
Machine Learning, 18, 51-80 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Comparison of
ID3 and Backpropagation
for English Text-to-Speech Mapping

THOMAS G. DIETTERICH tgd@cs.orst.edu
Department of Computer Science, 303 Dearborn Hall, Oregon State University, Corvallis, OR 97331-3202

HERMANN HILD hhild @il 3d 1 .ira.uka.de
Universifht Karlsruhe, Institut fitr Logik, Komplexifht, und Deduktionssysteme, Am Fasanengarten 5, 76131
Karlsruhe, Germany

GHULUM BAKIRI
Department of Computer Science, University of Bahrain, lsa Town, Bahrain

Editor: Dennis Kibler

Abstract. The performance of the error backpropagation (BP) and ID3 learning algorithms was compared on
the task of mapping English text to phonemes and stresses. Under the distributed output code developed by
Sejnowski and Rosenberg, it is shown that BP consistently out-performs ID3 on this task by several percentage
points. Three hypotheses explaining this difference were explored: (a) ID3 is overfitting the training data, (b)
BP is able to share hidden units across several output units and hence can learn the output units better, and
(c) BP captures statistical information that ID3 does not. We conclude that only hypothesis (c) is correct. By
augmenting ID3 with a simple statistical learning procedure, the performance of BP can be closely matched.
More complex statistical procedures can improve the performance of both BP and ID3 substantially in this
domain.

Keywords: ID3, backpropagation, experimental comparisons, text-to-speech

1. Introduct ion

There is no universal learning algorithm that can take a sample 5' = {(xi , f (x i)) } of
training examples for an arbitrary unknown function f and produce a good approximation
to f (see Dietterich, 1989). Instead, every learning algorithm embodies some assumptions
(or "bias") about the nature of the learning problems to which it will be applied. Some
algorithms, for example, assume that only a small number of the features describing
the data are relevant. Other algorithms assume that every feature makes a small, but
independent, contribution to determining the classification. Many algorithms order the
hypotheses according to syntactic simplicity in some representation and attempt to find
the simplest hypothesis consistent with the training examples.

Unfortunately, for many popular learning algorithms, the assumptions they embody are
not entirely known- -o r , if they are known, they are stated in terms that are difficult to
check in any given application domain. For example, Quinlan's (1986) decision-tree al-
gorithm ID3 assumes that the unknown function f can be represented as a small decision

52 T. DIETTERICH, H. HILD AND G. BAKIRI

tree. However, given a new learning problem, it is difficult to know whether this as-
sumption holds without first running the ID3 algorithm. The result is that we do not have
a good understanding of the range of problems for which ID3 is appropriate. Similarly,
the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986) assumes, at a
minimum, that the unknown function f can be represented as a multilayer feed-forward
network of sigmoid units. Although there have been many successful applications of
backpropagation (Touretzky, 1989, 1990), we still lack an understanding of the situations
for which it is appropriate.

Furthermore, because clear statements of the assumptions made by ID3 and back-
propagation are unavailable, we do not understand the relationship between these two
algorithms. Some investigators have even suggested that these algorithms are making
very similar assumptions (Lorien Pratt, personal communication).

Hence, we confront two related questions. First, what are the assumptions embodied
in ID3 and backpropagation (or equivalently, in what situations should these algorithms
be applied)? Second, how are ID3 and backpropagation related?

One can conceive of two different approaches to answering these questions. A theo-
retical approach could analyze each of these algorithms in an attempt to articulate their
assumptions. An experimental approach could test these two algorithms on nontrivial
problems and compare their behavior.

In this paper, we take the experimental approach. We apply ID3 and backpropagation
to the task of mapping English words into their pronunciations. This task was pioneered
by Sejnowski and Rosenberg (1987) in their famous NETtalk system, which employed
backpropagation. Rosenberg's doctoral dissertation (1988) included further analysis and
experiments in this domain. In our replication of their work, we discover that backprop-
agation outperforms ID3 on this task. This demonstrates that ID3 and backpropagation
do not make identical assumptions.

We then go on to investigate the difference between ID3 and backpropagation. We
formulate three hypotheses to explain the difference and conduct experiments to test
these hypotheses. These experiments show that ID3, when combined with some simple
statistical learning procedures, can nearly match the performance of BR We also present
data showing that the performance of ID3 and backpropagation is very highly correlated
over a collection of binary concept learning problems. These data also show that ID3
and BP tend to agree on which of these concepts are easy and which are difficult.

Given that BP is substantially more awkward and time-consuming to apply, these results
suggest the following methodology for applying these algorithms to problems similar to
the NETtalk task. First, ID3, combined with our statistical learning procedures, should
be applied. If its performance is adequate, then there is no need to apply backpropa-
gation. However, if ID3's performance is inadequate, it can still be used to estimate
the performance of backpropagation. Then the much more expensive backpropagation
procedure can be employed to see if it yields a better classifier.

ID3 AND BACKPROPAGATION 53

2. The task

To conduct our comparisons of ID3 and backpropagation, we have chosen the task of
mapping English text into speech. A complete text-to-speech system involves many
stages of processing. Ideally, sentences are parsed to identify word senses and parts of
speech. Individual words (and their senses) are then mapped into strings of phonemes
and stresses. Finally, the phonemes and stresses can be combined by various techniques
to generate sound waves. For an excellent review, see Klatt (1987).

A phoneme is an equivalence class of basic sounds. An example is the phoneme
/p/. Individual occurrences of a / p / a r e slightly different, but they are all considered
/p/sounds. For example, the two p's in "lollypop" are pronounced differently, but they
are both members of the equivalence class of phoneme/p/. We use 54 phonemes (see
Appendix A. 1).

Stress is the perceived weight given to a syllable in a word. For example, the first
syllable of "lollypop" receives the primary stress, the third syllable receives secondary
stress, and the middle syllable is unstressed. Stress information is coded by assigning
one of six possible stress symbols to each letter. Consonants generally receive one of
the symbols "<" or ">", which indicate that the principal vowel in this syllable is to
the left or the right (respectively) of the consonant. Vowels are generally marked with a
code of 0 (none), 1 (primary), or 2 (secondary) to indicate the degree of stress. Lastly,
silent stress ("-") is assigned to blanks.

Let L be the set of 29 symbols comprising the letters a - z , and the comma, space,
and period (in our data sets, comma and period do not appear). Let P be the set of 54
English phonemes and S be the set of 6 stresses employed by Sejnowki and Rosenberg.
The task is to learn the mapping f:

f : L * ~P* x S * .

Specifically, f maps from a word of length k to a string of phonemes of length k and a
string of stresses of length/c. For example,

f("lollypop") = ("lal-ipap", ">1<>0>2<").

Notice that letters, phonemes, and stresses have all been aligned so that silent letters are
mapped to the silent phoneme/-/ .

As defined, f is a very complex discrete mapping with a very large range. If we assume
no word contains more than 28 letters (the length of "antidisestablishmentarianism'), this
range would contain more than 107° elements. Many existing learning algorithms focus
primarily on learning Boolean concepts--that is, functions whose range is the set {0, 1}.
Such algorithms cannot be applied directly to learn f .

Fortunately, Sejnowski and Rosenberg (1987) developed a technique for converting
this complex learning problem into the task of learning a collection of Boolean concepts.
They begin by reformulating f to be a mapping 9 from a seven-letter window to a single
phoneme and a single stress. For example, the word "lollypop" would be converted into
8 separate seven-letter windows:

54 T. D I E T T E R I C H , H. H I L D A N D G. B A K I R I

g (" i011 "

g (" lolly"

g ("_lollyp"

g (" lollypo"

g ("01 lypop"

g (" 1 lypop_"

g (" lypop__"

g ("ypop "

= (" i "
: (" a "

= (" 1 "
(,i - - II

= (, , ± ,
= (,,p,,
: (" a "

= (,,p,,

. > i ,

, i .< i ,

" > "

"0"
" > "

lg 2 H

" < "

The function 9 is applied to each of these 8 windows, and then the results are con-
catenated to obtain the phoneme and stress strings. This mapping function 9 now has a
range of 324 possible phoneme/stress pairs, which is a substantial simplification.

Finally, Sejnowski and Rosenberg code each possible phoneme/stress pair as a 26-bit
string, 21 bits for the phoneme and 5 bits for the stress. Each bit in the code corresponds
to some property of the phoneme or stress. This converts 9 into 26 separate Boolean
functions, h i , . . . , h26. Each function hi maps from a seven-letter window to the set
{0, 1}. To assign a phoneme and stress to a window, all 26 functions are evaluated
to produce a 26-bit string. This string is then mapped to the nearest of the 324 bit
strings representing legal phoneme/stress pairs. We used the Hamming distance between
two strings to measure distance. (Sejnowski and Rosenberg used the angle between
two strings to measure distance, but they report that the Euclidean distance metric gave
similar results. In tests with the Euclidean metric, we have obtained results identical to
those reported in this paper.)

With this reformulation, it is now possible to apply Boolean concept learning methods
to learn the hi. However, the individual hi must be learned extremely well in order to
obtain good performance at the level of entire words. This is because errors aggregate.
For example, if each hi is learned so well that it is 99% correct and if the errors among
the hi are independent, then the 26-bit string will be correct only 77% of the time.
Because the average word has about 7 letters, whole words will be correct only 16% of
the time.

So far, we have only discussed the representation of the outputs of the mapping to
be learned. The inputs are represented in a straightforward fashion, using the approach
recommended by Sejnowski and Rosenberg (1987). Each seven-letter window is repre-
sented as the concatenation of seven 29-bit strings. Each 29-bit string represents a letter
(one bit for each letter, period, comma, and blank), and hence, only one bit is set to 1 in
each 29-bit string. This produces a string of 203 bits for each window. These 203 bits
provide the input features for the learning algorithms.

3. T h e a lgor i thms

3.1. ID3

ID3 is a simple decision-tree learning algorithm developed by Ross Quinlan (1983,
1986b). It constructs a decision tree recursively, starting at the root. At each node, it

IDa AND BACKPROPAGATION 55

selects, as the feature to be tested at that node, the feature ai whose mutual information
with the output classification is greatest (this is sometimes called the information gain
criterion). The training examples are then partitioned into those examples where ai = 0
and those where ai = 1. The algorithm is then invoked recursively on these two subsets
of training examples. The algorithm halts when all examples at a node fall in the same
class. At this point, a leaf node is created and labeled with the class in question. The basic
operation of ID3 is quite similar to the CART algorithm developed by Breiman, Friedman,
Olshen, and Stone (1984) and to the tree-growing method developed by Lucassen and
Mercer (1984). The algorithm has been extended to handle features with more than two
values and features with continuous values as well.

In our implementation of ID3, we did not employ windowing (Quinlan, 1983), CHI-
square forward pruning (Quinlan, 1986a), or any kind of reverse pruning (Quinlan, 1987).
We did apply one simple kind of forward pruning to handle inconsistencies in the training
data: If all remaining features have zero information gain, then growth of the tree was
terminated in a leaf and the class having more training examples was chosen as the label
for that leaf (in case of a tie, the leaf is assigned to class 0).

To apply ID3 to this task, the algorithm must be executed 26 t imes--once for each
mapping hi. Each of these executions produces a separate decision tree.

3.2. Backpropagation

The error backpropagation method (Rumelhart, Hinton, & Williams, 1986) is widely
applied to train artificial neural networks. However, in its standard form, the algorithm
requires substantial assistance from the user. Specifically, the user must specify the trans-
fer function of each artificial neuron (unit), the network architecture (number of layers
and their interconnections), the number of hidden units in each layer, the learning rate,
the momentum term, the initial weight values, and the target thresholds. 1 Furthermore,
the user must decide when to terminate training. To make the comparison between ID3
and backpropagation fair, it is necessarily to transform BP from a user-assisted method
into an algorithm that involves no user assistance.

We have developed such a transformation. We call the resulting algorithm BPCV
(BackPropagation with Cross-Validation). To define BPCV, we fix some of the user-
specified properties and set the remaining parameters via cross-validation using the meth-
ods introduced by Lang, Waibel, and Hinton (1990) as explained below.

In BPCV, there is only one hidden layer, and it is fully connected to the input layer
and to the output layer. Every unit in the hidden and output layers is implemented by
taking the dot product of a vector of weights w with a vector of incoming activations x,
adding a bias 0, and applying the logistic function

1 y -
1 + e-(w'x+°) '

which is a continuous, differentiable approximation to the linear threshold function used
in perceptrons. Several parameters are given fixed values: the learning rate is always
0.25, the momentum term is 0.9, and target thresholds are not used. The criterion to

56 T. DIETTERICH, H. HILD AND G. BAKIRI

be minimized is the sum squared error (SSE). These are basically the same parameters
(except for the target thresholds) that were used by Sejnowski and Rosenberg. We have
conducted some cross-validation and found that performance was insensitive to these
parameter choices.

The remaining parameters--number of hidden units, random starting weights, and
stopping total sum squared error (TSSE)--are set by the following cross-validation pro-
cedure. Given a set of examples S, we subdivide S into three sets: a training set (StT),
a cross-validation set (Sc~), and a test set (Stcst). Then we execute backpropagation
several times on the training set StT while varying the number of hidden units and the
random starting weights. After each pass through the training data, we test the perfor-
mance of the network on S~v. The goal of this search of parameter space is to find those
parameters that give peak performance on the cross-validation set. These parameters can
then be used to train backpropagation on the union St~ U Scv, and a good estimate of
generalization performance can be obtained by testing with Stcst.

The advantage of cross-validation training is that no information from the test set is
employed during training, and hence, the observed error rate on the test set is a fair
estimate of the true error rate of the learned network. This contrasts with the common,
but unsound practice of adjusting parameters to optimize performance on the test set.

One advantage of BPCV on the NETtalk task is that, unlike ID3, it is only necessary
to apply BPCV once, because all 26 output bits can be learned simultaneously. Indeed,
the 26 outputs all share the same set of hidden units, which may allow the outputs to
be learned more accurately. However, while ID3 is a batch algorithm that processes the
entire training set at once, BP is an incremental algorithm that makes repeated passes
over the data. Each complete pass is called an "epoch." During an epoch, the training
examples are inspected one-at-a-time, and the weights of the network are adjusted to
reduce the squared error of the outputs. We used the implementation provided with
McClelland and Rumelhart (1988).

Because the outputs from BP are floating point numbers between 0 and 1, we had to
adapt the Hamming distance measure when mapping to the nearest legal phoneme/stress
pair. We used the following distance measure: d(x, y) = y ~ Ix~ - Yil. This reduces to
the Hamming distance when x and y are Boolean vectors.

3.3. The data set

Sejnowski and Rosenberg provided us with a dictionary of 20,003 words and their cor-
responding phoneme and stress strings. From this dictionary we drew at random (and
without replacement) a training set of 800 words, a cross-validation set of 200 words,
and a test set of 1000 words.

ID3 AND BACKPROPAGATION 57

Table 1. Optimal network size via cross-validation

Number of Letters Number of
Hidden Units (% Correct) TSSE Epochs

40 67.0 2289 28
60 67.7 939 46
80 68.3 1062 25

100 69.3 104t 19
120 68.7 1480 12
140 70.0 541 27
160 70.7 445 37
180 69.3 477 28

4. Results

4.1. Cross-validation training

Before presenting the results of our study, we first discuss the results of the cross-
validation procedure for BPCV. We performed a series of runs that systematically varied
the number of hidden units (40, 60, 80, 100, 120, 140, 160, and 180) and the random
starting weights (four sets of random weights were generated for each network). Per-
formance on the cross-validation set was evaluated after each complete pass through
the training data (epoch). The networks were trained for 30 epochs (except for a few
cases, where training was continued to 60 epochs to ensure that the peak performance
had been found). Table 1 shows the peak performance (percent of letters correctly pro-
nounced) for each network size and the total sum squared error (on Str) that gave the
peak performance. These TSSE numbers (appropriately adjusted for the number of train-
ing examples) can then be used to decide when to terminate training on the entire training
set (Sir U S~) . Based on these runs, the best network size is 160 hidden units.

Having completed cross-validation training, we then proceeded to merge the training
set and cross-validation set to form a 1000-word training set. During cross-validation
training, we stored a snapshot of the weight values after the first complete epoch for each
random network that was generated. Hence, to perform training on the entire training
set, we used the best stored 160-hidden unit snapshot as a starting point. 2 The original
training set St~ contained 5,807 seven-letter windows, while the full training set St~ U S ~
contains 7,229 seven-letter windows. Hence, the target TSSE for the full training set
was 554.

We were surprised by the figures shown in Table 1, since we expected that a reasonably
small network (e.g., 80 hidden units) would give a good fit to the data. However, the
table clearly shows that generalization generally improves as the quality of the fit to
the training data improves. Furthermore, Figure 1 shows that as training of a network
continues past the point of peak performance, performance does not decline appreciably.

Previous work by Sejnowski and Rosenberg (1986) and Rosenberg (1988) has used
networks with 40, 80, and 120 hidden units. However, to our knowledge, no one has
previously conducted a systematic study of the relationship between network size and

5 8 T. DIETTERICH, H. HILD AND G. BAKIRI

P e r c e n t
Le t t e r s
C o r r e c t

80

7 5 m

70 -

65

60

55

I [I I I

I /
I /

I

i
I

i
!
!
I
I

I 5 0 I I I I I

0 10 2 0 3 0 4 0 5 0 60

Epochs

Figure 1. Training curve for the best 160-hidden unit network. Vertical bar indicates point of maximum
performance.

performance on the NETtalk task. Similar results showing that larger networks can give
improved performance have been published by Martin and Pittman (1990).

4.2. Per formance comparison

Table 2 shows percent correct (over the 1000-word test set) for words, letters, phonemes,
and stresses. A letter is considered correct if both the phoneme and the stress were
correctly predicted (after mapping to the nearest legal phoneme and stress). A word is
correct if all of its letters are correct. Virtually every difference in the table at the word,
letter, phoneme, and stress levels is statistically significant (using a one-tailed test for
the difference of two proportions based on the normal approximation to the binomial
distribution). Hence, we conclude that there is a substantial difference in performance
between ID3 and BPCV on this task.

It should be noted that although the test set contains 1000 disjoint words, some of
the seven-letter windows in the test set also appear in the training set. Specifically, 946
(13.1%) of the windows in the test set appear in the 1000-word training set. These
represent 578 distinct windows. Hence, the performance at the letter, phoneme, and
stress levels are all artificially high if one is concerned about the ability of the learning
methods to handle unseen cases correctly. However, if one is interested in the probability
that a letter (or phoneme, or stress) in an unseen word will be correctly classified, then
these numbers provide the right measure.

ID3 AND BACKPROPAGATION 59

Table 2. Percent correct over lO00-word test set

Level of Aggregation (% correct)
Method Word Letter Phoneme Stress Bit (mean)

ID3 9.6 65.6 78.7 77.2 96.1
BPCV 13.6"* 70.6*** 80.8*** 81.3"** 96.7*

Difference in the cell significant at p < .05", .005"*, .001"**

ID3

Correct

Incorrect

Backpropagation

Correct Incorrect

4239

(58.5%)

873

(12.1%)

512

(7.t%)

1618

(22.3%)

Disagree: 1385 (19.2%)

Agree: 5857 (80.9%)

Table 3. Classification of test set windows by ID3 and BPCV, decoding to nearest legal phoneme and stress.

To take a closer look at the performance difference, we can study exactly how each
of the 7,242 seven-letter windows in the test set are handled by each of the algorithms.
Table 3 categorizes each of these windows according to whether it was correctly classified
by both algorithms, by only one of the algorithms, or by neither one.

The table shows that the windows correctly learned by BPCV do not form a superset
of those learned by ID3. Instead, the two algorithms share 4,239 correct windows, and
then each algorithm correctly classifies several windows that the other algorithm gets
wrong. The overall result is that BPCV classifies 361 more windows correctly than does
ID3. This shows that the two algorithms, while they overlap substantially, have)earned
fairly different text-to-speech mappings.

The information in this table can be summarized as a correlation coefficient. Specif-
ically, let X~D3 (X B p c v) be a random variable that is 1 if and only if ID3 (BPCV,
respective)y) makes a correct prediction at the letter level. In this case, the correlation
between XIDa and X B p c v is .5648. If all four cells of Table 3 were equal, the cor-
relation coefficient would be zero. (For reference, independent runs of BPCV on the
same training set, but with different random starting states have a correlation coefficient
.6955.)

A weakness of Table 2 is that it shows performance values for one particular choice
of training and test sets. We have replicated this study four times (for a total of 5
independent trials). In each trial, we again randomly drew without replacement two sets
of 1000 words from the dictionary of 20,003 words. Note that this means that there is
some overlap among the five training sets (and among the five test sets). Table 4 shows

60 T. DIETTERICH, H. HILD AND G. BAKIRI

Table 4. Average percent correct (lO00-word test set) over five trials.

Level of Aggregation (% correct)
Method Word Letter Phoneme Stress Bit (mean)

ID3 10.2 65.2 79.1 76.5 96.1
BP 15.1"*** 71.3"*** 81.3"*** 81.7"*** 96.7****

Difference in the cell significant at p < .0001"***

Table 5. Percent correct over 1000-word test set.

Sample Level of Aggregation (% correct)
Size Method Word Letter Phoneme Stress Bit (mean)

50 ID3 0.8 41.5 60.5 60.1 93.1
BPCV 1.6 49.2*** 59.7 73.1"** 93.9

100 ID3 2.0 47.3 64.1 65.8 94.0
BPCV 3.7* 55.5*** 66.6** 75.4*** 94.8*

200 ID3 4.4 56.6 70.5 72.2 95.1
BPCV 7.1"* 61.1"** 72.2* 78.2*** 95.4

400 ID3 6.2 58.7 73.7 72.1 95.5
BPCV 11.3"** 66.4*** 77.0*** 79.7*** 96.0

800 ID3 9.6 63.8 77.8 75.6 96.2
BPCV 15.3"** 70.9*** 81.0"** 81.2"** 96.6

1000 ID3 9.6 65.6 78.7 77.2 96.4
BPCV 14.7"** 70.9*** 81.1"** 81.4"** 96.6

Difference in the cell significant at p < .05", .01"*, .001"**

the average performance of these 5 runs. All differences are significant below the .0001

level using a t-test for paired differences.

Another weakness of Table 2 is that it only shows performance values for a 1000-word

training set. It might be that the relative performance difference between ID3 and BPCV
might change as the size of the training set changes. Table 5 shows that this is not

the case. The rows in the table give the results of running ID3 and BPCV on several
different sizes of training sets. In each case, BPCV was trained using the cross-validation
training methodology outlined above (four runs each with networks having 5, 10, 20,

40, 80, 120, and 160 hidden units). The only difference from the methodology outlined

above is that after training on Str and determining peak generalization performance by
testing on a 200-word Scv, we did not re-train on the union Str U S~v, since this would
create training sets that were too large. Instead, we simply tested the best network on
the 1000-word St~st. We conclude that there is a consistent difference between ID3 and
BPCV and that, while the performance of both algorithms will increase with the size of

the training set, this difference will still be observed.

ID3 AND BACKPROPAGATION 61

Table 6. Results of applying three overfitting-prevention techniques.

Level of Aggregation (% correct)
Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (as above) TEST: 9.6 65.6 78.7 77.2 96.l
(b) ID3 (X 2 cutoff) TEST: 9.1 64.8 78.4 77.1 96.1
(c) ID3 (pruning) TEST: 9.3 62.4 76.9 75.1 95.8
(d) ID3 (rules) TEST: 8.2 65.1 78.5 77.2 96.1

In the remainder of this paper, we will attempt to understand the nature of the differ-
ences between BPCV and ID3. Our main approach will be to experiment with modi-
fications to the two algorithms that enhance or eliminate the differences between them.
Unless stated otherwise, all of these experiments are performed using only the 1000-word
training set and 1000-word test set from Table 2.

5. Three hypotheses

What causes the differences between ID3 and BPCV? We have three hypotheses, which
are neither mutually exclusive nor exhaustive.

Hypothesis 1: Overfitting. ID3 has overfit the training data, because it seeks complete
consistency. This causes it to make more errors on the test set.

Hypothesis 2: Sharing. The ability of BPCV to share hidden units among all of the hi
allows it to reduce the aggregation problem at the bit level and hence perform better.

Hypothesis 3: Statistics. The numerical parameters in the network allow it to capture
statistical information that is not captured by ID3.

The following three subsections present the experiments that we performed to test these
hypotheses.

5.1. Tests of Hypothesis 1 (Overfitting)

The tendency of ID3 to overfit the training data is well established in cases where the data
contain noise. Three basic strategies have been developed for addressing this problem:
(a) criteria for early termination of the tree-growing process, (b) techniques for pruning
trees to remove overfitting branches, and (c) techniques for converting the decision tree to
a collection of rules. We implemented and tested one method for each of these strategies.
Table 6 summarizes the results.

The first row repeats the basic ID3 results given above, for comparison purposes. The
second row shows the effect of applying a X 2 test (at the .90 confidence level) to decide
whether further growth of the decision tree is statistically justified (Quinlan, 1986a). As

62 r. DIETTERICH, H. HILD AND G. BAKIRI

other authors have reported (Mooney et al., 1989), this hurts performance in the NETtalk
domain. The third row shows the effect of applying Quinlan's technique of reduce-error
pruning (Quinlan, 1987). Mingers (1989) provides evidence that this is one of the best
pruning techniques. For this row, a decision tree was built using the 800-word St~ set and
then pruned using the Sc~ cross-validation set. Finally, the fourth row shows the effect of
applying a method for converting a decision tree to a collection of rules. Quinlan (1987)
describes a three-step method for converting decision trees to rules. First, each path from
the root to a leaf is converted into a conjunctive rule. Second, each rule is evaluated
to remove unnecessary conditions. Third, the rules are combined, and unnecessary rules
are eliminated. In this experiment, we performed only the first two steps, because the
third step was too expensive to execute on this rule set, which contains 6,988 rules.

None of these techniques improved the performance of ID3 on this task. This suggests
that Hypothesis 1 is incorrect: ID3 is not overfitting the data in this domain. This
makes sense, since the only source of "noise" in this domain is the limited size of the
seven-letter window and the existence of a small number of words like "read" that have
more than one correct pronunciation. Seven-letter windows are sufficient to correctly
classify 98.5% of the words in the 20,003-word dictionary. This may also explain why
we did not observe overfitting during excessive training in our cross-validation runs with
backpropagation either.

5.2. A test of Hypothesis 2 (Sharing)

The second hypothesis claims that the key to BPCV's superior performance is the fact
that all of the output units share a single set of hidden units. One obvious way to test this
sharing hypothesis would be to develop a version of ID3 that permitted sharing among
the 26 separate decision trees being learned. We could then see if this "shared-ID3"
improved performance. An alternative is to remove sharing from backpropagation, by
training 26 independent networks, each having only one output unit, to learn the 26 hi
mappings. If Hypothesis 2 is correct, then, because there is no sharing among these
separate networks, we should see a drop in performance compared to the single network
with shared hidden units. Furthermore, the decrease in performance should decrease the
differences between BPCV and ID3 as measured by the correlation between their errors.
We will call the single network, in which all hidden units are shared by the output units,
BP1; and we will call the 26 separate networks, BP26.

There is a delicate issue that arises in training BP26. Ideally, we want to train a
collection of 26 networks so that the only differences between them and BP1 result from
the lack of shared hidden units. This means that the total summed squared error (on
the training set) for BP26 should be the same as for BP1. The goal of the training
procedure is to find, among all such BP26 networks, the collection whose performance
on the cross-validation set is maximized.

Hence, we used the following procedure. First, we measured the sum of the squared
error (over the training set) of each of the 26 bits learned by BP1. Second, to train the
BP26 networks, we followed the cross-validation procedure of trying alternative random
seeds and numbers of hidden units, but this time we always terminated training when

ID3 AND BACKPROPAGATION 63

each individual network attained the squared error observed in the large network. During
cross-validation, we tried networks having 1, 2, 3, 4, 5, 10, and 20 hidden units (with four
random seeds for each network size). Finally, we selected the network whose summed
squared error was minimum on the 200-word cross-validation test set (Soy).

Surprisingly, we were unable to train successfully the separate networks to the target
error level on the 1000-word training set. We explored smaller subsets of the 1000-
word training set (800, 400, 200, 100, and 50-words) and found that training did not
succeed until the training set contained only 50 words! For the 100-word training set,
for example, the individual networks often converged to local minima (even though the
BP1 network had avoided these minima). Specifically, bits 4, 6, 13, 15, 18, 21, and 25
could not be trained to criterion, even after 2000 epochs.

For bit 18 on the 100-word training set, we conducted a detailed study in an attempt
to understand this training problem. We performed hundreds of runs while varying the
number of hidden units, the learning rate, the momentum term, and the initial random
weights in an attempt to find a configuration that could learn this single bit to the same
level as BP1. None of these runs succeeded. In each run of BP26, training converged
such that the error on all but a handful of the training examples was 0.0, and the error
on the remaining training examples was 1.0. In contrast, the errors of BP1 were not so
extreme.

Table 7 shows a collection of seven-letter windows from the test set and the squared
error on each of these windows for nine different training runs. The first training run is for
BP1 with 120 units trained for 30 epochs. The next four columns show runs of BP26 with
a 5-hidden-unit network and four different random starting seeds (these were trained with
learning rate .4, momentum .8, and initial random values in the range [-0.5,+0.5]). The
last four columns show runs of BP26 with a 10-hidden-unit network and four different
random starting seeds (these were trained with learning rate .4, momentum .7, and initial
random values in the range [-0.4,+0.4]).

This demonstrates that even if shared hidden units do not aid classification performance,
they certainly aid the learning process!

As a consequence of this training problem, we are able to report results for only the
50-word training set. Cross-validation training for BP1 (see above) determined that the
best network for this training set contained 120 hidden units trained to a sum-squared
error of 13.228. Table 8 summarizes the training process for each of the 26 output bits for
BP26. Each row gives the number of hidden units in the best BP26 network, the squared
error obtained from the BP1 network, the squared error obtained from the BP26 network,
and the number of epochs required for training BP26. Notice that each individual bit was
slightly over-trained as compared with BP1. This is because the program accumulates
the squared errors during an epoch and stops when this falls below the target error level.
Because performance improves during an epoch, the final squared error is somewhat
lower.

Table 9 shows the performance of these 26 networks on the training and test sets.
Performance on the training set is virtually identical to the 120-hidden-unit network,
which shows that our training regime was successful. Performance on the test set,

64 T. DIETTERICH, H. HILD AND G. BAKIRI

Table 7. Comparison of individual errors on Bit 18

window BP1 BP26

5 hidden units 10 hidden units
1 2 3 4 1 2 3 4

"__AUSTR"
"SOTTED_"
"BREADWI"
"BUCKSAW"
"MOIS
"CINNAMO"
"FIGURAT"
"CORRUPT"
"_LAWYER"
"MUUMUU"
"PETTIFO"
"ILTON"

0.021

1.000

?O!416

0.031
0.044
0.020
0.028
1.000

1.0 1.0

1.0
1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0

1.0
h0 h0 1.0 1.0
1.0 1.0 h0

1.0
h0

1.0 1.0 1.0 1.0
1.0 1.0
h0

1.0 1.0 1.0
1.0 1.0 1.0
1.0 1.0 1.0
1.0 1.0 1.0 1.0

1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

Values not shown are 0.00

Table 8. Training Statistics for 26 Independent Networks.

Bit Number of Squared error Squared error Number of
hidden units in BP1 network in BP26 network epochs

1 2 0.8179 0.678 62
2 3 0.1362 0.126 56
3 20 0.0594 0.044 46
4 3 0.1047 0.094 64
5 3 1.0514 1.049 119
6 20 0.0447 0.037 21
7 10 0.0746 0.061 23
8 1 0.0365 0.035 41
9 4 1.9208 1.894 32

10 10 0.0279 0.026 20
11 1 0.0229 0.022 53
12 5 0.0374 0.035 35
13 5 1.0665 1.055 56
14 4 0.0380 0.034 21
15 5 0.0590 0.056 41
16 10 2.0629 2.023 65
17 10 4.2645 4.157 35
18 3 0.0442 0.041 56
19 20 0.0008 0.000 2
20 20 0.0009 0.000 2
21 3 0.0413 0.039 84
22 5 0.0894 0.074 61
23 2 0.0422 0.038 269
24 4 0.0648 0.057 31
25 5 1.1184 0.877 45
26 20 0.0011 0.000 2

ID3 AND BACKPROPAGATION 65

Table 9. Performance of 26 separate networks compared with a single network having 120 shared hidden
units. Trained on 50-word training set. Tested on 1000-word test set.

Level of Aggregation (% correct)
Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 TEST: 0.8 41.5 60.5 60.1 92.6

(b) BP 26 separate nets TRAIN: 92.0 99.0 99.0 100.0 99.9
TEST: 1.7 46.3 57.9 72.2 93.2

(c) BP 120 hidden units TRAIN: 92.0 98.7 99.0 99.7 99.9
TEST: 1.6 49.2 59.7 73.1 93.4

Difference (b)-(c) TRAIN: 0.0 +0.3 0.0 +0.3 0.0
TEST: +0.1 -2.9*** -1.8" -0.9* -0.2

Difference (a)-(c) TEST: -0.8 -7.7 +0.8 -13.0 -1.3

Difference significant at p < .05*, .001"**

Table 10. Error Correlations

Correlation Coefficients
Replication XID 3 and XBp1 XID3 and XBP26

a .5167 .4942
b .5005 .4899
c .5347 .5062
d .4934 .4653
e .4934 .4790

Average Decrease .0208

however, shows a loss of performance when there is no sharing of the hidden units

among the output units. Hence, it suggests that Hypothesis 2 is at least partially correct.

However, examination of the correlation between ID3 and BPCV indicates that this
is wrong. The correlation between X I D 3 and XBp1 (i.e., BP on the single network) is

.5428, whereas the correlation between XID 3 and XBP26 is .5045.

We have replicated this comparison 5 times, over 5 different training and testing sets
(using a less rigorous, but more efficient, un-cross-validated training procedure). Table 10
shows the resulting correlation coefficients. A paired differences t-test shows that the
differences in correlation coefficients are significant below the .0001 level.

Hence, the removal of shared hidden units has actually made ID3 and BP less similar,
rather than more similar as Hypothesis 2 claims. The conclusion is that sharing in

backpropagation is important to improving both its training and its performance, but it
does not explain why ID3 and BPCV are performing differently.

66 T. DIETTERICH, H. HILD AND G. BAKIRI

Table 11. Performance of backpropagation with thresholded output values. Trained on 1000-word training
set. Tested on 1000-word test set.

Level of Aggregation (% correct)
Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1

(b) BPCV (legal) TEST: 13.6 70.6 80.8 81.3 96.7
(c) BPCV (thresholded) TEST: 11.2 67.7 78.4 80.0 96.3

Difference (c)-(b) TEST: -2.4 -2.9*** -2.4*** -1.3" -0.4

Difference significant at p < .05", .001"**

5.3. Tests of Hypothesis 3: Statistics

We performed three experiments to test the third hypothesis that the continuous pa-
rameters in BPCV networks are able to capture statistical information that ID3 fails to

capture.

5.3.1. Experiment 1." Thresholding

In the first experiment, we took the outputs of the backpropagation network and thresh-
olded them (values > .5 were mapped to 1, values < .5 were mapped to 0) before
mapping to the nearest legal phoneme/stress pair. Thresholding the values can change
the distances that are measured between the outputs and the legal phoneme and stress
patterns. Table 11 presents the results for the 1000-word training set.

The results show that thresholding significantly drops the performance of backpropa-
gation. Indeed, at the phoneme level, the decrease is enough to push BPCV below ID3.
At the other levels of aggregation, BPCV still out-performs ID3. These results support
the hypothesis that the continuous outputs of the neural network aid the performance of

BPCV.

However, thresholding the outputs of BPCV does not cause it to behave substantially
more like ID3. The correlation between XID3 and XBPcVth~h is .5685 (as compared
with .5648 for XBRcv)--this is only a small increase. Close examination of the data
shows that the seven-letter windows "lost" (i.e., incorrectly classified) when BPCV is
thresholded include 120 windows correctly classified by ID3 and 112 windows incorrectly
classified by ID3. Hence, the mistakes introduced by thresholding are nearly independent

of the mistakes made by ID3.

While this experiment demonstrates the importance of continuous outputs, it does not
tell us what kind of information is being captured by these continuous outputs nor does
it reveal anything about the role of continuous weights inside the network. For this, we
must turn to the other two experiments.

ID3 AND BACKPROPAGATION 67

Table 12. Effect of "observed" decoding on learning performance.

Level of Aggregation (% correct)
Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.I
(b) BPCV (legal) TEST: 13.6"* 70.6*** 80.8*** 81.3"** 96.7*
(c) ID3 (observed) TEST: 13~0 70.1 81.5 79.2 96.4
(d) BPCV (observed) TEST: 14.3 71.5" 82.0 81.4"** 96.7

ID3 Improvement: (c)-(a) TEST: 3.4*** 4.5*** 2.8*** 2.0** 0.3
BPCV Improvement: (d)-(b) TEST: 0.7 0.9 1.2" 0.1 0.0

Difference in the cell significant at p < .05*, .005"*, .001"**

5.3.2. Experiment 2: Observed Outputs

In the second experiment, we modified the method used to map each output 26-bit string
into one of the 324 legal phoneme/stress pairs. Instead of considering all possible legal
phoneme/stress pairs, we restricted attention to those phoneme/stress pairs that had been
observed in the training data. Specifically, we constructed a list of every phoneme/stress
pair that appears in the training set (along with its frequency of occurrence). During
testing, the 26-element vector produced either by ID3 or BPCV is mapped to the closest
phoneme/stress pair appearing in this list. Ties are broken in favor of the most frequent
phoneme/stress pair. We call this the "observed" decoding method, because it is sensitive
to the phoneme/stress pairs (and frequencies) observed in the training set.

Table 12 presents the results for the 1000-word training set and compares them to the
previous technique ("legal") that decoded to the nearest legal phoneme/stress pair. The
key point to notice is that this decoding method leaves the performance of BPCV virtually
unchanged, while it substantially improves the performance of ID3. Indeed, it eliminates
a substantial part of the difference between ID3 and BPCV---the two methods are now
statistically indistinguishable at the word and phoneme levels. Mooney et al. (1989), in
their comparative study of ID3 and BPCV on this same task, employed a version of this
decoding technique (with random tie-breaking), and obtained very similar results when
training on a set of the 808 words in the dictionary that occur most frequently in English
text.

An examination of the correlation coefficients shows that "observed" decoding increases
slightly the similarity between ID3 and BPCV. The correlation between XID3observed
and XBpobseT~ea is .5865 (as compared with .5648 for "legal" decoding). Furthermore,
"observed" decoding is almost always monotonically better (i.e., windows incorrectly
classified by "legal" decoding become correctly classified by "observed" decoding, but
not vice versa). Table 13 shows these results and four replications. A paired-differences
t-test concludes that the correlation coefficient increases with observed decoding (with
significance level better than .0001).

68 T. DIETTERICH, H. HILD AND G. BAKIRI

Table 13. Correlation between
ID3 and BPCV with observed
decoding.

Data Set Legal Observed

a .5648 .5865
b .5844 .5945
c .5593 .5796
d .5722 .5706
e .5563 .5738

Average Increase .0136

From these results, we can conclude that BPCV was already capturing most of the
information about the frequency of occurrence of phoneme/stress pairs, but that ID3 was
not capturing nearly as much. Hence, this experiment strongly supports Hypothesis 3.

A drawback of the "observed" strategy is that it will never decode a window to a
phoneme/stress pair that it has not seen before. Hence, it will certainly make some
mistakes on the test set. However, phoneme/stress pairs that have not been observed
in the training set make up a very small fraction of the windows in the test set. For
example, only 7 of the phoneme/stress pairs that appear in our 1000-word test set do
not appear in the 1000-word training set. In the test set, they only account for 11 of the
7,242 windows (0.15%). If we were to train on all 19,003 words from the dictionary
that do not appear in our 1000-word test set, there would be only one phoneme/stress
pair present in the test set that would not appear in the training set, and it would appear
in only one window.

5.3.3. Experiment 3." Block Decoding

The final experiment concerning Hypothesis 3 focused on extracting additional statisti-
cal information from the training set. We were motivated by Klatt's (1987) view that
ultimately letter-to-phoneme rules will need to identify and exploit morphemes (i.e.,
commonly-occurring letter sequences appearing within words). Therefore, we analyzed
the training data to find all letter sequences of length 1, 2, 3 k, and retained the
/3 most-frequently-occurring sequences of each length. The parameters k and B are de-
termined by cross-validation, as described below. For each retained letter sequence, we
formed a list of all phoneme/stress strings to which that sequence is mapped in the train-
ing set (and their frequencies). For example, here are the five pronunciations of the letter
sequence "ATION" in the training set (Format is ((phoneme string) (stress string)
(frequency))).

(("eS-xn i>0<<" 22)

("OS-xn i<0<<" i)

("eS-xn 2>0<<" i)

ID3 AND BACKPROPAGATION 69

Table 14. Effect of "block" decoding on learning performance.

Level of Aggregation (% correct)
Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1
(b) BPCV (legal) TEST: 13.6"* 70.6*** 80.8*** 81.3"** 96.7*
(c) ID3 (block) TEST: 17.2 73.3 83.9 80.4 96.7
(d) BPCV (block) TEST: 18.5 73.7 83.8 81.3 96.7

ID3 Improvement: (c)-(a) TEST: 7.6*** 7.7*** 5.2*** 3.2*** 0.6
BPCV Improvement: (d)-(b) TEST: 4.9** 3.1"** 3.0*** 0.0 0.0

Difference in the cell significant at p < .05", .005**, .001"**

("@S-xn 2<0>>" I)

("@S-xn i<0>>" I))

During decoding, each word is scanned (from left to right) to see if it contains one
of the "top B " letter sequences of length l (varying 1 from k down to 1). If a word
contains such a sequence, the letters corresponding to the sequence are processed as
follows. First, each of the I windows centered on letters in the sequence is evaluated
(i.e., by the 26 decision trees or by the feed-forward network) to obtain a 26-bit string,
and these strings are concatenated to produce a bit string of length 1 • 26. Then, each
of the observed pronunciations for the sequence is converted into an l - 26-bit string
according to the code given in Appendix A. 1. Finally, the "unknown" string is mapped
to the nearest of these observed bit strings.

After decoding a block, control skips to the end of the matched I-letter sequence and
resumes scanning for another "top B" letter sequence of length I. After this scan is
complete, the parts of the word that have not yet been matched are re-scanned to look
for blocks of length 1 - 1. Every letter in the word is eventually processed, because
every individual letter is a block of length 1. We call this technique "block" decoding.

We employed cross-validation to determine the maximum block length (k) and the
number of blocks (B) to store by evaluating different values while training on 800
words and testing on the 200-word cross-validation testing set. We tried values of 1,
2, 3, 4, 5, and 6 for k and values of 100, 200, 300, and 400 for B. For ID3, peak
performance was attained with k = 2 and B = 100. For BPCV, peak performance was
attained with k = 2 and B = 200. In both cases, performance was much more sensitive
to k than to B.

Table 14 shows the performance results on the 1000-word test set. Block decoding
significantly improves both ID3 and BPCV, but again, ID3 is improved much more
(especially below the word level). Indeed, the two methods cannot be distinguished
statistically at any level of aggregation. Furthermore, the correlation coefficient between
XID3blocl ¢ and XBPblock is .6122, which is a substantial increase compared to .5648 for
legal decoding. Hence, block decoding also makes the performance of ID3 and BPCV
much more similar. Table 15 shows how the 7,242 seven-letter windows of the test set
are handled by ID3 and BPCV.

70 T. DIETTERICH, H. HILD AND G. BAKIRI

ID3

Correct

Incorrect

Backpropagation

Correct Incorrect

4773

(65.9%)

562

(7.8%)

533

(7.4%)

1374

(19.0%)

Disagree: 1095 (15.1%)

Agree: 6147 (84.9%)

Table 15. Classification of test set windows by ID3 and BPCV with "block" decoding.

Table 16. Correlation be-
tween ID3 and BPCV with
block decoding.

Data Set Legal Block

a .5648 .6122
b .5844 .6177
c .5593 .6138
d .5722 .5832
e .5563 .6028

Average Increase .0385

Table 16 shows these correlation coefficients, along with four replications. A paired-
differences t-test concludes that the correlation coefficient increases with block decoding
(with significance level better than .0001).

Note that any method that supplies additional information to both ID3 and BPCV could
be expected to improve the correlation between the algorithms somewhat. Furthermore,
any source of new information would probably benefit the poorer performing algorithm
(ID3) more than the better performing algorithm. Nonetheless, the fact that block decod-
ing eliminates all differences between ID3 and BPCV provides strong evidence that we
have identified an important cause of the difference between the two methods and that
Hypothesis 3 is correct. The experiment also suggests that the block decoding technique
is a useful adjunct to any learning algorithm applied in this domain.

ID3 AND BACKPROPAGATION 71

6. Discussion

6.1. Improving these algorithms

There are many directions that can be explored for improving these algorithms. We have
pursued several of these directions in order to develop a high-performance text-to-speech
system. Our efforts are reported in detail elsewhere (Bakiri, 1991).

One approach is to design better output codes for phoneme/stress pairs. Our experi-
ments have shown that BCH error correcting codes provide better output codes than the
output code used in this paper. Randomly-generated bit-strings produce similar perfor-
mance improvements (see Dietterich & Bakiri, 1991).

Another approach is to widen the seven-letter window and introduce context. Lucassen
and Mercer (1984) employ a 9-letter window. They also include as inputs the phonemes
and stresses of the four letters to the left of the letter at the center of the window.
These phonemes and stresses can be obtained, during execution, from the letters that
have already been pronounced during the scan from left-to-right. Our experiments (with
a 15-letter window) indicate that this produces substantial performance gains as well.
However, we find that it works better if the word is scanned from right-to-left instead.

A third technique for improving performance is to supply additional input features to
the program. One feature of letters that helps is a bit indicating whether the letter is a
vowel or a consonant. A feature of phonemes that helps is whether the phoneme is tense
or lax.

A fourth technique to be pursued is to refine the block decoding method. Blocks should
be chosen more carefully with some consideration of statistical confidence. Decoding
should consider overlapping blocks.

A fifth direction that we have pursued is to implement Buntine's (1990) method for
obtaining class probability estimates from decision trees. His algorithm produces fairly
accurate probability estimates at the leaves of each decision tree. We then use these
estimates to map to the nearest phoneme/stress pair. We were curious to know whether
thisapproach would capture the same statistical information provided by observed and
block decoding. Our experiments showed, however, that observed and block decoding
are superior to simply using legal decoding (or even observed decoding) with class
probability trees.

By combining the error-correcting output codes with a wider window, a right-to-left
scan to include phoneme and stress context, and domain-specific features, we have ob-
tained excellent performance with our 1000-word training and test sets. Table 17 shows
our best-performing configuration when trained on 1000 words and when trained on
19,003 words. Details of this configuration are described in Bakiri (1991). We have
been unable to test a similar configuration with BPCV becm~se of the huge computa-
tional resources that would be required.

Bakiri (1991) describes a study in which human judges compared the output of this
system to the output of the DECtalk (Klatt, 1987) letter-to-sound rule base. The results
show that this system (and two other machine learning approaches) significantly out-
perform DECtalk.

72 T. DIETTERICH, H. HILD AND G. BAKIRI

Table 17. Best configuration: ID3, 15-letter window, 127-bit error correcting
code, seven-letter phoneme and stress context, domain-specific input features,
observed decoding, simplified stresses.

Level of Aggregation (% correct)
Training set Word Letter Phoneme Stress Bit (mean)

1,000 words 40.6 84.1 87.0 91.4 92.1
19,003 words 64.8 91.4 93.7 95.1 95.7

6.2. Applying ID3 to aid BPCV

An interesting observation from this and other studies is that the performance of ID3 and
BPCV is highly correlated. This suggests a methodology for using ID3 to aid BPCV
even in domains where BPCV out-performs ID3. In many real-world applications of
inductive learning, substantial "vocabulary engineering" is required in order to obtain
high performance. This vocabulary engineering process typically involves the iterative
selection and testing of promising features. To test the features, it is necessary to train
a BPCV network using them--which is very time-consuming. Because the performance
ID3 is correlated with BPCV, it can be used instead to test feature sets. Once a good set
of features is identified, a BPCV network can then be trained.

To examine this idea in more detail, consider Table 18. This shows the performance
of ID3 and BPCV on each of the 26 individual bits (i.e., without decoding them at
all). (Each algorithm was trained on the 1000-word training set and tested on the 1000-
word test set. A 160-hidden unit network was employed with BPCV.) The correlation
coefficient is .9817, which is significant well below the .001 level. Hence, we conclude
that the generalization performance of ID3 is a very good predictor of the generalization
performance of BPCV.

7. Conclusions

The relative performance of ID3 and Backpropagation on the text-to-speech task depends
on the decoding technique employed to convert the 26 bits of the Sejnowski/Rosenberg
code into phoneme/stress pairs. Decoding to the nearest legal phoneme/stress pair (the
most obvious approach) reveals a substantial difference in the performance of the two
algorithms.

Experiments investigated three hypotheses concerning the cause of this performance
difference.

The first hypothesis--that ID3 was overfitting the training data--was shown to be in-
correct. Three techniques that avoid overfitting were applied, and none of them improved
ID3's performance.

The second hypothesis--that the ability of backpropagation to share hidden units was
a factor--was shown to be only partially correct. Sharing of hidden units does improve
the classification performance of backpropagation and--perhaps more importantly--the

ID3 AND BACKPROPAGATION 73

Table 18. Performance, complexity, and dif-
ficulty of learning. 1000-word training set,
1000-word test set.

ID3 BP
bit windows (%) windows (%)

1 6984 96.4 6964 96.2
2 6779 93.6 6767 93.4
3 7104 98.1 7110 98.2
4 6936 95.8 6908 95.4
5 6584 90.9 6627 91.5
6 7065 97.6 7057 97.4
7 7207 99.5 7191 99.3
8 7213 99.6 7205 99.5
9 7206 99.5 7203 99.5

10 7237 99.9 7236 99.9
11 7240 100.0 7238 99.9
12 7202 99.4 7167 99.0
13 6810 94.0 6845 94.5
14 7148 98.7 7120 98.3
15 6944 95.9 6922 95.6
16 6903 95.3 6974 96.3
!7 6629 91.5 6623 91.5
18 6863 94.8 6987 96.5
19 7242 100.0 7242 100.0
20 7242 100.0 7242 100.0
21 6863 94.8 6987 96.5
22 6658 91.9 6738 93.0
23 6682 92.3 6811 94.0
24 6542 90.3 6578 90.8
25 6729 92.9 6781 93.6
26 7242 i00.0 7242 100.0

74 T. DIETTERICH, H. HILD AND G. BAKIRI

convergence of the gradient descent search. However, an analysis of the kinds of errors
made by ID3 and backpropagation (with or without shared hidden units) demonstrated
that these were different kinds of errors. Hence, eliminating shared hidden units does
not produce an algorithm that behaves like ID3. This suggests that the development of
a "shared ID3" algorithm that could learn multiple concepts simultaneously is unlikely
to produce performance similar to BPCV.

The third hypothesis--that backpropagation was capturing statistical information by
some mechanism (perhaps the continuous output activations)--was demonstrated to be
the primary difference between ID3 and BPCV. By adding the "observed" decoding
technique to both algorithms, the level of performance of the two algorithms in classify-
ing test cases becomes statistically indistinguishable (at the word and phoneme levels).
By adding the "block" decoding technique, all differences between the algorithms are
statistically insignificant.

Given that with block decoding the two algorithms perform equivalently, and given that
BPCV is much more awkward to apply and time-consuming to train, these results suggest
that in tasks similar to the text-to-speech task, ID3 with block decoding is clearly the
algorithm of choice. For other applications of BPCV, ID3 can play an extremely valuable
role in exploratory studies to determine good sets of features and predict the difficulty
of learning tasks.

This paper has also introduced a new method of experimental analysis that computes
error correlations to measure the effect of algorithm modifications. We have shown that
this method can be applied to discover the ways in which algorithms are related. Broader
application of this methodology should improve our understanding of the assumptions
and biases underlying many inductive learning algorithms.

Acknowledgments

The authors thank Terry Sejnowski for providing the NETtalk phonemic dictionary, with-
out which this work would have been impossible. Correspondence with Jude Shavlik,
RayMooney, and Geoffrey Towell helped clarify the possible kinds of decoding strate-
gies. Discussions with Lorien Pratt aided in the design of the cross-validation studies.
This research was supported by NSF grant numbers CCR-87-16748 and IRI-86-57316
(Presidential Young Investigator Award) with matching support from SUN Microsystems.

Appendix

A.1. The 26-bit Code for phoneme/stress pairs

Tables A.2, A.4, and A.5 show the distributed code developed by Sejnowski and Rosen-
berg for representing representing the phonemes and stresses. The examples were sup-
plied with their database.

ID3 AND BACKPROPAGATION 75

Table A.2. 26-bit Distributed Code

Phoneme Code

Phoneme Codeword Examples

/a/ 000010000000100100000
/b/ 000100000001010000000
/c/ 000001000000000010000
/d/ i00000000001010000000
/e/ 010000000000100010000
/f/ 000100010000000000000
/q/ 000001000001010000000
/h/ 001000001000000000000
/i/ 000100000000101000000
/k/ 000001000001000000000
/i/ 010000000100010000000
/m/ 000100000010010000000
/n/ i00000000010010000000
/o/ 001000000000100010000
/p/ 000100000001000000000
/r/ 000010000100010000000
/s/ i00000010000000000000
/t/ i00000000001000000000
/u/ 001000000000101000000
/v/ 000100010000010000000
/w/ 000100001000010000000
/x/ 000010000000000010000
/y/ 000010001000010000000
/z/ i00000010000010000000

wAd, dOt, Odd
Bad
Or, cAUght
add
Angel, blAde, wAy
Farm
Gap
Hot, WHo
Eve, bEe
Cab, Keep
Lad
Man, imp
GNat, aNd
Only, Own
Pad, aPt
Rap
Cent, aSk
Tab
bOOt, OOze, yOU
Vat
We, liqUid
pirate, welcome
Yes, senior
Zoo, goeS

76 T. DIETTERICH, H. HILD AND G. BAKIRI

Table A.3. 26-bit distributed code (continued)

Phoneme Code

Phoneme Codeword Examples

/A/
/C/
/DI
/E/
/G/

/I/
/J/
/K/
/L/
/m/

/N/
/0/
/Q/

/R/
/S/
/T/
/U/
/W/
/X/
/Y/
/Z/
/@/

/~I
/#/
/*/
/^/
/+/
/-/

/_/
/./

ii0000000000100010000
000010100000000000000
010000010000010000000
010100000000000010000
000001000010010000000
000100000000001000000
000010100000010000000
000011110000000000000
I00000000100010000000
010000000010010000000
000010000010010000000
i00010000000100010000
000101100001010000000
000001000100010000000
000010010000000000000
010000010000000000000
000001000000001000000
000011000000101010000
ii0000100000000000000
ii0100000000101000000
000010010000010000000
010000000000000100000
010100100000000000000
000011100000010000000
i00100001000010100000
i00000000000000100000
000000000000000000000
000000000000000001001
000000000000000001010
000000000000000000110

Ice, height, EYe
CHart, Cello
THe, moTHer
mAny, End, heAd
leNGth, loNG, baNk
glve, bUsy, captAin
Jam, Gem
aNXious, seXual
eviL, abLe
chasM
shorteN, basiN
OI1, bOY
Quilt
honeR, afteR, satyR
oCean, wiSH
THaw, baTH
wOOd, cOUld, pUt
oUT, toWel, hoUse
miXture, anneX
Use, fEUd, nEw
uSual, viSion
cAb, plAid
naZi, piZZa
auXiliary, eXist
WHat
Up, sOn, blOOd
abattOir, mademOiselle
silence
word-boundary
period

ID3 A N D B A C K P R O P A G A T I O N 77

Table A.4. Meanings of each bit po-
sition

Bit Position Meaning

1 Alveolar = Central l
2 Dental = Front2
3 Glottal = Back2
4 Labial = Frontl
5 Palatal = Central2
6 Velar = Back l
7 Affricative
8 Fricative
9 Glide
10 Liquid
11 Nasal
12 Stop
13 Tensed
14 Voiced
15 High
16 Low
17 Medium
18 Elide
19 FullStop
20 Pause
21 Silent

Table A.5. Stress code

Stress Code

Stress Codeword Meaning

< 10000 a consonant or vowel following the first
vowel of the syllable nucleus.

> 01000 a consonant prior to a syllable nucleus.

0 00010 the first vowel in the nucleus of
an unstressed syllable.

2 00100 the first vowel in the nucleus of a
syllable receiving secondary stress.

1 00110 the first vowel in the nucleus of a
syllable receiving primary stress.

- 11001 silence

78 T. DIETTERICH, H. HILD AND G. BAKIRI

A.2. Replication of results on four additional data sets

To simplify the presentation in the body of the paper, we presented data only for one

choice of training and test sets. This appendix provides that same data on all five training
and testing sets to demonstrate that the results hold in general.

A.2.1. Performance of ID3 and BP under legal decoding

Table A.6 shows the performance, under legal decoding, of ID3 and BP when trained on

each of the 5 training sets and tested on the corresponding test sets.

Table A.6. Percent correct over 1000-word test set

Level of Aggregation (% correct)
Data Set Method Word Letter Phoneme Stress Bit (mean)

a ID3 9.6 65.6 78.7 77.2 96.1
BPCV 13.6"* 70.6*** 80.8*** 81.3*** 96.7*

b ID3 10.4 65.6 79.6 76.4 96.1
BPCV 15.7"** 71.5"** 81.7"** 81.4"** 96.7*

c ID3 10.5 64.4 78.9 75.7 96.0
BPCV 15.2"** 71.4"** 81.4"** 81.7"** 96.7*

d ID3 10.9 65.8 80.0 76.2 96.2
BPCV 16.3"** 71.3"** 81.4" 81.6"** 96.7*

e ID3 9.5 64.7 78.2 77.1 96.0
BPCV 14.5"* 71.6"** 81.3"** 82.3*** 96.7*

Difference in the cell significant at p < .05*, .005**, .001"**

A.2.2. Tests of the sharing hypothesis

For replications b, c, d, and e, the training procedure for each of the 26 separate networks
was slightly different from the procedure described for replication a. Starting with H = 1,
a network with H hidden units was trained for 1000 epochs. If this did not attain the

desired fit with the data, the next larger value for H was tried. If a network with 5
hidden units failed to fit the data, the process was repeated, starting again with H = 1
and a new randomly-initialized network. No network required more than 4 hidden units.
Table A.7 shows the observed performance differences. The training figures show that,
with the exception of word-level and stress-level performance, the 26 separate nets fit
the training data slightly better than the single 120-hidden-unit network.

ID3 AND B A C K P R O P A G A T I O N 79

Table A.7. Performance difference (in percentage points) between a single 120-hidden
unit network and 26 separate networks. Trained on 50 words and tested on 1000 words.

Level of Aggregation (% point differences)
Replication Data set Word Letter Phoneme Stress Bit (mean)

a TRAIN: 0.0 --0.2 - 0 . 2 0.0 0.0
TEST: 0.2 3.4 2.8 1 ~8 0.6

b TRAIN: 4.0 0.1 - 0 . 2 - 0 . 5 - 0 . 1
TEST: 0.6 3.4 2.9 0.8 - 0 . 2

c TRAIN: 4.0 0.0 0.0 0.0 - 0 . 1
TEST: 1.1 3.0 2.2 2.9 0.0

d TRAIN: 0.0 - 0 . 6 - 0 . 5 0.0 - 0 . 1
TEST: 0.3 3.7 2.8 2.1 0.0

e TRAIN: 4.0 - 0 . 5 - 0 . 6 0.0 - 0 . 1
TEST: 0.7 2.7 2.1 1.6 - 0 . 1

Averages TRAIN: 2.4 - 0 . 2 - 0 . 2 0.1 - 0 . 1
TEST: 0.6 3.2 2.6 1.8 0.1

Notes

1. A target threshold is an output activation value that is considered to be correct even though the output
activation does not equal the desired activation. For example, if the target thresholds are .1 and .9, then an
output activation of .1 or below is considered correct (if the desired output is 0.0) and an activation of .9
or above is considered correct (if the desired output is 1.0).

2. It would have been better if we had stored a snapshot of the random starting network before beginning
training, but we failed to do this. Nevertheless, the procedure we followed is still safe, because it obeys
the rule that no information from the test set should be used during training.

References

Bakiri, G. (1991). Converting English text to speech: A machine learning approach. Doctoral Dissertation
(Technical Report 91-30-1). Corvallis, OR: Oregon State University, Department of Computer Science.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.
Monterey, CA: Wadsworth and Brooks.

Buntine, W. (1990). A theory of learning classification rules. Doctoral dissertation. School of Computing
Science, University of Technology, Sydney, Australia.

Dietterich, T. G. (1989). Limits of inductive learning. In Proceedings of the Sixth International Conference
on Machine Learning (pp. 124-128). Ithaca, NY. San Mateo, CA: Morgan Kaufmann.

Dietterich, T. G., & Bakiri, G. (1991). Error-correcting output codes: A general method for improving multi-
class inductive learning programs. Proceedings of the Ninth National Conference on Artificial Intelligence,
Anaheim, CA: AAAI Press.

Dietterich, T. G., Hild, H., & Bakiri, G. (1990). A comparative study of ID3 and backpropagation for English
text-to-speech mapping. Proceedings of the Seventh International Conference on Machine Learning (pp.
24-31). Austin, TX: Morgan Kaufmann.

Klatt, D. (1987). Review of text-to-speech conversion for English. J. Acoust. Soc. Am., 82, 737-793.
Lucassen, J. M., & Mercer, R. L. (1984). An information theoretic approach to the automatic determination

of phonemic base forms. Proc. Int. Conf Acoust. Speech Signal Process. ICASSP-84, 42.5.142.5.4.

8 0 T. DIETTERICH, H. HILD AND G. BAKIRI

Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural network architecture for isolated
word recognition. Neural Networks, 3, 33-43.

Martin, G. L., & Pittman, J. A. (1990). Recognizing hand-printed letters and digits. In D. Touretzky (Ed.),
Advances in Neural lr~fbrmation Processing Systems 2, 405~ 14. San Mateo, CA: Morgan Kaufmann.

McCtelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing, Cambridge,
MA: MIT Press.

Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine
Learning, 4, 227-243.

Mooney, R., Shavlik, J., Towell, G., & Gove, A. (1989). An experimental comparison of symbolic and con-
nectionist learning algorithms. IJCAI-89: Eleventh International Joint Con]erence on Artificial Intelligence,
(pp. 775-80).

Quintan, J. R. (t983). Learning efficient classification procedures and their application to chess endgames. In
R. S. Michalski, J. Carbonell, & T. M. Mitchell, (eds.), Machine learning: An artificial intelligence approach,
1, San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R. (1986a). The effect of noise on concept learning. In R. S. Michalski, J. Carbonell, & T. M.
Mitchell, (eds.), Machine learning: An artificial intelligence approach, 1, San Mateo, CA: Morgan Kaufmann.

Quintan, J. R. (1986b). Induction of decision trees, Machine Learning, 1, 81-106.
Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies, 27, 221-234.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propa-

gation. In D. E. Rumelhart, & J. L. McClelland (Eds.), Parallel distributed processing, (Vol 1). Cambridge,
MA: MIT Press.

Rosenberg, C. R. (1988). Learning the connection between spelling and sound: A network model of oral
reading. Doctoral Dissertation. (CSL Report 18). Princeton, NJ: Princeton University, Cognitive .Science
Laboratory.

Sejnowski, T. L, & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text. Complex
Systems, 1, 145-t68.

Touretzky, D. S. (Ed.) (1989). Advances in neural information processing systems 1. San Mateo, CA: Morgan
Kaufmann.

Touretzky, D. S~ (Ed.) (1990). Advances in neural information processing systems 2. San Marco, CA: Morgan
Kanfmann.

Received September 18, 1990
Accepted July 22, 1991

Final Manuscript September 13, 1993

