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1. Introduct ion  

There is no universal learning algorithm that can take a sample 5' = {(xi ,  f ( x i ) ) }  of 
training examples for an arbitrary unknown function f and produce a good approximation 
to f (see Dietterich, 1989). Instead, every learning algorithm embodies some assumptions 
(or "bias") about the nature of  the learning problems to which it will be applied. Some 
algorithms, for example,  assume that only a small number of the features describing 
the data are relevant. Other algorithms assume that every feature makes a small, but 
independent,  contribution to determining the classification. Many algorithms order the 
hypotheses according to syntactic simplicity in some representation and attempt to find 
the simplest  hypothesis consistent with the training examples. 

Unfortunately, for many popular learning algorithms, the assumptions they embody are 
not entirely known- -o r ,  if they are known, they are stated in terms that are difficult to 
check in any given application domain. For  example, Quinlan's  (1986) decision-tree al- 
gorithm ID3 assumes that the unknown function f can be represented as a small  decision 
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tree. However, given a new learning problem, it is difficult to know whether this as- 
sumption holds without first running the ID3 algorithm. The result is that we do not have 
a good understanding of the range of problems for which ID3 is appropriate. Similarly, 
the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986) assumes, at a 
minimum, that the unknown function f can be represented as a multilayer feed-forward 
network of sigmoid units. Although there have been many successful applications of 
backpropagation (Touretzky, 1989, 1990), we still lack an understanding of the situations 
for which it is appropriate. 

Furthermore, because clear statements of the assumptions made by ID3 and back- 
propagation are unavailable, we do not understand the relationship between these two 
algorithms. Some investigators have even suggested that these algorithms are making 
very similar assumptions (Lorien Pratt, personal communication). 

Hence, we confront two related questions. First, what are the assumptions embodied 
in ID3 and backpropagation (or equivalently, in what situations should these algorithms 
be applied)? Second, how are ID3 and backpropagation related? 

One can conceive of two different approaches to answering these questions. A theo- 
retical approach could analyze each of these algorithms in an attempt to articulate their 
assumptions. An experimental approach could test these two algorithms on nontrivial 
problems and compare their behavior. 

In this paper, we take the experimental approach. We apply ID3 and backpropagation 
to the task of mapping English words into their pronunciations. This task was pioneered 
by Sejnowski and Rosenberg (1987) in their famous NETtalk system, which employed 
backpropagation. Rosenberg's doctoral dissertation (1988) included further analysis and 
experiments in this domain. In our replication of their work, we discover that backprop- 
agation outperforms ID3 on this task. This demonstrates that ID3 and backpropagation 
do not make identical assumptions. 

We then go on to investigate the difference between ID3 and backpropagation. We 
formulate three hypotheses to explain the difference and conduct experiments to test 
these hypotheses. These experiments show that ID3, when combined with some simple 
statistical learning procedures, can nearly match the performance of BR We also present 
data showing that the performance of ID3 and backpropagation is very highly correlated 
over a collection of binary concept learning problems. These data also show that ID3 
and BP tend to agree on which of these concepts are easy and which are difficult. 

Given that BP is substantially more awkward and time-consuming to apply, these results 
suggest the following methodology for applying these algorithms to problems similar to 
the NETtalk task. First, ID3, combined with our statistical learning procedures, should 
be applied. If its performance is adequate, then there is no need to apply backpropa- 
gation. However, if ID3's performance is inadequate, it can still be used to estimate 
the performance of backpropagation. Then the much more expensive backpropagation 
procedure can be employed to see if it yields a better classifier. 
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2. The task 

To conduct our comparisons of ID3 and backpropagation, we have chosen the task of 
mapping English text into speech. A complete text-to-speech system involves many 
stages of processing. Ideally, sentences are parsed to identify word senses and parts of 
speech. Individual words (and their senses) are then mapped into strings of phonemes 
and stresses. Finally, the phonemes and stresses can be combined by various techniques 
to generate sound waves. For an excellent review, see Klatt (1987). 

A phoneme is an equivalence class of basic sounds. An example is the phoneme 
/p/. Individual occurrences of a / p / a r e  slightly different, but they are all considered 
/p/sounds. For example, the two p's in "lollypop" are pronounced differently, but they 
are both members of the equivalence class of phoneme/p/. We use 54 phonemes (see 
Appendix A. 1). 

Stress is the perceived weight given to a syllable in a word. For example, the first 
syllable of "lollypop" receives the primary stress, the third syllable receives secondary 
stress, and the middle syllable is unstressed. Stress information is coded by assigning 
one of six possible stress symbols to each letter. Consonants generally receive one of 
the symbols "<"  or ">",  which indicate that the principal vowel in this syllable is to 
the left or the right (respectively) of the consonant. Vowels are generally marked with a 
code of 0 (none), 1 (primary), or 2 (secondary) to indicate the degree of stress. Lastly, 
silent stress ("-") is assigned to blanks. 

Let L be the set of 29 symbols comprising the letters a - z ,  and the comma, space, 
and period (in our data sets, comma and period do not appear). Let P be the set of 54 
English phonemes and S be the set of 6 stresses employed by Sejnowki and Rosenberg. 
The task is to learn the mapping f:  

f : L *  ~P* x S * .  

Specifically, f maps from a word of length k to a string of phonemes of length k and a 
string of stresses of length/c. For example, 

f("lollypop") = ("lal-ipap", ">1<>0>2<"). 

Notice that letters, phonemes, and stresses have all been aligned so that silent letters are 
mapped to the silent phoneme/-/ .  

As defined, f is a very complex discrete mapping with a very large range. If we assume 
no word contains more than 28 letters (the length of "antidisestablishmentarianism'), this 
range would contain more than 107° elements. Many existing learning algorithms focus 
primarily on learning Boolean concepts--that is, functions whose range is the set {0, 1}. 
Such algorithms cannot be applied directly to learn f .  

Fortunately, Sejnowski and Rosenberg (1987) developed a technique for converting 
this complex learning problem into the task of learning a collection of Boolean concepts. 
They begin by reformulating f to be a mapping 9 from a seven-letter window to a single 
phoneme and a single stress. For example, the word "lollypop" would be converted into 
8 separate seven-letter windows: 
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The function 9 is applied to each of these 8 windows, and then the results are con- 
catenated to obtain the phoneme and stress strings. This mapping function 9 now has a 
range of 324 possible phoneme/stress pairs, which is a substantial simplification. 

Finally, Sejnowski and Rosenberg code each possible phoneme/stress pair as a 26-bit 
string, 21 bits for the phoneme and 5 bits for the stress. Each bit in the code corresponds 
to some property of the phoneme or stress. This converts 9 into 26 separate Boolean 
functions, h i , . . . ,  h26. Each function hi maps from a seven-letter window to the set 
{0, 1}. To assign a phoneme and stress to a window, all 26 functions are evaluated 
to produce a 26-bit string. This string is then mapped to the nearest of the 324 bit 
strings representing legal phoneme/stress pairs. We used the Hamming distance between 
two strings to measure distance. (Sejnowski and Rosenberg used the angle between 
two strings to measure distance, but they report that the Euclidean distance metric gave 
similar results. In tests with the Euclidean metric, we have obtained results identical to 
those reported in this paper.) 

With this reformulation, it is now possible to apply Boolean concept learning methods 
to learn the hi. However, the individual hi must be learned extremely well in order to 
obtain good performance at the level of entire words. This is because errors aggregate. 
For example, if each hi is learned so well that it is 99% correct and if the errors among 
the hi are independent, then the 26-bit string will be correct only 77% of the time. 
Because the average word has about 7 letters, whole words will be correct only 16% of 
the time. 

So far, we have only discussed the representation of the outputs of the mapping to 
be learned. The inputs are represented in a straightforward fashion, using the approach 
recommended by Sejnowski and Rosenberg (1987). Each seven-letter window is repre- 
sented as the concatenation of seven 29-bit strings. Each 29-bit string represents a letter 
(one bit for each letter, period, comma, and blank), and hence, only one bit is set to 1 in 
each 29-bit string. This produces a string of 203 bits for each window. These 203 bits 
provide the input features for the learning algorithms. 

3. T h e  a lgor i thms  

3.1. ID3 

ID3 is a simple decision-tree learning algorithm developed by Ross Quinlan (1983, 
1986b). It constructs a decision tree recursively, starting at the root. At each node, it 
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selects, as the feature to be tested at that node, the feature ai whose mutual information 
with the output classification is greatest (this is sometimes called the information gain 
criterion). The training examples are then partitioned into those examples where ai = 0 
and those where ai = 1. The algorithm is then invoked recursively on these two subsets 
of training examples. The algorithm halts when all examples at a node fall in the same 
class. At this point, a leaf node is created and labeled with the class in question. The basic 
operation of ID3 is quite similar to the CART algorithm developed by Breiman, Friedman, 
Olshen, and Stone (1984) and to the tree-growing method developed by Lucassen and 
Mercer (1984). The algorithm has been extended to handle features with more than two 
values and features with continuous values as well. 

In our implementation of ID3, we did not employ windowing (Quinlan, 1983), CHI- 
square forward pruning (Quinlan, 1986a), or any kind of reverse pruning (Quinlan, 1987). 
We did apply one simple kind of forward pruning to handle inconsistencies in the training 
data: If all remaining features have zero information gain, then growth of the tree was 
terminated in a leaf and the class having more training examples was chosen as the label 
for that leaf (in case of a tie, the leaf is assigned to class 0). 

To apply ID3 to this task, the algorithm must be executed 26 t imes--once for each 
mapping hi. Each of these executions produces a separate decision tree. 

3.2. Backpropagation 

The error backpropagation method (Rumelhart, Hinton, & Williams, 1986) is widely 
applied to train artificial neural networks. However, in its standard form, the algorithm 
requires substantial assistance from the user. Specifically, the user must specify the trans- 
fer function of each artificial neuron (unit), the network architecture (number of layers 
and their interconnections), the number of hidden units in each layer, the learning rate, 
the momentum term, the initial weight values, and the target thresholds. 1 Furthermore, 
the user must decide when to terminate training. To make the comparison between ID3 
and backpropagation fair, it is necessarily to transform BP from a user-assisted method 
into an algorithm that involves no user assistance. 

We have developed such a transformation. We call the resulting algorithm BPCV 
(BackPropagation with Cross-Validation). To define BPCV, we fix some of the user- 
specified properties and set the remaining parameters via cross-validation using the meth- 
ods introduced by Lang, Waibel, and Hinton (1990) as explained below. 

In BPCV, there is only one hidden layer, and it is fully connected to the input layer 
and to the output layer. Every unit in the hidden and output layers is implemented by 
taking the dot product of a vector of weights w with a vector of incoming activations x, 
adding a bias 0, and applying the logistic function 

1 y -  
1 + e-(w'x+°) ' 

which is a continuous, differentiable approximation to the linear threshold function used 
in perceptrons. Several parameters are given fixed values: the learning rate is always 
0.25, the momentum term is 0.9, and target thresholds are not used. The criterion to 
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be minimized is the sum squared error (SSE). These are basically the same parameters 
(except for the target thresholds) that were used by Sejnowski and Rosenberg. We have 
conducted some cross-validation and found that performance was insensitive to these 
parameter choices. 

The remaining parameters--number of hidden units, random starting weights, and 
stopping total sum squared error (TSSE)--are set by the following cross-validation pro- 
cedure. Given a set of examples S, we subdivide S into three sets: a training set (StT), 
a cross-validation set (Sc~), and a test set (Stcst). Then we execute backpropagation 
several times on the training set StT while varying the number of hidden units and the 
random starting weights. After each pass through the training data, we test the perfor- 
mance of the network on S~v. The goal of this search of parameter space is to find those 
parameters that give peak performance on the cross-validation set. These parameters can 
then be used to train backpropagation on the union St~ U Scv, and a good estimate of 
generalization performance can be obtained by testing with Stcst. 

The advantage of cross-validation training is that no information from the test set is 
employed during training, and hence, the observed error rate on the test set is a fair 
estimate of the true error rate of the learned network. This contrasts with the common, 
but unsound practice of adjusting parameters to optimize performance on the test set. 

One advantage of BPCV on the NETtalk task is that, unlike ID3, it is only necessary 
to apply BPCV once, because all 26 output bits can be learned simultaneously. Indeed, 
the 26 outputs all share the same set of hidden units, which may allow the outputs to 
be learned more accurately. However, while ID3 is a batch algorithm that processes the 
entire training set at once, BP is an incremental algorithm that makes repeated passes 
over the data. Each complete pass is called an "epoch." During an epoch, the training 
examples are inspected one-at-a-time, and the weights of the network are adjusted to 
reduce the squared error of the outputs. We used the implementation provided with 
McClelland and Rumelhart (1988). 

Because the outputs from BP are floating point numbers between 0 and 1, we had to 
adapt the Hamming distance measure when mapping to the nearest legal phoneme/stress 
pair. We used the following distance measure: d(x, y)  = y ~  Ix~ - Yil. This reduces to 
the Hamming distance when x and y are Boolean vectors. 

3.3. The data set 

Sejnowski and Rosenberg provided us with a dictionary of 20,003 words and their cor- 
responding phoneme and stress strings. From this dictionary we drew at random (and 
without replacement) a training set of 800 words, a cross-validation set of 200 words, 
and a test set of 1000 words. 
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Table 1. Optimal network size via cross-validation 

Number of Letters Number of 
Hidden Units (% Correct) TSSE Epochs 

40 67.0 2289 28 
60 67.7 939 46 
80 68.3 1062 25 

100 69.3 104t 19 
120 68.7 1480 12 
140 70.0 541 27 
160 70.7 445 37 
180 69.3 477 28 

4. Results  

4.1. Cross-validation training 

Before presenting the results of our study, we first discuss the results of the cross- 
validation procedure for BPCV. We performed a series of runs that systematically varied 
the number of hidden units (40, 60, 80, 100, 120, 140, 160, and 180) and the random 
starting weights (four sets of random weights were generated for each network). Per- 
formance on the cross-validation set was evaluated after each complete pass through 
the training data (epoch). The networks were trained for 30 epochs (except for a few 
cases, where training was continued to 60 epochs to ensure that the peak performance 
had been found). Table 1 shows the peak performance (percent of letters correctly pro- 
nounced) for each network size and the total sum squared error (on Str) that gave the 
peak performance. These TSSE numbers (appropriately adjusted for the number of train- 
ing examples) can then be used to decide when to terminate training on the entire training 
set (Sir U S~) .  Based on these runs, the best network size is 160 hidden units. 

Having completed cross-validation training, we then proceeded to merge the training 
set and cross-validation set to form a 1000-word training set. During cross-validation 
training, we stored a snapshot of the weight values after the first complete epoch for each 
random network that was generated. Hence, to perform training on the entire training 
set, we used the best stored 160-hidden unit snapshot as a starting point. 2 The original 
training set St~ contained 5,807 seven-letter windows, while the full training set St~ U S ~  
contains 7,229 seven-letter windows. Hence, the target TSSE for the full training set 
was 554. 

We were surprised by the figures shown in Table 1, since we expected that a reasonably 
small network (e.g., 80 hidden units) would give a good fit to the data. However, the 
table clearly shows that generalization generally improves as the quality of the fit to 
the training data improves. Furthermore, Figure 1 shows that as training of a network 
continues past the point of peak performance, performance does not decline appreciably. 

Previous work by Sejnowski and Rosenberg (1986) and Rosenberg (1988) has used 
networks with 40, 80, and 120 hidden units. However, to our knowledge, no one has 
previously conducted a systematic study of the relationship between network size and 
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Figure  1. Training curve for the best 160-hidden unit network. Vertical bar indicates point of maximum 
performance. 

performance on the NETtalk task. Similar results showing that larger networks can give 
improved performance have been published by Martin and Pittman (1990). 

4.2. Per formance  comparison 

Table 2 shows percent correct (over the 1000-word test set) for words, letters, phonemes, 
and stresses. A letter is considered correct if both the phoneme and the stress were 
correctly predicted (after mapping to the nearest legal phoneme and stress). A word is 
correct if all of its letters are correct. Virtually every difference in the table at the word, 
letter, phoneme, and stress levels is statistically significant (using a one-tailed test for 
the difference of two proportions based on the normal approximation to the binomial 
distribution). Hence, we conclude that there is a substantial difference in performance 
between ID3 and BPCV on this task. 

It should be noted that although the test set contains 1000 disjoint words, some of 
the seven-letter windows in the test set also appear in the training set. Specifically, 946 
(13.1%) of the windows in the test set appear in the 1000-word training set. These 
represent 578 distinct windows. Hence, the performance at the letter, phoneme, and 
stress levels are all artificially high if one is concerned about the ability of the learning 
methods to handle unseen cases correctly. However, if one is interested in the probability 
that a letter (or phoneme, or stress) in an unseen word will be correctly classified, then 
these numbers provide the right measure. 
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Table 2. Percent correct over lO00-word test set 

Level of Aggregation (% correct) 
Method Word Letter Phoneme Stress Bit (mean) 

ID3 9.6 65.6 78.7 77.2 96.1 
BPCV 13.6"* 70.6*** 80.8*** 81.3"** 96.7* 

Difference in the cell significant at p < .05", .005"*, .001"** 

ID3 

Correct 

Incorrect 

Backpropagation 

Correct Incorrect 

4239 

(58.5%) 

873 

(12.1%) 

512 

(7.t%) 

1618 

(22.3%) 

Disagree: 1385 (19.2%) 

Agree: 5857 (80.9%) 

Table 3. Classification of test set windows by ID3 and BPCV, decoding to nearest legal phoneme and stress. 

To take a closer look at the performance difference, we can study exactly how each 
of  the 7,242 seven-letter windows in the test set are handled by each of the algorithms. 
Table 3 categorizes each of  these windows according to whether it was correctly classified 
by both algorithms, by only one of  the algorithms, or by neither one. 

The table shows that the windows correctly learned by BPCV do not form a superset 
of  those learned by ID3. Instead, the two algorithms share 4,239 correct windows, and 
then each algorithm correctly classifies several windows that the other algorithm gets 
wrong. The overall result is that BPCV classifies 361 more windows correctly than does 
ID3. This shows that the two algorithms, while they overlap substantially, have )earned 
fairly different text-to-speech mappings. 

The information in this table can be summarized as a correlation coefficient. Specif- 
ically, let X~D3 ( X B p c v )  be a random variable that is 1 if and only if ID3 (BPCV, 
respective)y) makes a correct prediction at the letter level. In this case, the correlation 
between XIDa and X B p c v  is .5648. If  all four cells of Table 3 were equal, the cor- 
relation coefficient would be zero. (For reference, independent runs of  BPCV on the 
same training set, but with different random starting states have a correlation coefficient 
.6955.) 

A weakness of  Table 2 is that it shows performance values for one particular choice 
of  training and test sets. We have replicated this study four times (for a total of  5 
independent trials). In each trial, we again randomly drew without replacement two sets 
of  1000 words from the dictionary of 20,003 words. Note that this means that there is 
some overlap among the five training sets (and among the five test sets). Table 4 shows 
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Table 4. Average percent correct (lO00-word test set) over five trials. 

Level of Aggregation (% correct) 
Method Word Letter Phoneme Stress Bit (mean) 

ID3 10.2 65.2 79.1 76.5 96.1 
BP 15.1"*** 71.3"*** 81.3"*** 81.7"*** 96.7**** 

Difference in the cell significant at p < .0001"*** 

Table 5. Percent correct over 1000-word test set. 

Sample Level of Aggregation (% correct) 
Size  Method  Word Letter Phoneme Stress Bit (mean) 

50 ID3 0.8 41.5 60.5 60.1 93.1 
BPCV 1.6 49.2*** 59.7 73.1"** 93.9 

100 ID3 2.0 47.3 64.1 65.8 94.0 
BPCV 3.7* 55.5*** 66.6** 75.4*** 94.8* 

200 ID3 4.4 56.6 70.5 72.2 95.1 
BPCV 7.1"* 61.1"** 72.2* 78.2*** 95.4 

400 ID3 6.2 58.7 73.7 72.1 95.5 
BPCV 11.3"** 66.4*** 77.0*** 79.7*** 96.0 

800 ID3 9.6 63.8 77.8 75.6 96.2 
BPCV 15.3"** 70.9*** 81.0"** 81.2"** 96.6 

1000 ID3 9.6 65.6 78.7 77.2 96.4 
BPCV 14.7"** 70.9*** 81.1"** 81.4"** 96.6 

Difference in the cell significant at p < .05", .01"*, .001"** 

the average performance of these 5 runs. All differences are significant below the .0001 

level using a t-test for paired differences. 

Another weakness of Table 2 is that it only shows performance values for a 1000-word 

training set. It might be that the relative performance difference between ID3 and BPCV 
might change as the size of the training set changes. Table 5 shows that this is not 

the case. The rows in the table give the results of running ID3 and BPCV on several 
different sizes of training sets. In each case, BPCV was trained using the cross-validation 
training methodology outlined above (four runs each with networks having 5, 10, 20, 

40, 80, 120, and 160 hidden units). The only difference from the methodology outlined 

above is that after training on Str and determining peak generalization performance by 
testing on a 200-word Scv, we did not re-train on the union Str U S~v, since this would 
create training sets that were too large. Instead, we simply tested the best network on 
the 1000-word St~st. We conclude that there is a consistent difference between ID3 and 
BPCV and that, while the performance of both algorithms will increase with the size of 

the training set, this difference will still be observed. 
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Table 6. Results of applying three overfitting-prevention techniques. 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 

(a) ID3 (as above) TEST: 9.6 65.6 78.7 77.2 96.l 
(b) ID3 (X 2 cutoff) TEST: 9.1 64.8 78.4 77.1 96.1 
(c) ID3 (pruning) TEST: 9.3 62.4 76.9 75.1 95.8 
(d) ID3 (rules) TEST: 8.2 65.1 78.5 77.2 96.1 

In the remainder of this paper, we will attempt to understand the nature of the differ- 
ences between BPCV and ID3. Our main approach will be to experiment with modi- 
fications to the two algorithms that enhance or eliminate the differences between them. 
Unless stated otherwise, all of these experiments are performed using only the 1000-word 
training set and 1000-word test set from Table 2. 

5. Three  hypotheses 

What causes the differences between ID3 and BPCV? We have three hypotheses, which 
are neither mutually exclusive nor exhaustive. 

Hypothesis 1: Overfitting. ID3 has overfit the training data, because it seeks complete 
consistency. This causes it to make more errors on the test set. 

Hypothesis 2: Sharing.  The ability of BPCV to share hidden units among all of  the hi 
allows it to reduce the aggregation problem at the bit level and hence perform better. 

Hypothesis  3: Statistics. The numerical parameters in the network allow it to capture 
statistical information that is not captured by ID3. 

The following three subsections present the experiments that we performed to test these 
hypotheses. 

5.1. Tests of Hypothesis 1 (Overfitting) 

The tendency of  ID3 to overfit the training data is well established in cases where the data 
contain noise. Three basic strategies have been developed for addressing this problem: 
(a) criteria for early termination of  the tree-growing process, (b) techniques for pruning 
trees to remove overfitting branches, and (c) techniques for converting the decision tree to 
a collection of rules. We implemented and tested one method for each of  these strategies. 
Table 6 summarizes the results. 

The first row repeats the basic ID3 results given above, for comparison purposes. The 
second row shows the effect of  applying a X 2 test (at the .90 confidence level) to decide 
whether further growth of the decision tree is statistically justified (Quinlan, 1986a). As 
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other authors have reported (Mooney et al., 1989), this hurts performance in the NETtalk 
domain. The third row shows the effect of applying Quinlan's technique of reduce-error 
pruning (Quinlan, 1987). Mingers (1989) provides evidence that this is one of the best 
pruning techniques. For this row, a decision tree was built using the 800-word St~ set and 
then pruned using the Sc~ cross-validation set. Finally, the fourth row shows the effect of 
applying a method for converting a decision tree to a collection of rules. Quinlan (1987) 
describes a three-step method for converting decision trees to rules. First, each path from 
the root to a leaf is converted into a conjunctive rule. Second, each rule is evaluated 
to remove unnecessary conditions. Third, the rules are combined, and unnecessary rules 
are eliminated. In this experiment, we performed only the first two steps, because the 
third step was too expensive to execute on this rule set, which contains 6,988 rules. 

None of these techniques improved the performance of ID3 on this task. This suggests 
that Hypothesis 1 is incorrect: ID3 is not overfitting the data in this domain. This 
makes sense, since the only source of "noise" in this domain is the limited size of the 
seven-letter window and the existence of a small number of words like "read" that have 
more than one correct pronunciation. Seven-letter windows are sufficient to correctly 
classify 98.5% of the words in the 20,003-word dictionary. This may also explain why 
we did not observe overfitting during excessive training in our cross-validation runs with 
backpropagation either. 

5.2. A test of Hypothesis 2 (Sharing) 

The second hypothesis claims that the key to BPCV's superior performance is the fact 
that all of the output units share a single set of hidden units. One obvious way to test this 
sharing hypothesis would be to develop a version of ID3 that permitted sharing among 
the 26 separate decision trees being learned. We could then see if this "shared-ID3" 
improved performance. An alternative is to remove sharing from backpropagation, by 
training 26 independent networks, each having only one output unit, to learn the 26 hi 
mappings. If Hypothesis 2 is correct, then, because there is no sharing among these 
separate networks, we should see a drop in performance compared to the single network 
with shared hidden units. Furthermore, the decrease in performance should decrease the 
differences between BPCV and ID3 as measured by the correlation between their errors. 
We will call the single network, in which all hidden units are shared by the output units, 
BP1; and we will call the 26 separate networks, BP26. 

There is a delicate issue that arises in training BP26. Ideally, we want to train a 
collection of 26 networks so that the only differences between them and BP1 result from 
the lack of shared hidden units. This means that the total summed squared error (on 
the training set) for BP26 should be the same as for BP1. The goal of the training 
procedure is to find, among all such BP26 networks, the collection whose performance 
on the cross-validation set is maximized. 

Hence, we used the following procedure. First, we measured the sum of the squared 
error (over the training set) of each of the 26 bits learned by BP1. Second, to train the 
BP26 networks, we followed the cross-validation procedure of trying alternative random 
seeds and numbers of hidden units, but this time we always terminated training when 
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each individual network attained the squared error observed in the large network. During 
cross-validation, we tried networks having 1, 2, 3, 4, 5, 10, and 20 hidden units (with four 
random seeds for each network size). Finally, we selected the network whose summed 
squared error was minimum on the 200-word cross-validation test set (Soy). 

Surprisingly, we were unable to train successfully the separate networks to the target 
error level on the 1000-word training set. We explored smaller subsets of the 1000- 
word training set (800, 400, 200, 100, and 50-words) and found that training did not 
succeed until the training set contained only 50 words! For the 100-word training set, 
for example, the individual networks often converged to local minima (even though the 
BP1 network had avoided these minima). Specifically, bits 4, 6, 13, 15, 18, 21, and 25 
could not be trained to criterion, even after 2000 epochs. 

For bit 18 on the 100-word training set, we conducted a detailed study in an attempt 
to understand this training problem. We performed hundreds of runs while varying the 
number of hidden units, the learning rate, the momentum term, and the initial random 
weights in an attempt to find a configuration that could learn this single bit to the same 
level as BP1. None of these runs succeeded. In each run of BP26, training converged 
such that the error on all but a handful of the training examples was 0.0, and the error 
on the remaining training examples was 1.0. In contrast, the errors of BP1 were not so 
extreme. 

Table 7 shows a collection of seven-letter windows from the test set and the squared 
error on each of these windows for nine different training runs. The first training run is for 
BP1 with 120 units trained for 30 epochs. The next four columns show runs of BP26 with 
a 5-hidden-unit network and four different random starting seeds (these were trained with 
learning rate .4, momentum .8, and initial random values in the range [-0.5,+0.5]). The 
last four columns show runs of BP26 with a 10-hidden-unit network and four different 
random starting seeds (these were trained with learning rate .4, momentum .7, and initial 
random values in the range [-0.4,+0.4]). 

This demonstrates that even if shared hidden units do not aid classification performance, 
they certainly aid the learning process! 

As a consequence of this training problem, we are able to report results for only the 
50-word training set. Cross-validation training for BP1 (see above) determined that the 
best network for this training set contained 120 hidden units trained to a sum-squared 
error of 13.228. Table 8 summarizes the training process for each of the 26 output bits for 
BP26. Each row gives the number of hidden units in the best BP26 network, the squared 
error obtained from the BP1 network, the squared error obtained from the BP26 network, 
and the number of epochs required for training BP26. Notice that each individual bit was 
slightly over-trained as compared with BP1. This is because the program accumulates 
the squared errors during an epoch and stops when this falls below the target error level. 
Because performance improves during an epoch, the final squared error is somewhat 
lower. 

Table 9 shows the performance of these 26 networks on the training and test sets. 
Performance on the training set is virtually identical to the 120-hidden-unit network, 
which shows that our training regime was successful. Performance on the test set, 
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Table 7. Comparison of individual errors on Bit 18 

window BP1 BP26 

5 hidden units 10 hidden units 
1 2 3 4 1 2 3 4 

"__AUSTR" 
"SOTTED_" 
"BREADWI" 
"BUCKSAW" 
"MOIS 
"CINNAMO" 
"FIGURAT" 
"CORRUPT" 
"_LAWYER" 
"MUUMUU" 
"PETTIFO" 
"ILTON" 

0.021 

1.000 

?O!416 

0.031 
0.044 
0.020 
0.028 
1.000 

1.0 1.0 

1.0 
1.0 1.0 1.0 
1.0 1.0 1.0 1.0 
1.0 1.0 1.0 

1.0 
h0 h0 1.0 1.0 
1.0 1.0 h0 

1.0 
h0 

1.0 1.0 1.0 1.0 
1.0 1.0 
h0 

1.0 1.0 1.0 
1.0 1.0 1.0 
1.0 1.0 1.0 
1.0 1.0 1.0 1.0 

1.0 
1.0 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 

Values not shown are 0.00 

Table 8. Training Statistics for 26 Independent Networks. 

Bit Number of Squared error Squared error Number of 
hidden units in BP1 network in BP26 network epochs 

1 2 0.8179 0.678 62 
2 3 0.1362 0.126 56 
3 20 0.0594 0.044 46 
4 3 0.1047 0.094 64 
5 3 1.0514 1.049 119 
6 20 0.0447 0.037 21 
7 10 0.0746 0.061 23 
8 1 0.0365 0.035 41 
9 4 1.9208 1.894 32 

10 10 0.0279 0.026 20 
11 1 0.0229 0.022 53 
12 5 0.0374 0.035 35 
13 5 1.0665 1.055 56 
14 4 0.0380 0.034 21 
15 5 0.0590 0.056 41 
16 10 2.0629 2.023 65 
17 10 4.2645 4.157 35 
18 3 0.0442 0.041 56 
19 20 0.0008 0.000 2 
20 20 0.0009 0.000 2 
21 3 0.0413 0.039 84 
22 5 0.0894 0.074 61 
23 2 0.0422 0.038 269 
24 4 0.0648 0.057 31 
25 5 1.1184 0.877 45 
26 20 0.0011 0.000 2 
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Table 9. Performance of 26 separate networks compared with a single network having 120 shared hidden 
units. Trained on 50-word training set. Tested on 1000-word test set. 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 

(a) ID3 TEST: 0.8 41.5 60.5 60.1 92.6 

(b) BP 26 separate nets TRAIN: 92.0 99.0 99.0 100.0 99.9 
TEST: 1.7 46.3 57.9 72.2 93.2 

(c) BP 120 hidden units TRAIN: 92.0 98.7 99.0 99.7 99.9 
TEST: 1.6 49.2 59.7 73.1 93.4 

Difference (b)-(c) TRAIN: 0.0 +0.3 0.0 +0.3 0.0 
TEST: +0.1 -2.9*** -1.8" -0.9* -0.2 

Difference (a)-(c) TEST: -0.8 -7.7 +0.8 -13.0 -1.3 

Difference significant at p < .05*, .001"** 

Table 10. Error Correlations 

Correlation Coefficients 
Replication XID 3 and XBp1 XID3 and XBP26 

a .5167 .4942 
b .5005 .4899 
c .5347 .5062 
d .4934 .4653 
e .4934 .4790 

Average Decrease .0208 

however, shows a loss of performance when there is no sharing of the hidden units 

among the output units. Hence, it suggests that Hypothesis 2 is at least partially correct. 

However, examination of the correlation between ID3 and BPCV indicates that this 
is wrong. The correlation between X I D 3  and XBp1 (i.e., BP on the single network) is 

.5428, whereas the correlation between XID 3 and XBP26 is .5045. 

We have replicated this comparison 5 times, over 5 different training and testing sets 
(using a less rigorous, but more efficient, un-cross-validated training procedure). Table 10 
shows the resulting correlation coefficients. A paired differences t-test shows that the 
differences in correlation coefficients are significant below the .0001 level. 

Hence, the removal of shared hidden units has actually made ID3 and BP less similar, 
rather than more similar as Hypothesis 2 claims. The conclusion is that sharing in 

backpropagation is important to improving both its training and its performance, but it 
does not explain why ID3 and BPCV are performing differently. 
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Table 11. Performance of backpropagation with thresholded output values. Trained on 1000-word training 
set. Tested on 1000-word test set. 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1 

(b) BPCV (legal) TEST: 13.6 70.6 80.8 81.3 96.7 
(c) BPCV (thresholded) TEST: 11.2 67.7 78.4 80.0 96.3 

Difference (c)-(b) TEST: -2.4 -2.9*** -2.4*** -1.3" -0.4 

Difference significant at p < .05", .001"** 

5.3. Tests of Hypothesis 3: Statistics 

We performed three experiments to test the third hypothesis that the continuous pa- 
rameters in BPCV networks are able to capture statistical information that ID3 fails to 

capture. 

5.3.1. Experiment 1." Thresholding 

In the first experiment, we took the outputs of the backpropagation network and thresh- 
olded them (values > .5 were mapped to 1, values < .5 were mapped to 0) before 
mapping to the nearest legal phoneme/stress pair. Thresholding the values can change 
the distances that are measured between the outputs and the legal phoneme and stress 
patterns. Table 11 presents the results for the 1000-word training set. 

The results show that thresholding significantly drops the performance of backpropa- 
gation. Indeed, at the phoneme level, the decrease is enough to push BPCV below ID3. 
At the other levels of  aggregation, BPCV still out-performs ID3. These results support 
the hypothesis that the continuous outputs of the neural network aid the performance of  

BPCV. 

However, thresholding the outputs of BPCV does not cause it to behave substantially 
more like ID3. The correlation between XID3 and XBPcVth~h  is .5685 (as compared 
with .5648 for XBRcv)--this is only a small increase. Close examination of  the data 
shows that the seven-letter windows "lost" (i.e., incorrectly classified) when BPCV is 
thresholded include 120 windows correctly classified by ID3 and 112 windows incorrectly 
classified by ID3. Hence, the mistakes introduced by thresholding are nearly independent 

of  the mistakes made by ID3. 

While this experiment demonstrates the importance of continuous outputs, it does not 
tell us what kind of information is being captured by these continuous outputs nor does 
it reveal anything about the role of continuous weights inside the network. For this, we 
must turn to the other two experiments. 
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Table 12. Effect of "observed" decoding on learning performance. 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.I 
(b) BPCV (legal) TEST: 13.6"* 70.6*** 80.8*** 81.3"** 96.7* 
(c) ID3 (observed) TEST: 13~0 70.1 81.5 79.2 96.4 
(d) BPCV (observed) TEST: 14.3 71.5" 82.0 81.4"** 96.7 

ID3 Improvement: (c)-(a) TEST: 3.4*** 4.5*** 2.8*** 2.0** 0.3 
BPCV Improvement: (d)-(b) TEST: 0.7 0.9 1.2" 0.1 0.0 

Difference in the cell significant at p < .05*, .005"*, .001"** 

5.3.2. Experiment 2: Observed Outputs 

In the second experiment, we modified the method used to map each output 26-bit string 
into one of the 324 legal phoneme/stress pairs. Instead of considering all possible legal 
phoneme/stress pairs, we restricted attention to those phoneme/stress pairs that had been 
observed in the training data. Specifically, we constructed a list of every phoneme/stress 
pair that appears in the training set (along with its frequency of occurrence). During 
testing, the 26-element vector produced either by ID3 or BPCV is mapped to the closest 
phoneme/stress pair appearing in this list. Ties are broken in favor of the most frequent 
phoneme/stress pair. We call this the "observed" decoding method, because it is sensitive 
to the phoneme/stress pairs (and frequencies) observed in the training set. 

Table 12 presents the results for the 1000-word training set and compares them to the 
previous technique ("legal") that decoded to the nearest legal phoneme/stress pair. The 
key point to notice is that this decoding method leaves the performance of BPCV virtually 
unchanged, while it substantially improves the performance of ID3. Indeed, it eliminates 
a substantial part of the difference between ID3 and BPCV---the two methods are now 
statistically indistinguishable at the word and phoneme levels. Mooney et al. (1989), in 
their comparative study of ID3 and BPCV on this same task, employed a version of this 
decoding technique (with random tie-breaking), and obtained very similar results when 
training on a set of  the 808 words in the dictionary that occur most frequently in English 
text. 

An examination of the correlation coefficients shows that "observed" decoding increases 
slightly the similarity between ID3 and BPCV. The correlation between XID3observed 
and XBpobseT~ea is .5865 (as compared with .5648 for "legal" decoding). Furthermore, 
"observed" decoding is almost always monotonically better (i.e., windows incorrectly 
classified by "legal" decoding become correctly classified by "observed" decoding, but 
not vice versa). Table 13 shows these results and four replications. A paired-differences 
t-test concludes that the correlation coefficient increases with observed decoding (with 
significance level better than .0001). 
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Table 13. Correlation between 
ID3 and BPCV with observed 
decoding. 

Data Set Legal  Observed 

a .5648 .5865 
b .5844 .5945 
c .5593 .5796 
d .5722 .5706 
e .5563 .5738 

Average Increase .0136 

From these results, we can conclude that BPCV was already capturing most of the 
information about the frequency of occurrence of phoneme/stress pairs, but that ID3 was 
not capturing nearly as much. Hence, this experiment strongly supports Hypothesis 3. 

A drawback of  the "observed" strategy is that it will never decode a window to a 
phoneme/stress pair that it has not seen before. Hence, it will certainly make some 
mistakes on the test set. However, phoneme/stress pairs that have not been observed 
in the training set make up a very small fraction of the windows in the test set. For 
example, only 7 of the phoneme/stress pairs that appear in our 1000-word test set do 
not appear in the 1000-word training set. In the test set, they only account for 11 of  the 
7,242 windows (0.15%). If  we were to train on all 19,003 words from the dictionary 
that do not appear in our 1000-word test set, there would be only one phoneme/stress 
pair present in the test set that would not appear in the training set, and it would appear 
in only one window. 

5.3.3. Experiment 3." Block Decoding 

The final experiment concerning Hypothesis 3 focused on extracting additional statisti- 
cal information from the training set. We were motivated by Klatt's (1987) view that 
ultimately letter-to-phoneme rules will need to identify and exploit morphemes (i.e., 
commonly-occurring letter sequences appearing within words). Therefore, we analyzed 
the training data to find all letter sequences of  length 1, 2, 3 . . . . .  k, and retained the 
/3 most-frequently-occurring sequences of each length. The parameters k and B are de- 
termined by cross-validation, as described below. For each retained letter sequence, we 
formed a list of  all phoneme/stress strings to which that sequence is mapped in the train- 
ing set (and their frequencies). For example, here are the five pronunciations of  the letter 
sequence "ATION" in the training set (Format is ((phoneme string) (stress string) 
(frequency))). 

(("eS-xn .... i>0<<" 22) 

("OS-xn .... i<0<<" i) 

("eS-xn .... 2>0<<" i) 
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Table 14. Effect of "block" decoding on learning performance. 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1 
(b) BPCV (legal) TEST: 13.6"* 70.6*** 80.8*** 81.3"** 96.7* 
(c) ID3 (block) TEST: 17.2 73.3 83.9 80.4 96.7 
(d) BPCV (block) TEST: 18.5 73.7 83.8 81.3 96.7 

ID3 Improvement: (c)-(a) TEST: 7.6*** 7.7*** 5.2*** 3.2*** 0.6 
BPCV Improvement: (d)-(b) TEST: 4.9** 3.1"** 3.0*** 0.0 0.0 

Difference in the cell significant at p < .05", .005**, .001"** 

( "@S-xn .... 2<0>>" I) 

("@S-xn .... i<0>>" I) ) 

During decoding, each word is scanned (from left to right) to see if it contains one 
of  the "top B "  letter sequences of length l (varying 1 from k down to 1). If  a word 
contains such a sequence, the letters corresponding to the sequence are processed as 
follows. First, each of  the I windows centered on letters in the sequence is evaluated 
(i.e., by the 26 decision trees or by the feed-forward network) to obtain a 26-bit string, 
and these strings are concatenated to produce a bit string of length 1 • 26. Then, each 
of  the observed pronunciations for the sequence is converted into an l - 26-bit string 
according to the code given in Appendix A. 1. Finally, the "unknown" string is mapped 
to the nearest of  these observed bit strings. 

After decoding a block, control skips to the end of  the matched I-letter sequence and 
resumes scanning for another "top B"  letter sequence of length I. After this scan is 
complete, the parts of  the word that have not yet been matched are re-scanned to look 
for blocks of length 1 - 1. Every letter in the word is eventually processed, because 
every individual letter is a block of  length 1. We call this technique "block" decoding. 

We employed cross-validation to determine the maximum block length (k) and the 
number of  blocks (B) to store by evaluating different values while training on 800 
words and testing on the 200-word cross-validation testing set. We tried values of  1, 
2, 3, 4, 5, and 6 for k and values of  100, 200, 300, and 400 for B. For ID3, peak 
performance was attained with k = 2 and B = 100. For BPCV, peak performance was 
attained with k = 2 and B = 200. In both cases, performance was much more sensitive 
to k than to B.  

Table 14 shows the performance results on the 1000-word test set. Block decoding 
significantly improves both ID3 and BPCV, but again, ID3 is improved much more 
(especially below the word level). Indeed, the two methods cannot be distinguished 
statistically at any level of  aggregation. Furthermore, the correlation coefficient between 
XID3blocl ¢ and XBPblock is .6122, which is a substantial increase compared to .5648 for 
legal decoding. Hence, block decoding also makes the performance of  ID3 and BPCV 
much more similar. Table 15 shows how the 7,242 seven-letter windows of  the test set 
are handled by ID3 and BPCV. 
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ID3 

Correct 

Incorrect 

Backpropagation 

Correct Incorrect 

4773 

(65.9%) 

562 

(7.8%) 

533 

(7.4%) 

1374 

(19.0%) 

Disagree: 1095 (15.1%) 

Agree: 6147 (84.9%) 

Table 15. Classification of test set windows by ID3 and BPCV with "block" decoding. 

Table 16. Correlation be- 
tween ID3 and BPCV with 
block decoding. 

Data Set Legal Block 

a .5648 .6122 
b .5844 .6177 
c .5593 .6138 
d .5722 .5832 
e .5563 .6028 

Average Increase .0385 

Table 16 shows these correlation coefficients, along with four replications. A paired- 
differences t-test concludes that the correlation coefficient increases with block decoding 
(with significance level better than .0001). 

Note that any method that supplies additional information to both ID3 and BPCV could 
be expected to improve the correlation between the algorithms somewhat. Furthermore, 
any source of new information would probably benefit the poorer performing algorithm 
(ID3) more than the better performing algorithm. Nonetheless, the fact that block decod- 
ing eliminates all differences between ID3 and BPCV provides strong evidence that we 
have identified an important cause of the difference between the two methods and that 
Hypothesis 3 is correct. The experiment also suggests that the block decoding technique 
is a useful adjunct to any learning algorithm applied in this domain. 



ID3 AND BACKPROPAGATION 71 

6. Discussion 

6.1. Improving these algorithms 

There are many directions that can be explored for improving these algorithms. We have 
pursued several of these directions in order to develop a high-performance text-to-speech 
system. Our efforts are reported in detail elsewhere (Bakiri, 1991). 

One approach is to design better output codes for phoneme/stress pairs. Our experi- 
ments have shown that BCH error correcting codes provide better output codes than the 
output code used in this paper. Randomly-generated bit-strings produce similar perfor- 
mance improvements (see Dietterich & Bakiri, 1991). 

Another approach is to widen the seven-letter window and introduce context. Lucassen 
and Mercer (1984) employ a 9-letter window. They also include as inputs the phonemes 
and stresses of the four letters to the left of the letter at the center of the window. 
These phonemes and stresses can be obtained, during execution, from the letters that 
have already been pronounced during the scan from left-to-right. Our experiments (with 
a 15-letter window) indicate that this produces substantial performance gains as well. 
However, we find that it works better if the word is scanned from right-to-left instead. 

A third technique for improving performance is to supply additional input features to 
the program. One feature of letters that helps is a bit indicating whether the letter is a 
vowel or a consonant. A feature of phonemes that helps is whether the phoneme is tense 
or lax. 

A fourth technique to be pursued is to refine the block decoding method. Blocks should 
be chosen more carefully with some consideration of statistical confidence. Decoding 
should consider overlapping blocks. 

A fifth direction that we have pursued is to implement Buntine's (1990) method for 
obtaining class probability estimates from decision trees. His algorithm produces fairly 
accurate probability estimates at the leaves of each decision tree. We then use these 
estimates to map to the nearest phoneme/stress pair. We were curious to know whether 
thisapproach would capture the same statistical information provided by observed and 
block decoding. Our experiments showed, however, that observed and block decoding 
are superior to simply using legal decoding (or even observed decoding) with class 
probability trees. 

By combining the error-correcting output codes with a wider window, a right-to-left 
scan to include phoneme and stress context, and domain-specific features, we have ob- 
tained excellent performance with our 1000-word training and test sets. Table 17 shows 
our best-performing configuration when trained on 1000 words and when trained on 
19,003 words. Details of this configuration are described in Bakiri (1991). We have 
been unable to test a similar configuration with BPCV becm~se of the huge computa- 
tional resources that would be required. 

Bakiri (1991) describes a study in which human judges compared the output of this 
system to the output of the DECtalk (Klatt, 1987) letter-to-sound rule base. The results 
show that this system (and two other machine learning approaches) significantly out- 
perform DECtalk. 
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Table 17. Best configuration: ID3, 15-letter window, 127-bit error correcting 
code, seven-letter phoneme and stress context, domain-specific input features, 
observed decoding, simplified stresses. 

Level of Aggregation (% correct) 
Training set Word Letter Phoneme Stress Bit (mean) 

1,000 words 40.6 84.1 87.0 91.4 92.1 
19,003 words 64.8 91.4 93.7 95.1 95.7 

6.2. Applying ID3 to aid BPCV 

An interesting observation from this and other studies is that the performance of ID3 and 
BPCV is highly correlated. This suggests a methodology for using ID3 to aid BPCV 
even in domains where BPCV out-performs ID3. In many real-world applications of 
inductive learning, substantial "vocabulary engineering" is required in order to obtain 
high performance. This vocabulary engineering process typically involves the iterative 
selection and testing of promising features. To test the features, it is necessary to train 
a BPCV network using them--which is very time-consuming. Because the performance 
ID3 is correlated with BPCV, it can be used instead to test feature sets. Once a good set 
of features is identified, a BPCV network can then be trained. 

To examine this idea in more detail, consider Table 18. This shows the performance 
of ID3 and BPCV on each of the 26 individual bits (i.e., without decoding them at 
all). (Each algorithm was trained on the 1000-word training set and tested on the 1000- 
word test set. A 160-hidden unit network was employed with BPCV.) The correlation 
coefficient is .9817, which is significant well below the .001 level. Hence, we  conclude 
that the generalization performance of ID3 is a very good predictor of the generalization 
performance of BPCV. 

7. Conclusions 

The relative performance of ID3 and Backpropagation on the text-to-speech task depends 
on the decoding technique employed to convert the 26 bits of the Sejnowski/Rosenberg 
code into phoneme/stress pairs. Decoding to the nearest legal phoneme/stress pair (the 
most obvious approach) reveals a substantial difference in the performance of the two 
algorithms. 

Experiments investigated three hypotheses concerning the cause of this performance 
difference. 

The first hypothesis--that ID3 was overfitting the training data--was shown to be in- 
correct. Three techniques that avoid overfitting were applied, and none of them improved 
ID3's performance. 

The second hypothesis--that the ability of backpropagation to share hidden units was 
a factor--was shown to be only partially correct. Sharing of hidden units does improve 
the classification performance of backpropagation and--perhaps more importantly--the 
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Table 18. Performance, complexity, and dif- 
ficulty of learning. 1000-word training set, 
1000-word test set. 

ID3 BP 
bit windows (%) windows (%) 

1 6984 96.4 6964 96.2 
2 6779 93.6 6767 93.4 
3 7104 98.1 7110 98.2 
4 6936 95.8 6908 95.4 
5 6584 90.9 6627 91.5 
6 7065 97.6 7057 97.4 
7 7207 99.5 7191 99.3 
8 7213 99.6 7205 99.5 
9 7206 99.5 7203 99.5 

10 7237 99.9 7236 99.9 
11 7240 100.0 7238 99.9 
12 7202 99.4 7167 99.0 
13 6810 94.0 6845 94.5 
14 7148 98.7 7120 98.3 
15 6944 95.9 6922 95.6 
16 6903 95.3 6974 96.3 
!7 6629 91.5 6623 91.5 
18 6863 94.8 6987 96.5 
19 7242 100.0 7242 100.0 
20 7242 100.0 7242 100.0 
21 6863 94.8 6987 96.5 
22 6658 91.9 6738 93.0 
23 6682 92.3 6811 94.0 
24 6542 90.3 6578 90.8 
25 6729 92.9 6781 93.6 
26 7242 i00.0 7242 100.0 
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convergence of the gradient descent search. However, an analysis of the kinds of errors 
made by ID3 and backpropagation (with or without shared hidden units) demonstrated 
that these were different kinds of errors. Hence, eliminating shared hidden units does 
not produce an algorithm that behaves like ID3. This suggests that the development of 
a "shared ID3" algorithm that could learn multiple concepts simultaneously is unlikely 
to produce performance similar to BPCV. 

The third hypothesis--that backpropagation was capturing statistical information by 
some mechanism (perhaps the continuous output activations)--was demonstrated to be 
the primary difference between ID3 and BPCV. By adding the "observed" decoding 
technique to both algorithms, the level of performance of the two algorithms in classify- 
ing test cases becomes statistically indistinguishable (at the word and phoneme levels). 
By adding the "block" decoding technique, all differences between the algorithms are 
statistically insignificant. 

Given that with block decoding the two algorithms perform equivalently, and given that 
BPCV is much more awkward to apply and time-consuming to train, these results suggest 
that in tasks similar to the text-to-speech task, ID3 with block decoding is clearly the 
algorithm of choice. For other applications of BPCV, ID3 can play an extremely valuable 
role in exploratory studies to determine good sets of features and predict the difficulty 
of learning tasks. 

This paper has also introduced a new method of experimental analysis that computes 
error correlations to measure the effect of algorithm modifications. We have shown that 
this method can be applied to discover the ways in which algorithms are related. Broader 
application of this methodology should improve our understanding of the assumptions 
and biases underlying many inductive learning algorithms. 
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Appendix 

A.1. The 26-bit Code for phoneme/stress pairs 

Tables A.2, A.4, and A.5 show the distributed code developed by Sejnowski and Rosen- 
berg for representing representing the phonemes and stresses. The examples were sup- 
plied with their database. 
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Table A.2. 26-bit Distributed Code 

Phoneme Code 

Phoneme Codeword Examples 

/a/ 000010000000100100000 
/b/ 000100000001010000000 
/c/ 000001000000000010000 
/d/ i00000000001010000000 
/e/ 010000000000100010000 
/f/ 000100010000000000000 
/q/ 000001000001010000000 
/h/ 001000001000000000000 
/i/ 000100000000101000000 
/k/ 000001000001000000000 
/i/ 010000000100010000000 
/m/ 000100000010010000000 
/n/ i00000000010010000000 
/o/ 001000000000100010000 
/p/ 000100000001000000000 
/r/ 000010000100010000000 
/s/ i00000010000000000000 
/t/ i00000000001000000000 
/u/ 001000000000101000000 
/v/ 000100010000010000000 
/w/ 000100001000010000000 
/x/ 000010000000000010000 
/y/ 000010001000010000000 
/z/ i00000010000010000000 

wAd, dOt, Odd 
Bad 
Or, cAUght 
add 
Angel, blAde, wAy 
Farm 
Gap 
Hot, WHo 
Eve, bEe 
Cab, Keep 
Lad 
Man, imp 
GNat, aNd 
Only, Own 
Pad, aPt 
Rap 
Cent, aSk 
Tab 
bOOt, OOze, yOU 
Vat 
We, liqUid 
pirate, welcome 
Yes, senior 
Zoo, goeS 
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Table A.3. 26-bit distributed code (continued) 

Phoneme Code 

Phoneme Codeword Examples 

/A/ 
/C/ 
/DI 
/E/ 
/G/ 

/I/ 
/J/ 
/K/ 
/L/ 
/m/ 

/N/ 
/0/ 
/Q/ 

/R/ 
/S/ 
/T/ 
/U/ 
/W/ 
/X/ 
/Y/ 
/Z/ 
/@/ 

/~I 
/#/ 
/*/ 
/^/ 
/+/ 
/-/ 

/_/ 
/./ 

ii0000000000100010000 
000010100000000000000 
010000010000010000000 
010100000000000010000 
000001000010010000000 
000100000000001000000 
000010100000010000000 
000011110000000000000 
I00000000100010000000 
010000000010010000000 
000010000010010000000 
i00010000000100010000 
000101100001010000000 
000001000100010000000 
000010010000000000000 
010000010000000000000 
000001000000001000000 
000011000000101010000 
ii0000100000000000000 
ii0100000000101000000 
000010010000010000000 
010000000000000100000 
010100100000000000000 
000011100000010000000 
i00100001000010100000 
i00000000000000100000 
000000000000000000000 
000000000000000001001 
000000000000000001010 
000000000000000000110 

Ice, height, EYe 
CHart, Cello 
THe, moTHer 
mAny, End, heAd 
leNGth, loNG, baNk 
glve, bUsy, captAin 
Jam, Gem 
aNXious, seXual 
eviL, abLe 
chasM 
shorteN, basiN 
OI1, bOY 
Quilt 
honeR, afteR, satyR 
oCean, wiSH 
THaw, baTH 
wOOd, cOUld, pUt 
oUT, toWel, hoUse 
miXture, anneX 
Use, fEUd, nEw 
uSual, viSion 
cAb, plAid 
naZi, piZZa 
auXiliary, eXist 
WHat 
Up, sOn, blOOd 
abattOir, mademOiselle 
silence 
word-boundary 
period 
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Table A.4. Meanings of each bit po- 
sition 

Bit Position Meaning 

1 Alveolar  = Central l  
2 Dental = Front2 
3 Glottal = Back2 
4 Labial  = Frontl  
5 Palatal = Central2 
6 Velar = Back l  
7 Affricative 
8 Fricative 
9 Glide 
10 Liquid 
11 Nasal 
12 Stop 
13 Tensed 
14 Voiced 
15 High 
16 Low 
17 Medium 
18 Elide 
19 FullStop 
20 Pause 
21 Silent 

Table A.5. Stress code 

Stress  Code  

Stress Codeword Meaning 

< 10000 a consonant or vowel following the first 
vowel of the syllable nucleus. 

> 01000 a consonant prior to a syllable nucleus. 

0 00010 the first vowel in the nucleus of 
an unstressed syllable. 

2 00100 the first vowel in the nucleus of a 
syllable receiving secondary stress. 

1 00110 the first vowel  in the nucleus of a 
syllable receiving primary stress. 

- 11001 silence 
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A.2. Replication of results on four additional data sets 

To simplify the presentation in the body of the paper, we presented data only for one 

choice of training and test sets. This appendix provides that same data on all five training 
and testing sets to demonstrate that the results hold in general. 

A.2.1. Performance of ID3 and BP under legal decoding 

Table A.6 shows the performance, under legal decoding, of ID3 and BP when trained on 

each of the 5 training sets and tested on the corresponding test sets. 

Table A.6. Percent correct over 1000-word test set 

Level of Aggregation (% correct) 
Data Set Method Word Letter Phoneme Stress Bit (mean) 

a ID3 9.6 65.6 78.7 77.2 96.1 
BPCV 13.6"* 70.6*** 80.8*** 81.3*** 96.7* 

b ID3 10.4 65.6 79.6 76.4 96.1 
BPCV 15.7"** 71.5"** 81.7"** 81.4"** 96.7* 

c ID3 10.5 64.4 78.9 75.7 96.0 
BPCV 15.2"** 71.4"** 81.4"** 81.7"** 96.7* 

d ID3 10.9 65.8 80.0 76.2 96.2 
BPCV 16.3"** 71.3"** 81.4" 81.6"** 96.7* 

e ID3 9.5 64.7 78.2 77.1 96.0 
BPCV 14.5"* 71.6"** 81.3"** 82.3*** 96.7* 

Difference in the cell significant at p < .05*, .005**, .001"** 

A.2.2. Tests of the sharing hypothesis 

For replications b, c, d, and e, the training procedure for each of the 26 separate networks 
was slightly different from the procedure described for replication a. Starting with H = 1, 
a network with H hidden units was trained for 1000 epochs. If this did not attain the 

desired fit with the data, the next larger value for H was tried. If a network with 5 
hidden units failed to fit the data, the process was repeated, starting again with H = 1 
and a new randomly-initialized network. No network required more than 4 hidden units. 
Table A.7 shows the observed performance differences. The training figures show that, 
with the exception of word-level and stress-level performance, the 26 separate nets fit 
the training data slightly better than the single 120-hidden-unit network. 
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Table A.7. Performance difference (in percentage points) between a single 120-hidden 
unit network and 26 separate networks. Trained on 50 words and tested on 1000 words. 

Level of Aggregation (% point differences) 
Replication Data set Word Letter Phoneme Stress Bit (mean) 

a TRAIN: 0.0 --0.2 - 0 . 2  0.0 0.0 
TEST: 0.2 3.4 2.8 1 ~8 0.6 

b TRAIN: 4.0 0.1 - 0 . 2  - 0 . 5  - 0 . 1  
TEST: 0.6 3.4 2.9 0.8 - 0 . 2  

c TRAIN: 4.0 0.0 0.0 0.0 - 0 . 1  
TEST: 1.1 3.0 2.2 2.9 0.0 

d TRAIN: 0.0 - 0 . 6  - 0 . 5  0.0 - 0 . 1  
TEST: 0.3 3.7 2.8 2.1 0.0 

e TRAIN: 4.0 - 0 . 5  - 0 . 6  0.0 - 0 . 1  
TEST: 0.7 2.7 2.1 1.6 - 0 . 1  

Averages TRAIN: 2.4 - 0 . 2  - 0 . 2  0.1 - 0 . 1  
TEST: 0.6 3.2 2.6 1.8 0.1 

Notes 

1. A target threshold is an output activation value that is considered to be correct even though the output 
activation does not equal the desired activation. For example, if the target thresholds are .1 and .9, then an 
output activation of .1 or below is considered correct (if the desired output is 0.0) and an activation of .9 
or above is considered correct (if the desired output is 1.0). 

2. It would have been better if we had stored a snapshot of the random starting network before beginning 
training, but we failed to do this. Nevertheless, the procedure we followed is still safe, because it obeys 
the rule that no information from the test set should be used during training. 
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