is a ball B c_ R ~ with B N X~ : C}. 

Theorem 6. LC(BALLn a) = O(d 2 (log d + log n)) and LC(BALLn a) = f~(d 2 log n). Further- 
more, there exists a learning algorithm A for BALL~ with LC(A) = O(d2(log d + log n)) 
that uses altogether only polynomially in d and log n many computation steps. 

Proof. Similarly to the case of learning semi-algebraic sets, the proof uses a reduction 
to halfspace learning. The class of semi-algebraic sets defined by a quadratic inequality 
of the form Pfli=lwixi + wd+x(~di=l X2) ~ t can be learned by introducing a new variable 
Xa+l for Z/a=lX2 and applying a learning algorithm for a+l HALFSPACEd(n_I)2+I. The problem 
with this approach is that this concept class contains balls and complements of balls. If 
Wd+ 1 ~ O, then the inequality ~d=l wiX i + Wd+l(]~d=lx?) ~ t can be rewritten as 

Wd+l Z i -t- 
i=1  

_ > t +  
4 W d + l  i=1  W . 

This inequality defines a ball in R a iff wd+ 1 < 0, and the complement of a ball if 
w~+l > 0. Hence a straightforward application of the halfspace learning algorithm for 

a+a 
HALFSPACEa(n_I~2+I would give rise to a learning algorithm for BALL~ that uses both 
balls and complements of balls as hypotheses. 
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In order to ensure that all hypotheses of the halfspace learning algorithm correspond 
to balls, we consider learning a halfspace over the extended domain 

ynd+l : = {0 . . . . .  d(n - 1)2} d+l tO {vl, v2} 

in R e+l, with v 1 : =  ( 0  . . . . .  0 ,  k),  v 2 :=  (0, . . . ,  0, - k ) ,  k : =  2 sd(l°gd+l°gn+4). We will 

show in the following two claims that balls over Xff correspond exactly to those halfspaces 
F over yff+l that satisfy v 1 ~ F and v 2 E F. 

Claim 1. If  C fi BALL~ a, then there are wl . . . . .  we+l, t ~ R such that 

a) C = B O X ff for B = {x E Rdl]~d lwiX i  + Wd+l(]~di=lXi 2) >~ t} ,  

b) for the halfspace F = {x ~ Rd+l I z.~e+li=l wixi --> t} it holds that vl ~ F, v2 fi E 

Proof of  claim 1. Let w[, . . . ,  W~+l, t '  ~ R such that C = B '  ('1 X f for B '  = {x fi R d [ 
t d 2 Ed=lwi'x i + Wd+l(~i=lXi) >_ t ' } .  Consider the corresponding concept C '  = F '  f'l 

Xd d+l where F '  {x fi R d+l P.d+lw'x > t}. Using standard bounds for the solu- (n--1)2+l, : =  [ i=1 i i -  

tions of a system of linear inequalities, it follows that there are weights wl . . . .  , wa+l and 
yd+l for F = {x ~ Rd+l l~d+dwix  i > t}, where a threshold t such that C' = F f) ~d(n_l)Z+l, 

Wl . . . .  , we+l, t are integers having absolute values less than 2 8a0°ga+l°gn+4) and we+ t < 0. 
(See, e.g., Maass and Turin (in press, lemma A2) for a derivation of this bound. The condi- 
tion we+ 1 < 0 can be directly incorporated into the system of linear inequalities consid- 
ered.) Thus, by definition, C = B f) X fl for the ball B "= {x E R e I~ai=lwixi + we+! " 
pC x ~2 > t} Now for vl we have Wd+12 8d(l°gd+l°gn+4) < --2 8dO°gd+l°gn+4) < t from the 

i=1 iJ - -  • 

bound on the absolute value of t, and hence v 1 ~ F for F :=  {x ~ R e+l [ p e+l w x > t} i=1 i i - -  • 

Similarly, v 2 E F,  proving claim 1. []  

Claim 2. Assume that C is a halfspace over yff+l with C = F (q y d+l for some halfspace 
F = {x ~ R d+l [ ~'d+IWxi=I i i - -  > t}, which satisfies vl ~ F, and v2 fi E Then We+ 1 < O. 

Proof of  claim 2. v 1 ~ F implies that Wd+lk < t, and v2 ~ F implies that wd+~(-k) >__ 

t. Thus one has Wd+lk < Wd+l(--k), and hence Wd+ 1 ( O. [] 

Now to get a learning algorithm A for BALL d, assume that A* is an algorithm for learn- 
ing a halfspace over yff+l. 

I f  CT e BALL~ is the target ball, then we simulate A* to learn a halfspace C over Yn d+l 
such that for every x = (Xl . . . . .  xd) E {0 . . . . .  n -- 1} d it holds thatx ~ C r i f f  (xl . . . . .  

~d x2\  Xd, i=1 i / ~ C ,  and furthermore V 1 ~ C ,  v 2 ~ C .  Claim 1 implies the existence of such 
a concept C. 

If  A* presents a hypothesis H for which v 1 ~ H (respectively, v 2 ~ H),  then H is not 
used as a hypothesis for A. Instead, one continues the simulation of  A* with Vl (respec- 
tively, v2) as a negative (respectively, positive) counterexample. (If both conditions hold, 
then the choice is arbitrary.) Otherwise, we select a halfspace F {x ~ R a+l [ ~--+~ = .= WiX i 
_> t} such that H = F O ya+l. Claim 2 implies that 
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d ) H ' ' =  ~ Rd Z WiXi -[- Wd+l X >-- f') X ff ~ BALL d. 
i = l  i=1 

The ball learning algorithm A presents H '  as its next hypothesis. If a counterexample 
x = (Xl, . • . ,  Xa) is received, then (x 1 . . . . .  x a, £d=lx ~) is a counterexample to H. This 
implies that LC(A) _ LC(A*). 

Hence, in order to prove the theorem, it is sufficient to prove a corresponding upper 
bound for LC(A*). An efficient learning algorithm A* for halfspaces over yff+l can be de- 
signed in the same way as an efficient learning algorithm for halfspaces over X d. Accord- 
ing to Maass and Turdn (1989, in press), the latter problem can be reduced to the design 
of an efficient algorithm for solving the well-known convex feasibility problem in combina- 
torial optimization. The only difference between learning a halfspace over yff+l and learn- 
ing a halfspace over X ff results from the fact that the integer coefficients of points in the 
domain yff+l are somewhat larger. This gives rise to a somewhat weaker a priori bound 
on the size of integer coefficients in the linear inequalities that define halfspaces over yd+l. 
In technical terms, a computation using lemmas A1 and A2 of Maass and Turdn (in press) 
shows that one can reduce the learning of halfspaces over yff+l to solving the convex 
feasibility problem with guarantee 

?. = 212(d+l)(log(d+ l )+ logn+4)  

(instead of r = 2 4d(l°gd+l°gn+3) for the case of halfspaces over Xfl). However, the upper 
bound for the query complexity of the resulting learning algorithm for halfspaces depends 
only on the logarithm of r (O(d log r) queries are needed, where d is the dimension of 
the domain). Hence, there exists for halfspaces over yff+l a computationally feasible learn- 
ing algorithm A* with the same upper bound O(dZ(log d + log n)) on the required number 
of queries as for learning halfspaces over X ft. 

The lower bound for LC(BALL d) follows by noting that BALL~ ~ HALFSPACE d and 
LC-ARB(HALFSPACE~) = f](d 2 tog n) (Maass & Turin, in press). [] 

Corollary. LC(BALL~) = @(log n) for every fixed dimension d ~ N - {0}. 

Remark. 1. It remains an open question whether the upper bound of this result can also 
be achieved by an elementary geometric construction (as for theorem 1). 

2. Similarly to the concept class HALFSPACE d discussed in the previous section, one 
can also consider the class 

BALLdx :=  {C ~ X] there is a ball B ~ R d with B f') X = C} 

for an arbitrary finite domain X c_ R d. It can be shown that LC(BALLax) = O(d 2 log 
IX ]) for every X. Analogously to theorem 6, the learning algorithm uses a reduction to 
learning a halfspace over the set X'  c_ R d+l, where 
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X t : =  1, " ' ' ,  Xd, (X 1 . . . . .  Xd) E ~.J {V1, V2}, 
i=1 

with vl = (0, . . . ,  0, k), v2 = (0, . . . ,  0, - k ) ,  for some sufficiently large k. 

6. Open problems 

In this section we list some open problems about on-line learning of geometrical concepts. 
We feel that problems 1 and 5 are the most important ones. 

1. Is LC(U - 2 - BOX2n) = O(log n) for the concept class U - 2 - BOX ] :=  {C1 U 
C21 C 1, C 2 E BOXn2}? 

2. Is LC(SQUARESn) = O(log n)? 
(One defines SQUARESn = { { i t , - - . , J l }  × {i2 . . . .  , J2}l  1 < i l , j l ,  i2,J2 <- n and 
Jl - il = J2 - i2}. It is obvious that LC(SQUARESn) = ~(log(chain(SQUARESn))) 
= f~(log n). The best-known upper bound is O(log 3 n), due to Beals (1990).) 

3. Is LC(GP-BOXn) = @(n)? 
(See section 3 for the lower bound f~(n).) 

4. Is LC(2-HALFSPACE 2) = O(n)? 
(See section 4 for the lower bound 9(n).) 

5. Is LC(2-HALFSPACF~) bounded above by a polynomial in d? 
(It has been shown by Blum and Rivest (1988) that under the assumption P ~ NP it 
is impossible that LC(A) = O(d O(l)) for a learning algorithm A for 2-HALFSPACE~, 
which uses only polynomially in d many computation steps.) 
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