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Abstraet. The majority of results in computational learning theory are concerned with concept learning, i.e. 
with the special case of function learning for classes of functions with range {0, 1}. Much less is known about the 
theory of learning functions with a larger fange such as Nor IR. In particular relatively few results exist about the 
general structure of common models for function learning, and there are only very few nontrivial function classes 
for which positive learning results have been exhibited in any of these models. 

We introduce in this paper the notion of a binaly branching adversary tree for function learning, which allows 
us to give a somewhat surprising equivalent characterization of the optimal learning cost for learning a class of 
real-valued functions (in terms of a max-min definition which does not invoive any "learning" model). 

Another general structural result of this paper relates the cost for learning a union of function classes to the 
learning costs for the individual function classes. 

Furthermore, we exhibit an efficient leaming algorithm for learning convex piecewise linear functions from 
Rd into IR. Previously, the class of linear functions from 1R d into R was the only class of functions with multi- 
dimensional domain that was known to be learnable within the rigorous framework of a formal model for on- 
line leaming. 

Finally we give a sufficient condition for an arbitrary class 5 ~ of functions from IR into R that allows us to 
learn the class of all functions that can be written as the pointwise maximum of k functions from 5 r.  This allows 
us to exhibit a number of further nontrivial classes of functions from ~ into R for which there exist eflicient 
]earning algorithms. 
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1. I n t r o d u e t i o n  

We cons ide r  the  c o m p l e x i t y  of  func t ion  l ea rn ing  in the  m o s t  c o m m o n  nonprobab i l i s t i c  

m o d e l s  o f  on - l i ne  learn ing .  In con t ras t  to the  ra ther  we l l -deve loped  theory  for  the  specia l  

case  o f  {0, 1}-valued func t ions  (i.e., concepts ) ,  re la t ive ly  l i t t le is k n o w n  abou t  genera l  

p roper t i e s  of  op t ima l  m i s t a k e  b o u n d s  (resp. loss bo u n d s )  for  l ea rn ing  c lasses  o f  func t ions  

wi th  l a rger  r anges  (e,g., r ea l -va lued  funct ions) .  Fu r the rmore ,  nont r iv ia l  pos i t ive  l ea rn ing  

resu l t s  have  so far  b e e n  ach ieved  in these  mode l s  on ly  for  very  few func t ion  c lasses .  

T h e  m a i n  l e a rn ing  m o d e l  tha t  we cons ide r  is the c o m m o n  mode l  for  on - l i ne  func t ion  

learn ing .  For  s o m e  fixed class  5 c o f  poss ib le  target  func t ions  T f rom X to Y the  l ea rner  

p roposes  at  each  r o u n d  s o f  a l ea rn ing  p rocess  a hypo thes i s  func t ion  h,.: X -+ Y. T h e  

e n v i r o n m e n t  r e s p o n d s  wi th  a c o u n t e r e x a m p l e  (x, T ( x ) )  such  that  the l ea rne r ' s  p red ic t ion  

h,. (x)  for  a r g u m e n t  x differs  f rom the  t rue va lue  T (x)  of  the  target  func t ion  T (x) .  T h e  loss 
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of the learner at round s is measured by g(hs(x), T(x)), for some suitable loss function 
£:Y x Y ~ R + (e.g. g(hs(x) ,T(x))  = ( h s ( x ) - T ( x ) )  2 i f Y  _ R). The goal of the 
learner is to minimize his total loss, i.e. the sum of his losses for all rounds s. Hence one 
is interested in efficient learning algorithms for 5 c that produce a suitable hypothesis G for 
each round s of any learning process so that the total loss of the learner for the worst case 
choice of T c )c and the worst case choice of counterexamples is as small as possible. A 
detailed definition of the resulting "learning complexity" for an arbitrary function class 5 c 
(denoted by LC-ARB (5c)) is given at the beginning of Section 2 of this paper. 

This learning model is equivalent to a slightly different learning model, where the environ- 
ment provides arbitrary examples (or "trials") (x, T(x)} of the target function T: X --+ Y. 
These are not required to be "counterexamples" to the current hypothesis h,. of the learner 
(i.e. we may have g(hs(x), T(x)) = 0). At round s the learner is given a point x~. 
and he makes a "prediction" h~(x,.), after which he receives the correct value T(&). If 
hs (x,.) ¢ T(x,.), one says that the learner makes a mistake at trial s (Littlestone, 1988). As 
before, the loss of the learner at round s is measured by g(hs(x), T(x)), and his goal is to 
minimize the sum of his losses over all rounds. This variation of the learning model is a 
bit more plausible from the point of view of applications. It is a straightforward general- 
ization of Littlestone's "mistake bounded" model for concept learning (Littlestone, 1988). 
However as in the case of concept learning (see (Littlestone, 1988)) one can also show very 
easily for function learning that this variation leads to the same definition of the learning 
complexity of a function class. Hence we prefer to work with the former version of the 
learning model, which is somewhat simpler to analyze. 

Our model for function learning has already been widely studied, both theoretically and 
practically. For example the well-known back-propagation learning algorithm for function 
learning on neural nets is a learning algorithm for this type of learning model (however 
there one just wants to minimize the deviation of the hypothesis at the end of the training 
phase from the target function). In that special case the hypothesis h.,. is the function that 
is computed by the neural net after s applications of the backwards propagation rule for 
adjusting the weights of the neural net (for s incorrectly processed training examples). 

From the theoretical point of view this function learning model is a straightforward gen- 
eralization of the common model for on-line concept learning in a worst case setting, since 
concepts may be viewed as functions with range {0, 1} (see (Barzdin & Frievald, 1972), 
(Angluin, 1988), (Littlestone, 1988), (Maass & Turin, 1992)). In ((Dawid, 1984), (Myciel- 
ski, 1988), (Vovk, 1990), (Littlestone, Long & Warmuth, 1991), (Faber & Mycielski, 1991), 
(Littlestone & Warmuth, 1991), (Kimber & Long, 1992), (Feder, Merhav & Gutman, 1992), 
(Vovk, 1992), (Cesa-Bianchi, Long & Warmuth, 1993)), the learning complexity of various 
concrete function classes have been investigated in this function learning model, and cumu- 
lative loss bounds in terms of certain properties of 5 c have been proved for general-purpose 
(but not necessarily computationally efficient) algorithms ((Vovk, 1990), (Littlestone & 
Warmuth, 1991), (Feder, Merhav & Gutman, 1992), (Vovk, 1992)). Nevertheless the only 
interesting class of functions f :  R ~ --+ R for d > 2 that has been shown to be efficiently 
learnable is the class of linear functions ((Mycielski, 1988), (Littlestone, Long & Warmuth, 
1991), (Cesa-Bianchi, Long & Warmuth, 1993)). Coming up with an efficient algorithm 
for linear functions with a decent loss bound is trivial, but coming up with optimal or near 
optimal loss bounded algorithms can be difficult. 

In some learning settings, arising for example in control problems, the value T(x) is not 
made available to the learner, and only weaker reinforcement is provided by the environment. 
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At the end of Section 2, we consider variations of the previously described funcüon learning 
model which model two such situations which arise in practice. In the first variation we 
assume that the learner only receives the information that T(x) 7~ h~(x). In the second 
variation (studied previously by Barland (1992)) we assume that the learner is in addition 
told whether T(x) > bs(x) ("hs(x) is too low"), or whether T(x) < h,(x) ("h,(x) is 
too high"). 

In Section 2, we introduce a notion of an adversary tree (or mistake tree) for funcfion 
learning. This notion provides an independent "dual" definition of the learning complexity 
of a function class. It turns out to be sufficient to consider binary branching adversary trees, 
even for learning reaI-valued functions under a large class of smooth loss functions including 
the heavily studied quadratic loss and "absolute loss." We apply this result to prove optimal 
lower bounds, in terms of LC-ARB (5c), both for probabilistic funcüon learning algorithms 
in an oblivious environment and for function learning with a wide variety of queries. At the 
end of Section 2, we exhibit appropriate notions of an adversary tree for two other function 
learning models. 

In Section 3, we derive general upper bounds on the number LC-ARB (uP=I 2=/) of mistakes 
required for learning U/P=I Jri in terms of LC-ARB (-7=1) . . . . .  LC-ARB (~-p). These bounds 
are shown to be tight to within a constant factor. The results of Section 3 remain true, and 
are new, even for the special case of {0, 1 }-valued functions (i.e., concepts). 

In Section 4, we exhibit two algorithms for learning the maximum of k linear functions 
over R ~. The first has a mistake bound polynomial in k for fixed d, and the second has a 
mistake bound polynomial in d for fixed k. To the best of our knowledge, these provide 
the first positive learning results in the LC-ARB model for any nontrivial class of functions 
defined on R 2 other than linear functions. 

In Section 5, we exhibit a more general algorithm for learning the maximum of k real- 
valued functions of a single real variable. It yields as special cases algorithms which have 
mistake bounds linear in k for learning the maximum of k polynomials (with a bounded 
number of terms), of k rational functions (again, with a bounded number of terms), and of 
k sigmoidal functions. 

This paper provides full proofs and more detailed explanations of the results described 
in the previously published extended abstract (Auer, Long, Maass & Woeginger, 1993). 

2. Adversary Trees for Function Learning 

We introduce in Definition 1 our new notion of an adversary tree for function learning, which 
allows us to give in Theorem 1 a completely independent ("dual") definition of the learning 
complexity of a function class. A somewhat surprising feature of Definition 1 is that it 
suffices for Theorem 1 if we restrict our attention to binary branching trees, independently 
of the size of the range Y of the functions that are learned. This allows us to derive in 
Theorem 2 an optimal lower bound for randomized algorithms for function learning in an 
oblivious environment. As another consequence of Theorem 1 we derive in Theorem 3 an 
optimal lower bound for function learning with a large variety of queries. 

Assume that X ("domain"), Y ("range"), and A ("action space') are some arbitrary sets 
(finite or infinite). 1 Consider some arbitrary sets Y: c_ yX ("function class") and 74 c A x 
(ù hypothesis space"). Let ~: A x Y ~ IR + := {r ~ 1R: r > O} be some arbitrary function 
(' loss function"). Note that we consider a slightly more general setting than outlined in 
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Section 1, since we allow hefe for the possibility that the learner proposes for each x E X 
some "action" h(x) that lies in some suitable "action space" A. In this general framework 
the loss function ~: A x Y --* R + measures how bad the proposed action h(x) is, with 
respect to the given reinforcement y 6 Y. 

A learning process is a dialogue between the °'learner" and the "environment". At the 
beginning of each learning process the environment fixes some T E 5 r ("target function"). 
At each round s of the learning process (s = 1, 2 . . . .  ) the tearner proposes some hypothesis 
h., E ~.  The environment responds at the same round with a pair (&., T(xs)) for some 
x~ ~ X. The loss of the learner at round s is g(h,(xs), T(x,)).  If  hs(x~.) 7~ T(xs) we also 
refer to (x,., T(xs)) as a counterexample (CE) to hypothesis h~.. The total loss of the learner 
for this learning process is ~~=1 g(hs(x~), T(x,)),  where t c N tO {oo} is the number of 
rounds in this learning process. 

A learning aIgorithm B for f with hypothesis space ~ is a function which produces for 
any T c 5 c at each round s of such learning process some hypothesis 

h, = B((Xl, T(xl))  . . . . .  (xs-1, T(xs_l)); ho . . . . .  hs_~) ~ 

of the learner. We will consider in this paper only deterministic learning algorithms, for 
which ho . . . . .  h,._l are not actually needed as arguments for B in the definition of h, 
(since they can be recomputed with the help of the preceding counterexamples). We define 
LCe(B) as the supremum of the total losses of the learner for learning processes with 
learning algorithm B and loss function £. We set 

LCe(5 r, ~ )  := inf{LCe(B): B is a deterministic 
learning algorithm for ~- with hypothesis space ~} 

and LC-ARBe(5 c) := LCe(5 c, AX). These definitions contain as special cases those that 
were considered in ((Mycielski, 1988), (Littlestone & Warmuth, 1991 ), (Littlestone, Long 
& Warmuth, 1991), (Faber & Mycielski, 1991), (Kimber & Long, 1992)) for functions, and 
in ((Angluin, 1988), (Littlestone, 1988), (Maass & Turän, 1992)) for concepts. 

Starting in Application 2 of this section, we will consider only the discrete loss function 
defined by £(a, y) = 0 i f a  = y, and g.(a, y) = 1 i f a  ¢ y. From that point on, we will 

drop the subscript £ in LC-ARB~. 

REMARK. 

a) One can easily see that the size ofLCe (U, 7-/) does not change if we only allow responses 
(&. T(xs)) with £(h(xs), T(xs)) > 0 in alearningprocess. This will be assumed w.l.o.g. 
throughout this paper (except for Theorem 2, which concerns another model). 

b) In contrast to the discrete case there does not always exist a learning algorithm B for 5 
with LCe(B) = LC-ARBe(5 ~) (i.e., the infimum of the LCe(B) need not be obtained). 
An easy example is constructed by setting X = A = Y = (0, 1], 5 = { f : X  --+ 
Y: f is constant}, and £(a, y) = 0 i fy  > a, else e(a, y) = a - y. Then for any learning 
algorithm B one has LC~(B) = h(1) 6 (0, 1], where h is the first hypothesis of B. 

We will show in the subsequent Theorem 1 that for learning real valued functions under 
any of the common loss functions one can assume without loss of generality that the 
"adversary" (i.e. the environment) is very nice to the learner. One can assume that at the 
beginning of each round s in a learning process (before the learner has issued his hypothesis 
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h~. for this round) the adversary tells the learner which point xs he is going to use for his 
counterexample (x,. y) at this round. In addition the adversary also gives the learner a set 
{Yl, Yz} __c y with the guarantee that the second component y of the counterexample ~&. Y) 
will be an element of {Yl, Y2}. Finally the adversary also announces to the learner the rule 
by which he will choose y~ or Y2 (depending on hs(xs)): he gives to the learner a set A~ 
such that y = Yl ~ hs(x,.) e A1. 

Out intuition tells us that it is essential for an "optimal" adversary that he chooses x,. 
after he has seen hs (as a "weak spot of h,."), and that he exploits the full size of the range 
Y to choose a reinforcement y that causes a largest possible loss g (h,. (x,.), y) to the learner. 
The subsequent Theorem 1 tells us that this intuition is wrong. 

Whereas a general adversary strategy is a rather complex mathematical object (since in 
general each move of the adversary depends on the preceding hypotheses of the learner), 
any adversary strategy of the previously described simple type can easily be described by 
a binary branching tree according to the following definition. 

DEFINITION 1. An adversary tree b/for a function class .T C y x  and an action set A is a 
finite binary branching tree whose nodes and edges are labeled in the following way: 

Each node v of/, / is labeled by a pair (xv, .Tu) with x~ ~ X, S~ __c y and 3% ¢ 0. If v is 
the root of / . /we set .Tu := 5 v. 

If v is not a leaf of/d, then its two outgoing edges have labels of the form (A1, Yl) and 
{Az, y2), where A1, A2 is a nontrivial partition ofA (i.e. A1UÄ2 = A, A1 MA2 = 0, A1 ¢ 0 
and A2 ¢ 0) and Yl, Y2 are elements of Y such that Yl ~4 Y2 and {f  E 2"~: f ( x~)  = Yi } ¢ 0 
for i = 1, 2. The set { f  c Uv: f ( x~)  = Yi} is then the second component of the label of 
the hode at which the edge with label (Ai,  Yi) ends (i = 1, 2). 

For any loss function ~: A x Y -+ R +, one defines the loss ~(Ä, y) of an edge in/d with 
label (Ä, y) by g(Ä, y) := inf{g(a, y): a ~ Ä}. The total loss of a path in H is the sum of 
the losses of edges in this path. 

We set 

INFe(/d) := inf{K 6 R+: Kis the total loss of a path in/d that 

starts at the root and ends at a leaf of/d} and 

ADVe(5 =) := sup{INFe(b/): bt is an adversary tree for 

B with action space A and loss function ~}. 

Obviously any adversary tree/g for 2" encodes an adversary strategy which forces the 
learner to take a total loss of at least INF~ (///), no matter which hypotheses he chooses in 
the course of the learning process. The second part 5~ of the label (x,, 5~} of an internal 
node v of bt specifies a set of functions which could still be choosen as target functions 
by the adversary. The labels (AI, Yl) and (A2, Y2) of the two edges that leave the node x~ 
encode the following rule for the adversary at the next step of a learning process for 5c: If 
h(xo)  E A i (where h is the next hypothesis of the learner) then the adversary responds with 
the pair {Xo, Yi) (which forces the learner to take a loss of at least g(Ai, Yi) at this step). 

One also can easily read oft from the definition of an adversary tree b/ that it only 
encodes "particularly nice" adversary strategies, since one may assume that the learner has 
full knowledge of/d. In particular at each step of a learning process where the adversary 
follows the strategy encoded by/d, the first component Xo and the rule by which the adversary 
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({1,3},2)/// ~ 2}'~b'y) 1) 

{fe • :f(b)=2 Af(c)= 1} { le  F:f(b)=2 ^j~c)=3} {le  y:f(b)= 1 ̂ f(a)= 1} {le  Y:f(b)= 1 ̂ f(a)=2} 

Figurel. Example ofan adversary tree/,¢ for X = {a,b,c}, A = Y = {1,2,3} andSr = yX (wherethe first 
components of the labels of the leafs have been deleted since they are irrelevant). For the loss function g with 
£(a, y) = la - y] one has INFe (U) = 2. 

chooses the second component Yi of his next counterexample Ixo, Yi) are already known to 
the learner before he chooses bis hypothesis h for this step. 

Intuitively one may tend to believe that LC-ARBe(2:) > ADV~(Y r) for many function 
classes .7=, i.e. that the environment becomes significantly weaker if it limits its adversary 
strategies to those particularly simple ones that can be encoded by adversary trees. The 
following theorem asserts that this is notthe case. The assumptions of this theorem contain 
a rather trivial condition (+)  which is explained and motivated in the subsequent Remark. 

THEOREM 1. Let X, Y, A, and 5 c yX be arbitrary nonempty sets (finite or infinite) and 
ler £: A x Y --+ R + be a function such that 

(+)  gp  > 0 Vx ~ X V f  6 ~- 3a ~ A (£(a, f ( x ) )  < p), 

and 

(i) A = Y and g. is the "discrete loss function'" with «(a, y) = 0 if  a = y and £(a, y) = 1 

if  a 7~ y, or 
(il) A and Y are subsets o f  R and the loss function g. is o f  the form £(a, y) = L(]a - y[) 

for  some arbitrary nondecreasing and continuous function L: R + --+ R + with L(O) = 0 
(e.g. g.(a, y) = la - y[P for  some arbitrary parameter p > 0). 

Then LC-ARBe (5 c) = ADVt OC). 

REMARK. The assumptions of the preceding theorem contain the technical condition (÷) ,  
which just says that the set A of possible outputs ("actions") of the learner is sufficiently 
large. More precisely, it demands that for any possible value f ( x )  of a target function 
f ~ 5 r there exist points a ~ A which make the loss £(a,  f ( x ) )  of the learner for argument 
x arbitrarily small. This condition is hardly restrictive, since usually one even has A = Y 
(e.g. A = Y = [0, 1]). Furthermore it is obvious that LC-ARBe(S)  = ~ if condition (+)  
is not satisfied. Thus (+)  holds for all learning problems that are of interest in this context. 

We also would like to point out that (+)  is a necessary assumption for Theorem 1. This 
follows by considering an example where f consists of a single function f :  R --+ 1R (hence 
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ADVe(5 c) = 0), and A _c R is chosen such that inf{~(a, f(xo)):a ~ A} > 0 for some 
x0 6 R (hence (+)  is not satisfied, thus LC-ARBe(5 r)  = oo). 

PROOF OF THEOREM 1. We start by showing that LC-ARBe ( f )  < ADV~ (5 r) in the case 
(ii). Fix some arbitrary s > 0. In order to show that LC-ARBe( f )  < ADVe(5 v) + s we 

OO 
choose an arbitrary sequence (8j)jE N of reals ej > 0 such that s = Y~,j=1 sj. It suffices 
to construct a learning algorithm B so that for every s 6 N the following property holds 
(which implies that LC~(B) < ADVe(~-) + s): 

(*) For every learning process with learning algorithm B and examples 

(xl, Yl) . . . . .  (x,., y.,.) 

the proposed actions al . . . . .  as of  B (where a j : =  hj(xj) for the hypothesis hj of B at 
round j )  satisfy 

S 

ADVe({f  E .T: f ( x j )  = yj for j = 1 . . . . .  s}) + ~ g ( a j ,  yj) 
.j=l 

S 

_< ADVe (~-) + ~ sj. 
.j=l 

The property (*) is trivially satisfied for s = 0. Assume now that (*) holds for some 
arbitrary s c N. In order to prove (*) for s + 1 we fix some learning process with learning 
algorithm B and set ~" :=  { f  c ~c: f ( x j )  = Yi for j = 1 . . . . .  s}. The hypothesis h of B 
for the next round s -t- 1 of the learning process is defined as follows: 

For every x E X let h(x) be some a ~ A such that 

ADVe({f  c ~ :  f ( x )  = y}) -t- ~(a, y) < ADV~(~) -t- ss+l 

for all y 6 Y for which there exists an f 6 ~ such that f ( x )  = y. 
It is obvious that if the learning algorithm B chooses as hypothesis h,.+~ at step s + 1 a 

hypothesis h with the preceding property, then (*) is also satisfied for s + 1. Hence it just 
remains to show that there exists a hypothesis h with the preceding property. This proof 
turns out to be rather nontrivial, involving subtle arguments from real valued analysis. 

LEMMA 1. The previously defined function h: X ~ A is well-defined for all x ~ X. 

PROOF OF LEMMA 1. Assume for a contradiction that h(xo) is not well-defined for some 

x0 ~ X, i.e. 

(**) Va ~ A 3y(a) ~ Y ( 3 f  ~ ffc(f(xo) = y(a)) 

A A D V e ( { f  6 fie: f(xo) = y(a)}) + g(a, y(a)) > ADVe(ff c) + ss+l). 

Intuitively this assumption (**) means that for every proposed action a = h(xo) of the 
learner for the fixed argument x0 there is a legal countermove of  the adversary (where 
he gives a value y(a) as the correct value f(xo) of the target function f at argument xo) 
which causes an "unusually large" loss to the learner. In this context the loss e(a, y(a)) 
is "unusually large" if the sum of g(a, y(a)) and of the remaining "adversary power" 
A D V d { f  6 tic: f(xo) = y(a)}) after this countermove exceeds the "adversary power" 
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A, 

Figure 2. 

47----- 1 r 1 

y(a~) a I a2 y(a2) 

A2 

Definition of A1 and A; in Case 1. 

ADVe (~) at the beginning of this move by more then the previously specified nonzero 
quantity e,+l. 

The only chance to refute this assumption (**) is to show that then we could seIect two o f  
these countermoves (y(al )  and y(a2) for two suitable actions al, a2) and a partition of the 
action space A into subsets AI and A2 such that the learner would still suffer an "unusually 
large" (although possibly by a ffaction of e,+l smaller) loss if the adversary would for 
i = 1 and i = 2 always respond with the same countermove y(ai)  for any proposed action 
a = h(xo) c A i .  This would lead to a contradiction to the defnition of ADVe (~) (as the 
smallest total loss along a root-leaf path in a tree where the smallest total loss along any 
rootqeafpath is as large as possible), since we could then construct an adversary tree L¢ for 5 
which has (x0, Ü} as label of the root, (A1, y (a 1)) and (A2, y (a2)) as labels of the edges from 
the root, and an almost optimal adversary tree/~/for the subclass { f  6 Ü: f ( x o )  = y ( a i ) }  

attached below the edge with label (Ai, y(ai))  (for i = 1,2). This adversary tree H would 
then have on any root-leafpath a total loss that exceeds ADVe (Ü) by S~+l -5--, contradicting the 

definition of ADVe(Ü). 
In order to carry out this plan for refuting (**) one has to look at the concrete structure 

of äny possible function a ~+ y(a)  that satisfies the conditions of (**). For example 
if there exist some al,  a2 ~ A such that y(al)  <_ a~ < a2 < y(az)  (this is Case 1 in the 
subsequent analysis), then one can easily read oft from Fig. 2 that the assumed monotonicity 
of the function L with g(a, y) = L([a - y[) implies that for A1 := {a c A:a  < a~} and 
A2 : :  A - A1 the desired properties are met (since g.(Ai, y(ai))  > g.(ai, Yi) for i = 1, 2). 

If  there are no actions al,  a2 as above, then we may conclude that the set {a E A: y (a) > a } 
is "closed to the left", i.e. Va, a f ~ A ( (y (a )  > a / x  a' < a) ~ y(a ' )  > d )  (this is Case 
2 of the subsequent precise proof). In this case one either has Va ~ A ( y ( a )  > a) (this is 
Case 2.1), or A can be partitioned into a l e r  interval {a 6 A: y(a)  < a} with supremum sl 
and a right interval {a ~ A: y(a)  < a} with infinum s2 > Sl (this is Case 2,2). The idea 
for the definition o fa l ,  aß, A1, Az for these two subcases can be easily read oft from Fig. 3 
respectively Fig. 4. The precise construction is a bit more involved, since it also depends on 
the concrete structure of the loss function ~. However the reader may sldp the subsequent 
detailed proof without loss of understanding for the later results in this päper. 

The precise refutation of assumption (**) proceeds as follows. We fix for each a 6 A 
some y(a)  E Y as in (**). In each of the following cases we get a contradiction by building 
an adversm'y tree// /for Ü which satisfies INFe(U) _< ADVe(Ü) + - ~  (hence L¢ provides 

a contradiction to the definition of ADVe (~)). The label of the root of H will always be 
<x0, ~->. 
Case l .  3al ,a2 e A (y(a l )  < al < a z < y ( a 2 ) ) .  
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A1 

I I 

al y(al) a 2 

A2 

Figure 3. Definition of A1 and A2 in Case 2.1. 

A 1 
J ~  

y(a2) .a t S~ $2 a2 yiaO 

A2 

Figure 4. Definition of A1 and A2 in Case 2.2. 

Then g(a, y(al))  > e (a l ,  y ( a l ) )  for all a >_ al ,  and e(a,  y(a2)) > g (a2 ,  y(a2)) for all 

a 5 az .  We set A1 : =  {a E A: a > al  } and A2 : =  A --  A1. 

We choose {A1, y(al)) and (Az, y(a2)) as labels of the edges that leave the root of the 

constructed adversary tree Le. Below the edge with label {Ai, y(ai)) we attach an adversary 

tree L/i for { f  6 Ü: f (xo)  = y(ai)} that satisfies INFe(b//) > ADVe({ f  E Ü: f (xo)  = 
y(ai)}) _ -'~--'e~+~ for i = 1,2. By definition of Ai we have g.(Ai, y(ai)) _> e(ai, y(ai)) for 
i = 1, 2. Hence 

INFe(b/) = min{INFe(æi) + e(Ai, y(ai)): i = 1, 2} 
~s+l 

> min{ADVe({f  ~ Ü: f (xo)  = y(ai)}) - T + g(Ai, y(ai)):i  = 1, 2} 

> ADVe (Ü) + «s+---L1 
2 

by the definition of y(ai) for i = 1, 2. 

Case2 .  Va, a' 6 A  ((y(a) < a A a '  < a ) ~  y ( a ' ) < a ' ) .  
We define 

sl : = s u p { a ö A : y ( a ) > a }  and s 2 : = i n f { a ö A : y ( a )  <a}  

(as usually, we set sup 0 : =  - ~  and in f0  :=  ~ ). The assumption of this case impties 
that sl _< s2. 

Case2.1 .  Va ö A (y(a) > a). 
We first show that sl = cx~ in this subcase. Assume for a contradiction that sl < ~ .  Set 

zo : =  inf{z > 0: L(z) > 0}. 
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Then L(zo )  = 0. Since g.(a, y ( a ) )  < e.~+l for all a ~ A, there exists some 3 > 0 such that 
y ( a )  > Sl for a l l a  e A with la - Sll _< 3. If  Is1 - y(a) l  _< z0 for all these a c A, then 
this would imply that g(a,  y ( a ) )  ~ 0 for a --+ sl .  If Is1 - y (a l ) l  > zo for some al  c A 
with y ( a l )  > Sl, then L ( l a  - y(a l ) l )  > L(Isa - y(a l ) l )  > 0 for all a c A. This provides 
a contradiction to the assumption (+) of Theorem 1. Hence we may assume that sl = oo. 

Fix any al  ¢ A. Choose a2 ~ A such that a2 > y (a l )  and g.(a2, y ( a l ) )  > ~(a l ,  y(a l ) ) .  
Set Am : =  {a e A : a  > az} and AZ : =  {a C A : a  < a2} (see Fig. 2). We then have 
g(Al ,  y ( a i ) )  > g.(al, y ( a l ) )  and g.(Aä, y (aa) )  > g(aa, y (a2) ) .  Construct b /analogously  as 

in Case 1. 

Case 2.2. 3a l ,  aa ~ A ( y ( a l )  > al /x y (a2)  < a2). 
We then have - o c  < Sl < s2 < oo by the definition of Case 2. Our strategy in this 

subcase is to choose al  < Sl so close to sl that y ( a l )  > Sl, and that g(sm, y ( a l ) )  differs 
~.+1 Analogously we want to choose az > s2 so close to sa from g.(al, y ( a l ) )  by at most ---4--' 

«*"+1 (see Fig. 4). that y(a2)  < s2 and that g(s2, y(a2)) differs from/~(a2, y(a2)) by at most --7- 
It turns out that such choice of am, az is always possible except for subcase 2.2.2, where we 

trivially succeed with a slightly different choice of a l ,  a »  

Set 

rl : =  sup{la - y ( a ) l : a  6 [Sm - 1, sl] N A} and 

r2 : = sup{la - y(a) l :  a c [$2, $2 -~- 1] ~ A}. 

Case 2.2.1. rm < oc and r2 < ec. 
Set r : =  max( r l ,  r•). Then the continuous function L is uniformly continuous on the 

compact  interval [0, r].  Hence there exists some «' > 0 (w.l.o.g. «'  < 1) such that 
[ L ( z ) - L ( z ' ) I  < 5- Ü f o r a n y z ,  z' E [0, r] with [ z - z ' l  < e'. Define as in Case 2.1 

z0 : =  inf{z > 0: L ( z )  > 0}. 
Define A1 :=  {a ~ A : y ( a )  > a} and A2 : =  {a E A : y ( a )  < a}. We want to 

8 s + 1  

choose am ~ A such that la1 - sl[ < e' ,  L( la l  - sl[) < --g-, and L([s l  - y (a l ) l )  > 0. 
If  Is1 - y ( a ) l  < zo for a l l a  6 A1 with l a - s l l  < e' and L ( l a - s l [ )  < ~-~, then 
L ( l a -  y(a ) l )  --+ 0 for a -+  Sl, a ~ A1 (since I l a -  y ( a ) l -  Isl - y ( a ) l l - +  0 for a --+ sl ,  
a 6 Am). This is a contradiction to the fact that L(Ja  - y(a)[)  > e.,+l for all a 6 A (by the 

definition o f y ( a ) ) .  Hence there exists some al  6 AI with ]am - s l ]  < ~', L ( [a l  - s l  I) < - -  - -  2 ' 

and [sl - y (a l ) l  > zo (thus L( I s l  - y(a l ) l )  > 0). Analogously there exists some a z E A2 
8s+l 

with la2 - s2] < e' ,  L([a2 - s21) < -T ' ,  and L([s2 - y(a2)]) > 0. 
Since L(]ai  - y (a i ) ] )  > e,,+l by the definition of y(a i ) ,  and since L([ai  - si ]) _--~-< ~«+~ by 

the choice of  a i ,  we have y ( a l )  > Sl and y(a2) < s2. Furthermore, we can conclude that 
y ( a l )  # y(a2), since otherwise Sl < y (a l )  = y(a2) < s2. This would provide a contra- 

diction to (+) because (sl ,  s•) N A = {3 by the definition of s l ,  s2, and L(Is i  - y (a i ) t )  > 0 

by the choice of  ai for i = 1, 2. 
We have ]ai - y(ai)]  <_ r since e '  < 1. Hence g.(Ai, y (a i ) )  = inf{L([a - y ( a i ) ] ) : a  c 

Ai}  <_ L(Is i  - y (a i ) ] )  >_ L(]ai  - y (a i )] )  - -T'e~+l = g.(ai, y (a i ) )  - -T-,e'+' since [ai - y (a i ) l ,  
Isi - y (a i ) l  ~ [0, r] and [[ai - y (a i ) l  - Isi - y (a i ) l l  < lai - sil < e',  i = 1, 2. Therefore 
we can construct an adversary tree/d for Ü with INF~(b/) >_ ADVe(Ü) + ~ by attaching 

below the edge with label (Ai ,  y (a i ) )  an adversary tree b/i for { f  E Ü: f ( x o )  = y (a i ) }  with 
e,-x.~ i = 1 , 2 .  INFe(b/i) > ADVe({ f  E Ü: f ( x o )  = y (a i ) }  - 4 ," 
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Case 2.2.2. rl = r2 = ~ .  
If  sup{L(z): z 6 R +} < ec, then L is uniformly continuous on R + (since L is nondecreas- 
ing). Hence we can argue as in Case 2.2.1, with R + instead of [0, r]. 

We assume in the following that sup{L(z): z 6 R +} = ex). Define A1 :=  {a 6 A: y(a) < 
a} and A2 :=  {a 6 A:y(a)  < a}. We can then conclude that sup{g(A1, y(a)):a 
[sl - 1, sl] N A} = ec and sup{g(Aa, y(a)):  a 6 [s2, $2 "~ 1] N A} = oc. Hence it suffices 
for the construction of Zd to choose some al ~ [sl - 1, si] N A such that g(A1, y(a~)) > 
ADV~(~) +e=+l,  and some a2 6 Is2, s2+ 1] N A such that g(A2, y(a2)) < ADVe(5 ~) +e ,+ l .  
The resulting adversary tree b/for  5 c of depth 1 satisfies INFe(b/) > ADVe(5 ~) + «,,-+I. 

Case 2.2.3. 1{i c {1, 2}:ri < cx~} I = 1. 
In this case we use for i with ri < ex) a construction of  (Ai, Yi) and/di as in Case 2.2.1, and 
for j ~ {1, 2} - {i} a construction of  (A i, Y i) (and b(i) as in Case 2.2.2. 

Case2.3.  Va 6 A (y(a) < a). 
This case is dual to Case 2.1, and can be handled analogously. 

This completes the proof of  Lemma 1, and the proof that 

LC-ARBe (7)  < ADVe (5 c) 

in case (il). 
The inequality LC-ARBe(7)  > ADV«(7)  is shown in case (ii) as follows. Assume 

for a contradiction that LC-ARBe(7)  < ADV~(7). Fix some adversary tree b{ for the 
considered 7 and A such that INFe (b0 > LC-ARBe (5 v) ÷ p for some p > 0. Let B 
be an arbitrary learning algorithm for 7 with hypothesis space A x. The adversary tree b/ 
provides in the obvious way responses to the hypotheses h of B, until a leaf of  b/has been 
reached. If  one has arrived in/g at a node v with label/x~, Uv}, (A1, Yl) and (A2, Y2) are 
the labels of  the two outgoing edges, and h(x~) E Ai (i c {1, 2}) for the current hypothesis 
h ~ A x of learning algorithm B, then the adversary gives (x~, Yi} as his next response. 
Note that this response is a valid move of the adversary, since by definition o f /g  there 
exists some f c 7~ with f (x~)  = yi. The loss g~(h(x~), Yi) of the learner at this round 
satisfies g.(h(x~), Yi) >~ ~(Ai, Yi). The adversary then proceeds in/.7 to the node at the end 
of the edge with label (Ai, Yi ). In this way the learning algorithm B defines a path from the 
root to some leaf of  U. By definition of  INFe (/~/) the total loss K of  the learner during the 
resulting learning process satisfies K > INFe (/.1). This implies that K < LC-ARBe (7)  + p. 
Since B was chosen arbitrarily, this inequality provides a contradiction to the definition of 
LC-ARBe (5c). 

For the proof of  Theorem 1 in case (i) we first note that the inequality 

LC-ARBe (7)  > ADVe (7)  

can be shown in the same way as for case (ii). However this proof is simpler since LC- 
ARBe(7) ,  ADVe(7)  6 N U {~c} for the discrete loss function ~. The inequality LC- 
ARBe (7)  < ADVe (7)  is shown in case (i) as follows. The claim is obvious if ADVe (7)  = 
e~. For all other function classes the claim is shown by induction on ADVe (7).  

We define a learning algorithm B for 7 ,  which uses as first hypothesis a function h: X -+ 
2" that as signs to each x ~ X s ome y E Y such that ADVe ({ f ~ 7 :  f (x) = y }) is as large as 
possible. The subsequent Lemma 2 implies that ADV~({f 6 7 :  f (xo)  = Yo}) < ADV~(¢') 
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for any pair (x0, Yo) that the learner might receive as a counterexample to this hypothesis 
h (because either ADVe({f  ~ Y=: f (xo)  = y}) < ADVe(~-) for all y c Y, or h(xo) is the 
only value y 6 Y such that ADVe({f  6 Sc: f (xo)  = y}) = ADVe()c)). 

For subsequent rounds the learning algorithm B employs a learning algorithm /~ for 
{ f  E ~: f (xo)  = Y0} with LCe(/~) < ADVe({f  6 ~-: f (xo)  = Y0}). Such/} exists by the 
induction hypothesis. Furthermore the preceding facts imply that LCe(B) < ADVe({f  
.F: f (xo)  = Yo}) + 1 _< ADVe(~-). [] 

LEMMA 2. Assume that A = Y and g. is any lossfunction such that g(Ä, y) > O for any 
Ä c y, y ~ y with y ~ Ä. Then for all x c X there exists at most one y ~ Y such that 
ADVe({f e 7: f(x)  - -  y } )  = ADVe(~). 

PROOF OF LEMMA 2. Assume for a contradiction that for some Xo 6 X there are Yl, Y2 E Y 
with Yl 7 ~ Y2 and ADVe({f  E 5=: f (xo)  = Yi}) = ADVe(5 =) for i = 1, 2. 

Then one can build in the following way an adversary tree gg for 5 = with INFe (gg) > 
ADVe(¢-): The root of / , / i s  labeled by (x0, U). Partition Y into At, A2 such that Yi ~ Ai 
for i = 1,2. Assign (A1, Yl } and (A2, Y2) as labels to the edges from the root of gg. Attach 
below the edge with label (Ai, Yi) an adversary tree ggi for { f  6 5=: f (xo)  = Yi} with 
INFg(ggi) = ADVe({ f  ~ )c: f (xo)  = Yi}). [] 

Application 1: Randomization in an oblivious environment 

We consider in Theorem 2 an alternative model for function learning, where the learning 
algorithm may use randomization, and the given sequence of pairs (x, T(x)) is fixed before 
learning takes place and is therefore oblivious to the actions (and the randomization) of 
the learner (see (Maass, 1991)). For this model we write RLC-OBLe(5 ,  ~ )  in place of  
LCe(5 c, 7-{). It is easy to generalize the results from (Maass, 1991) to show that in the 
case ~ is the discrete loss function, RLC-OBLe (~,  5 r) < In 15tl for any finite function 
class 5 c. The following lirnits the amount randomization can help the learner, even in an 
oblivious environment. 

THEOREM 2. Assume that X, Y, A, Y and g. satisfy the assumption of Theorem 1. Then 
RLC-OBLe(5 c, A x) > 1LC-ARBe(Sr). This lower bound is optimal. 

PROOF OF THEOREM 2. The proof of the lower bound proceeds by showing that any 
adversary tree b / fo r  f gives rise to an oblivious sequence S of examples, for which the 
expected total loss of any randomized learning algorithm is at least ½INFe (gg). 

Let gg be some adversary tree for 5 c and ler B be a probabilistic learning algorithm for 
B in the model RLC-OBL with arbitrary hypotheses. One uses gg to construct an oblivious 
sequence S of adversary responses (x, y) such that the expected total loss of B for this 

1 . INFe (gg). The simultaneous construction of S and of an associated path sequence S is >_ 
in gg starts at the root of/,/. Assume that the so far constructed path ends at an interior hode v 
with label (xv, Uv), and that the two outgoing edges from v have labels (Ai, Yi) for i = 1,2. 
If  we have p > ½ for the probability p that h(x~) ~ A1 conditioned on the assumption 
that B has processed the previously constructed sequence of adversary responses (where 
h ~ A x is the current hypothesis of the learner), then (x~, Yl) is chosen to be the next 
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pair in the sequence S. I f  p < ½ one chooses (x~, Y2) as the next pair in S. One extends 
the definition of the path in L¢ by the corresponding edge with label (Ai, Yi), i c {1, 2}. 
t h e  expected loss of B for this round of the learning process is _> ½e(A1, Yl), respectively 

_> ½~(A2, Y2). This implies the claimed lower bound for the expected total loss of  B, since 
the latter is equal to the sum of the expected losses of B for the individual rounds of the 
learning process. 

It was shown in (Maass, 1991) that there exist function classes 5 r (in fact: classes of 
{0, 1} valued functions) such that RLC-OBL~(5 c) = ½ADVe(5~). [] 

4pplication 2: The utility of generalized membership queries 

From this point on, we will focus exclusively on the case in which e is the discrete loss 
function, and we will drop the subscript ~ from our notation (i.e., writing LC-ARB(5)  for 
LC-ARBe ( f ) ) .  

We now turn to generalizations of membership queries for function learning. If  one 
allows queries of the form "What is the value of T(x)?" ,  and the range Y is infinite, 
one cannot expect to get a lower bound on the required number of  queries in terms of a 
nontrivial function of LC-ARBe(5 r) that holds for all 5 r. The reason is that the domain X 
might contain some special point xo such that, for any f c Jr, f(xo) reveals the identity of  
f .  The following result provides a lower bound for learning with a large variety of other 
queries. Special cases of such queries are for example: "In which of the intervals 11 . . . . .  Iq 
of R does T(xo) lie?" (for some partition 11 . . . . .  Iq of the range of f ) ,  or "Does T have 
1, 2 . . . . .  q - 1, or more than q - 1 points x where the derivative T'(x) of T has value 0"? 

The following result shows that the use of arbitrary queries with at most q different 
possible answers, where q <_ 1 ÷ LC-ARB(Sr), can at best reduce the learning complexity 
by a factor 1 log(1 +LC-ARB (f)) '  

THEOREM 3. Assume X and Y are arbitrary sets and Y is an arbitrary subset of yX 
(~ is the discrete loss function, which is dropped from our notation). We assume that 
d :=  LC-ARB(U)  < ~ .  

Let B be an arbitrary learning algorithm for Y that either proceeds at each round as 
usual (i.e. B proposes a hypothesis h c yX), or asks a query of the form "To which of the 
subclasses P1 . . . . .  Pq of Y does T belong?", for some arbitrary partition (P1 . . . . .  Pq) of 
f with q < d + 1. We define the total loss of B in a learning process for Y: as the number 
of queries asked by B plus the sum of the losses of B at the other rounds (i.e. the number of 
incorrect predictions of B). Let LC(B)  be the supremum of the total losses of B that occur 
in learning processes for ~. 

a . This lower bound is optimal. Then LC(B) > log(l+d) 

PROOF OF THEOREM 3. The proof of the lower bound proceeds by constructing an adver- 
sary strategy for B with the help of an adversary tree b/such that INF(U) = LC-ARB (7.). 

Fix some adversary tree/.4 for 9 c with INF(b/) = d. Select some fv c f v  for each 
node v on level d, and let 7- be the set of these 2 d functions f~. We define with the help 
of L¢ an adversary strategy for the learning algorithm B such that after i rounds there are 
> 2d/(d + 1) i functions in f that are consistent with all responses given during the first i 
rounds (see Theorem 6.8 in [MT 92] for a similar argument). 
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In the case of a query with a partition (P1 . . . . .  Pq) of f at round i ÷ 1 the adversary 
responds with that pj which contains the largest number of functions in ~ that are consistent 
with all preceding responses. 

In the case of an equivalence query at round i + !, where the learner proposes a hypothesis 
h: X -+ Y, the adversary fixes some path Ph from the root of/~/to some node vh on level 
d such that for every node v 7~ vh on the path Ph the label {,4, y) of the other edge from v 
(i.e. that edge which does not lie on Ph) satisfies h(x~) ~ y. Let s > 1 be the number of 
functions in ~ that are consistent with all responses during the first i rounds. 

We will subsequently show that for some node fi on path Ph the immediate subtree of 
that does not contain vh contains at least s/(d + 1) nodes v on level d such that f~, ~ .~ is 
consistent with all responses during the first i rounds. Let ~ be the first such node on Ph, and 
let {A, y} be the label of  that edge from ~ that does not lie on Ph. Then the adversary gives 
the response (x~, y) at round i + 1. By construction, this response keeps at least s/(d + 1) 
functions in ~- "alive" (i.e. consistent with all responses during the first i + 1 rounds). 

Assume for a contradiction that there does not exist any node ~ on Ph as above. We then 
have s / (d  + 1) > 1, i.e. s > d + 1, since otherwise f~h would be the only function in f-  
that is consistent with the first i responses (contradicting our assumption that s > 1). Since 
Ph has length d, there are then, apart from f~h, less than d • ~ functions in ~ that are 
consistent with the first i responses. Hence the definition of s implies that s < 1 + d .  " d+l  

s < d~l + d • 7;-7 = s, a contradiction. Thus we have shown that the preceding adversary 
strategy is welldefined. 

A straightforward induction on i shows that for every round i there are _> 2d/(d ÷ 1) i 

functions in ~ that are consistent with all responses which the preceding adversary strategy 
has given during the first i rounds. 

The optimality of the lower bound of Theorem 3 is demonstrated by the following ex- 
ample. Consider any d c N such that log2(d + 1) ~ N. Set X :=  {1 . . . . .  d}, Y :=  {0, 1}, 
F :=  yX. Thus LC-ARB(5)  = d. In order to construct a learning algorithm B with 
LC(B) d d r ~ ] '  we partition X into = [ ~ 1  subsets Si of size at most log2(d ÷ 1). 

At round i of  any learning process, the algorithm asks: "To which of  the subclasses 
P1 . . . . .  Pd+I of .T does T belong?" for a partition P1 . . . . .  Pd+l of U that classifies each 
f c U according to its restriction to Si (in other words: at round i the learner asks to see 
the values of the target function for all arguments in Si). [] 

REMARK. The special cases of the Theorems in this section for concepts (i.e. Y :=  {0, 1}) 
are due to Littlestone (1988) (Theorem 1), Littlestone and Maass (Maass, 1991) (Theorem 
2), and Maass and Turan (1992) (Theorem 3). Using methods from (Auer & Long, 1994), 
one gets a suboptimal but more general bound than that in Theorem 3, proving that LC(B) > 
lodk log ( k - ~ ) i f  queries of the form "To which of the subclasses P1 . . . . .  Pk of 5 does T 
belong?" are allowed for some fixed k > 2. 

2.1. Adversary Trees for Function Learning in Models with Weaker Reinforcement 

We briefly consider here two natural variations of  the model for function learning that was 
defined at the beginning of  this section. It is curious that for each of  these two variations 
there also exists in addition to the usual min-max definition an equivalent max-min definition 
of the resulting learning complexity in terms of adversary trees. 



ON THE COMPLEXITY OF FUNCTION LEARNING 20 t 

Let h,. ~ 7-I be the hypothesis of the learner at round s of a learning process. In the first 
variation of the learning model, we assume that instead of a pair (x., T(x=)), the learner 
receives at round s from the environmentj ust an argument x,. e X such that h, (xs) ¢ T (x=). 
However the learner does not receive the "correct value" T(xs) for argument xs. We write 
LC-ARBweak(.U) for the maximal number of steps that the best learning algorithm for Y" 
with arbitrary hypotheses has to use in this model. 

For this learning model we consider a notion of a finite adversary tree b/weak where each 
node is labeled by some x c X. Each interior node has fan-out I Y I, and its outgoing edges 
are labeled by all possible values y e Y. We say that a function f e U is qualißed for an 
edge with label y from a node labeled x if f ( x )  ~ y. We demand that for every leaf of 
~/weak there exists at least one function f e 5 r that is qualified for all edges on the path from 
the root to that leaf. We set 

INF(/gweak) :=  min{m e N: m is the length of a path 

from the root to a leaf in b/weak}, 

and 

ADVweak(5) := sup{INF(/Aweùk): L(weak is an adversary tree 

for )c as defined above}. 

THEOREM 4. Let X, Y be arbitrary sets (finite or infinite) and 2 = c_ yX nonempty. Then 

LC-ARBweak(ä r )  = ADVwe~k(U). 

PROOF OF THEOREM 4. It is obvious that any adversary tree b/we=k defines an adver- 
sary strategy that forces the learner to make at least INF(/Aweak) mistakes. This implies 
that LC-ARBweak(5 c) > ADVweak(.U). In order to show the other inequality we set 
)rx.y :=  { f  e 5 :  f ( x )  ¢ y}. We define a learning algorithm which always uses as 
next hypothesis h a function such that for any x e X the value h(x) e Y has the property 
that ADVweak(Sx,h(x)) < ADVwe~k(~-). It will be shown in Lemma 3 that this learning 
algorithm is well-defined. A straightforward induction on ADVe(5 c) shows that for every 
nonempty function class )c _c yX this learning algorithm for 5 c requires at most ADVe() r) 
learning steps. 

LEMMA 3. 'v'x C X 3y E Y(ADVweak(f'x,y) < ADVweak(5)). 

PROOF OF LEMMA 3. Assume that the claim does not hold for some Xo e X, i.e. Vy e 
Y(ADVweak(.~xo,y) >_ ADVweak(f')). Then one can build an adversary tree /Jweak for f 
with x0 as label of  the root which satisfies INF(b/weak) > ADVweak(SC). This provides a 
contradiction to the definition of ADVweak(f'). [] 

The second variation of our function tearning model, considered previously by Barland 
(1992), applies to arbitrary function classes f c yX for linearly ordered sets Y. In this 
model the learner receives at round s together with an argument xs such that h., (xs) ~ T (x~) 
also the information whether T(xs) > h,(xs) ("h,.(x,) is too low") or T(x.,) < h».(xO 



202 AUER ET AL. 

("h,. (xs) is too high"). We write LC-ARBsign 0 c) for the maximal number of steps that the 
best learning algorithm for ~- with arbitrary hypotheses has to use in this model. 

We define for this model a notion of a finite adversary t ree  b/sign where again each node is 
labeled by some x E X. If  a node is not a leaf then it has two outgoing edges that are labeled 
by ">  y"  respectively "< y'" for some y ~ Y. We say that a function f is qualified for 
an edge with label ">  y"  C <  y") from some node with label x if f ( x )  > y (respectively 
f ( x )  < y). We demand that for every leaf of/-'{sign there exists at least one f E .~ that 
qualifies for all edges on the path from the root to that leaf. 

INF(b/sign) :=  min{m c N: m is the length of a path 

from the root to a leaf in b/sign}, 

and 

ADVsign(U) :=  sup{INF(b/sign): b/sign is an adversary tree 

for .Y as defined above}. 

THEOREM 5. Let X be an arbitrary set and let Y be an arbitrary linearly ordered set (finite 
or infinite). Then for any nonempty function class 5 c yX, 

L C - A R B  sign (.-~') = ADVsign (5")- 

PROOF OF THEOREM 5. Each adversary t ree  b/sig n defines an adversary strategy in the 
obvious way. Simultaneously each learning process also defines a path from the root to a 
leaf in b/sign in the following way. Assume that one is currently at a node with label x, and 
that " >  y"  and " <  y" are the labels of  the two edges out of  that node. If  h(x) < y, where 
h(x) is the learner's prediction of the value of  the target function at argument x, then the 
adversary responds that "h(x) is too low" and moves fi'om the node with label x along the 
edge with label ">  y". Else the adversary responds that "h(x) is too high" and moves along 
the edge with label " <  y". This observation implies that LC-ARBsign(.T) > ADVsign(-T'). 

In order to show that LC-ARBsign(5 c) < ADVsign(Y) we first note that 

ADVsign(5 c) = OO 

in case that there exists some xo ~ X with I{f(xo): f E 2-}1 = oo. Hence the claimed 
inequality is trivial for this case. In the following we consider the case where l{ f (x): f E 5}1 
is finite for all x ~ X. The claim is also trivial if ADVsign(Y) = 0. 

We define a learning algorithm for 5- that needs at most ADVsign(5 r) steps by recursion 
over ADVsign(5C). The algorithm predicts for each x E X some value h(x) E Y such that 
both ADVsign({f E .Y: f ( x )  > h(x)}) and ADVsign({f E ~-: f ( x )  < h(x)}) are less than 
ADVsign(SC). If  the adversary responds that "h(x) is too low" ("h(x) is too high") then one 
generates the next hypothesis in the same manner, but applied to { f  E 52 f ( x )  > h(x)} 
(respectively { f  6 U: f ( x )  < h(x)}) instead of  5 c. One can easily show by induction on 
ADVsign(5) that this learning algorithm uses at most ADVsign(f) steps. The following 
Lemma shows that this algorithm is well-defined. 
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LEMMA 4. For all x E X there exists some y E Y such that both ADVsign ({ f E f :  f (x) > 
h(x)}) and ADVsign({f E Y: f (x) < h(x)}) are less then ADVsign(Y). 

PROOF OF LEMMA 4. Assume that the claim does not hold for some xo E X. Since 
[{f(xo): f E 5c}[ is finite there exists some minimal Yo E Y such that ADVsign({f E 5c: 
f (xo)  > Yo}) < ADVsign (Y). Together with our assumption this implies that ADVsign 
({ f  E Y: f (xo)  < Y0}) >-- ADVsign(Y). Furthermore ADVsign({f E Y: f (xo) > Y0}) --< 
ADVsign(f) by the minimal choice of Y0. Hence one can build an adversary tree bt~ign for 
f with xo as label of its root which satisfies inf(L/sign) > ADVsign(SC). This provides a 
contradiction to the definition of ADVsign (5c). [] 

REMARK. It is obvious that for any 5 c, 

LC-ARBweak(f) > LC-ARBsign(f) > LC-ARB(Y).  

Very recently a new proof technique was introduced in (Auer & Long, 1994) which shows 
that for any U __c yX, LC-ARBweak(¢') < 1.39[YI [-1 + log 2 [Y[TLC-ARB(f) .  

3. Learning Unions of Function Classes 

In this and the following sections we will only consider the case of function learning with 
the discrete loss function £. Hence we can delete the subscript £ in our notation (as already 
done in the last part of the preceding section, starting at Application 2). 

The quantity LC-ARB (5 c) measures the difficulty of learning given that the target func- 
tion is in 5 r. I f  one has determined interesting classes ~cl . . . . .  ~-p, then the assumption 
that the target function is in uP=Iui is intuitively safer than assuming that the target is in 
one of the individual classes. If  LC-ARB(UP=ISi) is not much larger than the individ- 
ual LC-ARB(U/) ' s ,  this provides evidence in support of using the optimal algorithm for 
LC-ARB (uP=Iui).  

In this section, we approximately determine the best general bounds on 

LC-ARB (U[~=I f i )  

obtainable in terms of 

LC-ARB (5=1) . . . . .  LC-ARB (5~p). 

To the best of  our knowledge, these results are new even for concept learning, where 
Y = {0, 1}. 

Define ~0 as follows. For any kl . . . . .  kp ,  let 

q ) ( k l  . . . . .  kp) = max{LC-ARB(u/P=lsri): Yl . . . . .  Up are function classes with 

LC-ARB ( f i )  = ki for i = 1 . . . . .  p }. 

First, in the case p = 2, we can calculate ~o exactly. 

THEOREM 6. For all kl, k2 >_ O, qg(kl, k2) ---= kl + k2 + 1. 
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PROOF. For the upper bound, consider the algorithm which simply uses the optimal algo- 
rithm for F1 until it has received kl + 1 counterexamples, at which time it switches to the 
optimal algorithm for 5r2. 

Now for the lower bound, choose ki, k2 > 0. Let 5 be the set of all functions f from 
{1 . . . . .  kl -]- k2 -t- 1} to {0, 1} such that I f -1(0) l  < ks. Let ~ be the set of all functions g 
from { 1 . . . . .  kl + k2 + 1 } to {0, 1 } such that Ig -1 (1)l _< k2. Note that every function from 
{1 . . . . .  kl + k2 + 1} to {0, 1} must be in either 5 c or G. In order words, 5 c U ~ is the set of  
all functions from { 1 . . . . .  kl + k2 + 1} to {0, 1 } and therefore, 

LC-ARB(5 c U G) = kl + k2 + 1. (3.1) 

It is easy to see that the VC-dimensions o f f  and G are ks and k2 respectively, proving that 

LC-ARB(5 c) > kl (3.2) 

LC-ARB(O) > k2. (3.3) 

Next, consider the algorithm for f which repeatedly hypothesizes the function which eval- 
uates to 1 on all previously unseen elements of the domain, therefore only receiving coun- 
terexamples which evaluate to 0. Since there are only kl such points, LC-ARB(5)  _< kl. 
Similarly the algorithm for ~ which repeatedly hypothesizes the function which evaluates 
to O on all previously unseen points receives at most k2 counterexamples. Combining this 
with (3.2) and (3.3), we can see that LC-ARB(5 c) = kl and LC-ARB(~)  = ka. Combining 
this with (3.1) yields ~o(ks, k2) < ks + k2 + 1, completing the proof. [] 

The case in which the number p of functions in the union might be greater than 2 is more 
difficult. We obtain closed-form bounds for this case that match to within a constant factor, 
and bounds which are sometimes tighter that are not closed-form. 

3.1. Closed-Form Bounds  

To establish the closed-form bound, we have found it useful to generalize some of the 
Weighted Majority (Littlestone & Warmuth, 1991) results to functions with arbitrary ranges. 

Suppose we have (LC-ARB)  algorithms A1 . . . . .  An for some class f of functions from 
X to Y. The weigh ted  ma x imu m algorithm (for A1 . . . . .  An) studied in this section (we will 
hereafter refer to it simply as WM) works as follows. 

It initializes a sequence Wl, i . . . . .  Wl,, of weights. Its initial hypothesis hi, wM is formed 
as follows. Suppose hi,s . . . . .  hs,n are the initial hypotheses of A1 . . . . .  An respectively. 
Then for any x E X, h 1, wu (x) is the element y E Y for which ~ i :h  ~ (x)=y wl ,i is maximized. 

After the tth counterexample (xt, Yt), the weights are updated as follows: 

wt,i i f  ht . i (xt)  = 3't 

Wt+l'i ~ wt,i otherwise. 
-7- 

Also, for all algorithms A i for which ht , i (x t)  5 ~ Yt, the counterexample (xt, Yt) is fed 
to Ai ,  and ht+I,i is set to Ai ' s  next hypothesis. For all other algorithms, the hypothesis 
is unchanged. The master hypothesis h~+l,WM is then calculated from ht+l,1 . . . . .  ht+l,n 
as above. 
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The following notation will be useful for the rest of this subsection. For each positive 
integer t, let 

Ut ~ Z Wt'i 
i=1  

be the total weight before the tth counterexample. 

LEMMA 5. For any LC-ARB algorithms A1 . . . . .  An, after m counterexamples, 

in Vl 
~)m+l 

m < - -  
- ln(4/3) 

PROOF. Choose a positive integer t _< m. Let (xt, Yt) be the tth counterexample received 
by the WM algorithm. By the definition of h¢.wM, 

Udt,i <-~ ~ Wt, i 
i:ht,i (xt)=Yt i:ht, i (x t)=ht,WM (xt) 

and therefore, since Yt ~ ht,wM(xt), 

wt,i < Vr~2. 
i:ht,i (xt)=Yt 

(3.4) 

Therefore, we have 

Ut+ 1 • t t ) t + l , i  

i = 1  

-~'(i:h,,i(xt~)=ytll)t'i)'@~(i:h~,¢~(xt)Byt Wt'i) 

i:ht,i (xt) =Yt 2 

3vt < - -  
- -  4 

by (3.4). By induction, we have 

Vm+l Æ (3/4)mvi. 

Solving for m yields the desired result. [] 

Many other of the Weighted Majority results (Littlestone & Warmuth, 1991) appear to 
generalize just as easily. 

For each n, define the set SVAR,~ of functions from {0, 1 }n to {0, 1} to be all f i ,  1 < i < n, 
where j~(Y) = xi for all 2 ~ {0, 1} n. 
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LEMMA 6 (Littlestone, 1989). For all n, 

L C - A R B ( S V A R n )  = Uog2 nj .  

Now we are ready to establish bounds on ~o that match to within a constant factor. 

THEOREM 7. For all p > 1, k~ . . . . .  kp > O, 

l p 
l°g2 Z 2k~ 

i=1 

[ P P 

< (p(kl . . . . .  kp) < log2(4/3~ log 2 Z 2k* < 2.41 log 2 Z 2k'' 
i=1 i=1 

PROOF. We begin with the upper bound. Choose a sequence 5"1 . . . . .  Up of classes of 
functions defined on a common domain X. 

Consider the following (LC-ARB)  algorithm (call it A) for [..JiP=l y/ .  It uses the optimal 
algorithms for 5-1 . . . . .  Up (call them A1 . . . . .  Ap)  as subroutines for the WM algorithm, 
with the initial weights set to 2 Lc-ARB(~-I) , . . . ,  2 Lc-ARB(f'p) . 

Suppose the target is in Sei, and that A has received m counterexamples. Since Ai can 
receive at most  LC-ARB ( f i )  counterexamples, we have 

Vm+l > Wm+l,i > 2-LC-ARB(~-~)WLi = 2 -Lc-ARB(7~)2Lc-ARB(5') = 1. 

Applying L e m m a  5, 

in ( Z/P_1 2 Lc-ARB{~)) 
m <  

ln(4/3) 
log / v ' p  2LC-ARB(Z)~ 

2 \ Z.~i=I ) 

log2(4/3) 

_< 2.411og 2 2 Lc-AeB(N) . 
\ i=1 / 

Since 5-1 . . . . .  Up were chosen arbitrarily, 

1 
~o(ki . . . . .  kp) < log2(4/3) 

P 
log 2 ~ 2 ~~ . (3.5) 

i=I  

Now for the lower bound. Choose kl . . . . .  kp .  Let X = {0, 1} Bp=12ki , Y = {0,  1}. For 
each u < Y~-/P=I 2ki, let fù: X --+ Y be defined by setting fu(X) = xu for all £ ~ X. For 
each i < p,  let 

Gi = fu: 2 kj < u <_ 2 kj . 
j = l  j = l  

By trivial application of Lemma  6, for all i, LC-ARB(Gi)  = k l ,  and 

p 

LC-ARB(UP=IGi) = log 2 ~ 2  k~ 
i=1 
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Thus,~p(kl . . . . .  kp) > ]log 2 ~P=I 2k~J • Combiningthiswith(3.5)completestheproof. [] 

Working more on the bounds of Theorem 7, we obtain even looser, but simpler, bounds, 
which still match to within a constant factor, and give a better idea of the flavor of the 
behavior of ~o. 

THEOREM 8. For all p > 2, ka . . . . .  kp > O, 

1 
~(log 2 p q- maxki - 1) 

< ~O(kl . . . . .  kp) 

1_ . (  max ki) 
< log2(4/3) l°g2 P + 

< 2 . 4 1 ( l o g 2 p + m a x k i ) .  

PROOF. Choose p > 1, kl . . . . .  kp > O. Then, by Theorem 7, 

1 P 

qO(kl . . . . .  kp) < 1°g2(4/3) log 2 Z 2k' 
i=1 

< 1 log2(pmax2ki )  
- log2(4/3) 

1 + max kl) 
-- log2(4/3) (l°g2 P . 

< 2.41(log2 p + maxki)  

establishing the upper bound. 
Also, again by Theorem 7, 

99(kl . . . . .  kp) > l p 
l°g2 Z 2Æ~ 

i=1 

> log 2 2 k~ - 1 
,, i=1 / 

> ( log 2 ( ( p - 1 ) +  m a x 2 ~ ' ) ) - 1  

> l o g  2 2 ( p - l )  max2 k~ - 1  

= l ( l o g 2 ( P - 1 ) + m a x k i t  
2 " / 

> -  log 2 p + m a x k i - 1  
- 2 

completing the proof. [] 
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We next turn to proving that the upper bounds of Theorems 7 and 8 cannot be improved 
by reducing the leading constant. 

For each u 6 N, let POWER, be the set of all functions from {1 . . . . .  u} to {0, 1} and for 
each v < u and for each f ~ POWER,, let 

13r,~ = (g ~ POWER,:  I {x: g(x)  • f (x)} I ~ v}. 

The following lemma, implicit in the work of Maass and Turfin (Maass & Turfin, 1992, 
Proposition 6.3) will prove useful. 

LEMMA 7 (Maass & Tur~in, 1992). Define p: N --+ N by 

p(k) = F9k22 (5-31°g23)k~. 

Then for  each k ~ N, there exists f l  . . . . .  fp(k~ E POWER3k such that 

p(k) 

POWER3k = U BJ i , t  
i=1 

We apply this to show that the 1/log2(4/3) of Theorems 7 and 8 is optimal. 

THEOREM 9. I f  p: N -+ N is defined as in Lemma 7, then 

p(k) times 

( 1  _ o ( 1 ) ) ( l o g 2 p ( k ) + k ) "  
q)(k . . . . .  k)  > log2(4/3) 

PROOF. As observed in (Maass & Tur~in, 1992), for any f ,  LC-ARB(Bf.k) = k (predict 
with f on unseen points). Since LC-ARB(POWER3k) = 3k, 

p(t) times 

~p(k . . . . .  k)  >_ 3k. (3.6) 

Also, 

log~ p(k) + k _< ( (5 -  31og~3)~ + o(k)) +k = (31og~ ~)  ~ +o(~)  

Hence 

1 
3k > 4 (l°g2 p(k)  + k - o(k)). 

- l ° g 2  5 

Combining this with (3.6) yields the desired result. [] 
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3.2. Other Bounds 

Now we described some bounds which are sometimes tighter, yet which are not closed 
U I) 

form. The following theorem describes the bounds, where (_<v) is defined to be ~i=0 (~). 

THEOREM 10. For all p > 1, kl . . . . .  kp > O, 

max{/cN°:2 ' ln2 ' -<k(<lk ' )}i=l  - 

< (p(kl . . . . .  kp) 

< m a x { / 6 N ° : 2 ' - < ~ ( < ' k l ) }  ' i = ~  - 

These bounds are sometimes tighter than those of Theorem 7. For example, Theorem 7 
implies that ~o(5, 10, 20) < 48, where Theorem 10 implies that ~o(5, 10, 20) < 31. 

Our proof proceeds through a series of lemmas. 
For the upper bound, we use a technique that was developed for coding theory and 

extended to address the problem of searching using a comparator that occasionally lies 
((Berlekamp, 1968), (Rivest, Meyer, Kleitman, Winklman & Spencer, 1980), (Spencer, 
1992)). Cesa-Bianchi, Freund, Helmbold & Warmuth (1994) showed that the proof of 
(Spencer, 1992) could be modified to determine the (in some cases only nearly) best bound 
on the number of mistakes for learning a class of {0, 1 }-valued functions, given that an 
unknown algorithm from a pool {A1 . . . . .  Ap} would make at most k mistakes. Due to 
the fact that the functions in our application take on potentially more than two values, 
the elegant argument from (Cesa-Bianchi, Freund, Helmbold & Warmuth, 1994) eannot 
easily be modified for our application. An inductive argument like that given below is 
apparently required. 

The lower bound is obtained by generalizing Lemma 7 and the argument of Theorem 9. 
For the remainder of this section, we adopt the conventiõn that LC-ARB (0) = -1 ,  and 

that for all integers u > 0, w < 0, (~) = 0. Note that even with the above convention, the 
following standard relationships still hold. 

LEMMA 8. For all integers u, v such that u > 1, 

( : )  = ( u 7 1 ) + ( : - 1 1 )  

and 
u u - 1  

We begin by establishing the upper bound. We will make use of a general-purpose 
algorithm described in the following definition. 

DEFINITION 2. For each sequence f l . . . . .  Sp of  function classes, define the algorithm 
By~, ...yp for  learning U['=I G- as follows. Suppose for  each i, ki = LC-ARB(Ui). Let 

{ ~(l)/ r = m a x  l ENo:21 < 
i=I <_kl 
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(One can interpret r as the mistake bound that BF~,...,st, is shooting for.) Let B1 . . . . .  B e be 
optimal algorithms for  ~1 . . . . .  Up respectively. (Note that in this model, optimal algorithms 
exist.) Then BTa,...,y~, 's initial hypothesis h is constructed as follows. I f  ha . . . . .  hp are the 
initial hypotheses of  B1 . . . . .  Bp respectively, for  each x, choose h (x) arbitrarily so that 

{ (r)k~ _ (r)}ki > ~ h(x)  c u c Y:Vy  Z 
i:hi (x)=tt i:hi (x)my 

Notice that h can be viewed as taking a "weighted maximum" of  the hypotheses h a . . . . .  h p, 
F with weights (~) . . . . .  (k,,)" After getting a first counterexample (x, y), if for  each i < p, 

~i = { f  E Ui: f (x) = y}, Bf~,....Tp recurses to Bg~,...,G,, learning t_J[~=l~ i. 

The following lemma shows that B~=~,...,2p'S hypothesis minimizes a technical quantity 
used later in our proofs. 

LEMMA 9. Choose function classes U1 . . . . .  f p. Then if  r, kl . . . . .  kp, hi . . . . .  hp and h 
are defined as in Definition 2, for  all x ~ X, if ~ = h(x),  then for all y E Y, 

E ( r )  ( r )  
i:hi(x)=~ ~ ki - 1 q Z 

z (  )+ i:hi(x)=y ~ ki -- 1 Z <__ ki 
I 

i:h i (x) ~:y 

PROOF. Choosex.  Choose y. Then 

E ki - ki i :h i (x )=y i:hi(x)=~ 

which implies 

z -- < Z -- " i:hi(x)=y <_ ki <_ ki - 1 - <_ki <_ ki - 1 i:hi (x)=~ 

Rearranging terms yields 

i:hi(x)=~ <_ki - 1 + Z i:h.i(x)=y <-ki 

i:h~(x)=y <-- k i -  1 + E i:hi(x)=~ <_ ki 

Finally, adding Y~4:hi(x)¢Iy,~t (_<~,) to the second summation on either side of the inequal- 
ity yields 

r ( r ) +  (r) 
i:hi(x)=~ <-- ki -- I E < ki 
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~:~(r)+ (,) 
i:hi(x)=y <-- ki -- ] E <k  i i:hi(x)~y 

complet ing the proof. 

The following lemma is well known and easily verified. 

LEMMA 10. Choose integers l, p > O, kl . . . . .  kp. Then 

E \ <_ki j <k  i " 
i=1 i=1 

We establish the upper bound for Theorem 10 in the following lemma. 

LEMMAl l .  Choose classes Ul . . . . .  J:p o f  funct ions  with Ui=l Yi  ~ 0. Then i f  f o r  i < p , 
ki = LC-ARB ( ~ ) ,  

i, 2 L C - A R B ( U i = l f / )  < max c No: 21 < 
i=1 <- kl 

PROOF. The proof  is by induction on p + Y~-P=I kl. The induction hypothesis is that for 
each positive integer m, for any -~1 . . . . .  Up, i fk l  . . . . .  kp and r a r e  defined as in Definition 2 
and satisfy m = p + ~~'-1 kl, then B5~1,..,7), makes at most r mistakes. 

Base oase: If  p + )-]P=I ki = 1, then k/ > 0 and 5~j 7~ 0 for exactly one j ,  and k i = 0 
( r ) =  l a n d  and 15j[ = 1. Define 1", h, hl . . . . .  hp as in Definition 2. In this case r = 0, k« 

r (ki) = 0 for all i # j .  Thus h(x )  = h i ( x  ) for all x, and B~~,..,sp never makes a mistake, 
establishing the base case. 

Induetion step: Assume m > 1. Choose 7"1 . . . . .  5rp such that if kl . . . . .  kp are defined as 
in Definition 2, then m = p + ~P=I  kl" Define r, h, hl . . . . .  hp as in Definition 2. Note 
that r > 1. 

Choose a target function T in U~~=17i. Choose x 6 X. Let y = T ( x )  and ~ = h(x ) .  
Assume without loss of  generality that ~ # y. For each i_<p, let ~i = { f 6 5ci: f (x) = y }, 
and li = LC-ARB(9i ) .  

i=1 \ <_kl il i=1 <_kl <_kl - 1 

<_ki Z <k  i -- 1 
i:h y i=hi(x)#y 

+ ( z ( ~ ) + z (  ~ )) 
i:hi(x)¢:y <-kl <-kl - ] i=hi (x)=y 

( ~ « ) +  t r t) i:h <_kl E <_ki - 1 
> 

y i:hi(x)¢y 
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+(z  I')+ :~ ( r )) 
i:hi(x)¢-~ <--ki  i:hi(x)=~ <_k i - 1 

by Lemma 9. Breaking apart one of the summations, we get 

~ (r+~)  
Z \ ~k i  ,] 
i = 1  

> (  ~(~)= ( r ) +  ~ ( r ) )  
- i:h y < k  i < _ k  i - 1 i:hi (x)5~y 

( =trt trt t r)) + E t -  + ~ <_ki <_ki - 1 i:h y <-ki i:h~(x)¢{~,y} i:hi(x)=~ 
(3.7) 

Applying (3.8) yields 

we have 

Since 

,, (r+l"~ 
~ \  _<k~ / 
i = 1  

>-- q- Z <k  i - 1 i:h y <-ki i:hi(x)s&y 

+ <ki + 2 < k i - 1  + i:h y i:hi(x)¢{~,y} i:hi(x)=~ < k  i -- 1 

) t r t) = 2 r + ~ <_ki - 1 " 
i:h y <--ki i:hi(x)5~y 

Since B1 . . . . .  B e are optimal, li < ki i f  h i ( x )  = y and li < ki - 1 i f  h i ( x )  5~ y, so 

P ( r ÷ l ~ > _ 2 ~ ( r )  

k, <ki ] <_li " i = 1  i = 1  

{ r =max I EHo:21 < i=1 <ki 

, ( r + l h  
2r+l > ~ \ <_ki ,]" 

i = 1  

2r+l > 2 ~ (  r ) 
i=1 <--li 

(3.8) 

U U U Since, for all integers u > O, v, (_<v) > (_<v-l) (recall that (<_v) is defined to be 0 for negative 
v), (3.7) implies 
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which trivially implies 

Thus 

2 r > ~ - ' ~ .  

i=l  <--li 

r ¢ l 6 No:2 t _< i=1 <_li 

which, together with Lemma 10, implies 

{ ~«lJ max löNo:21 < < r ,  
i=1 <--li 

which in turn gives 

max 1 E N o ' 2  z_< < r - 1 .  (3.9) 
i=1 <--Ii --  

However, by the induction hypothesis, the number of mistakes made by BG,,..,9 p is at most 

/ ±«/] max 16N0:2  l_< 
i=1 <_li 

and therefore the number of mistakes made by B3:~....,z~, is at most 

{ ~«)/ l + m a x  l ~ N 0 : 2  l_< 
i=1 <_li 

Combining this with (3.9) completes the proof. [] 

The following more general variant of Lemma 7 will be useful in proving lower bounds 
3n ~o. 

LEMMA 12 (Maass & Turän, 1992). Choose integers kl . . . . .  kp > 0. Then for  each 

integer I such that 

2lln21 < ~ (3.10) 
i=1 < k l  

there exist f l . . . . .  f p c POWERt such that 

p 

POWERI = U Bf~,k~. (3.11) 
i=1 
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PROOF. 
f .  Then for each i, 

Prg~u(l {x: f (x) 5/= g(x)} l > k i )= ( 1 -  2 - ' (  l k  ) i 

Thus, for our fixed f ,  

' ( ( ) )  Pr(gl , . . . ,gp)~up(Vi  I {x: f (x) ¢ g i ( x ) }  I > k i )  -= 1"-[ 1 -- 2 -I l . 
i=1 <_ki 

This implies that 

Pr(g~,...,gp)sul,(3f E POWER~ Vii {x: f ( x )  ¢ gi(x)}l > ki) 

_< 2 l __ - 
i=1 \ - -  i l l  

We have 

Choose I satisfying (3.10). Let U be the uniform distribution on POWERt. Choose 

(3.12) 

Pr(gi,...,gp)~Up(~ f E POWER/Vii {x: f ( x )  5& gi(x)} J > ki) < 1, 

and therefore there exist gl , . .  •, gp such that for all f 6 POWERI, there is an i such that 
I{x: f (x) 7~ gi (X)}l <__ ki, i.e. (3.11) holds. This completes the proof. .~ 

We finish the proof of Theorem I0 by establishing the lower bound. 

By (3.12), this implies that 

21 In 21 < ~ 
i=I <-ki 

Dividing by 2 l and exponentiating yields 

2 1 < e x p ( 2 - t ~ ( - < < l ~ i ) )  " i = 1  

Dividing both sides by the right hand side and "pushing the exponential function through 
the sum," we get 

( ( ) )  2117exp - 2  -I 1 < 1. 
i=1 <--ki 

Applying the well known fact that for all x, 1 4- x _< e x yields 

21l--I 1 - -2  -t < 1. 
i = l  _ _  i 
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LEMMA 13. For all p > 1, k1 . . . . .  kp > O, 

{ ~«)i ~o(k 1 . . . . .  kp) > max l C No: 211n 2 z < 
i=1 <-kl 

PROOF. Fix p > 1, kl . . . . . .  kp > O. Choose l such that 

2t ln2t < Z (3.13) 
i=1 <__ki 

P /3 and let f l  . . . . .  fp E POWERI be such that POWERI = [-Ji=l f~,kl- The existence of such 
f i ' s  is guaranteed by Lemma 12. Since for each i, LC-ARB(Bf?,~ i) = ki and LC- 
ARB(POWERI)  = l, we have that 

B ( k l  . . . . .  kp) > I, 

and since l was chosen subject to (3.13), we have 

{ ~«t} B ( k l , . . . , k p )  > max l c No :2 I ln2  l < 
i=1 <_.ki 

completing the proof. D 

Suppose q)weak is defined analogously to q) for the LC-ARBw~ak model described at the 
end of  Section 2. Formally, 

q)weak(kl . . . . .  kp) = max {LC-ARBwe~k(u/P=15ri): 5cl . . . . .  5cp are function classes 

with LC-ARBweak(SC/) = ki for i = 1 . . . . .  p}.  

Using more a straightforward argument, we may determine (0weak exactly. 

THEOREMll. For all p > 1, kl . . . . .  kp > 0 ,  

P 
Bweak(k  1 . . . . .  kp) = (p -- 1) + Z k i .  

i=1 

PROOF. Choose p >_ 1, k~ . . . . .  kp > O. 
We begin with the upper bound. Choose a set X and sets 7"1 . . . . .  5rp for which 

LC-ARBweak(SCl) = kl . . . . .  LC-ARBweak(Yp) = kp. 

Consider the following algorithm for learning u/P=15i. If  p = 1, it just runs the optimal 
algorithm for 7"1. If p > 1, it first runs the optimal algorithm for 7-1 until either it correctly 
guesses the target or until it gets LC-ARBweak(Y~) + 1 counterexamples. In the second 
case, it recurses to learning u/P=2si. By a trivial induction, this algorithm receives at most 

P 

p -- 1 q- ~ LC-ARBweak(SC/) 
i=1 
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counterexamples, establishing the fact that 

P 

q ) w e a k ( k l  . . . . .  kp) < (p - 1) + Z ki" 
i = I  

Now for the lower bound. For each i _< p, define 5c/ to be the set of all functions f 
from {1 . . . . .  p - 1 + y~/P=] ki} to  {2i -- 1, 2i} for which I f - l ( 2 i ) l  _< ki. Trivially, for each 
such i, 

LC-ARBweak(Sri) = ki. (3.14) 

Choose an algorithm A for learning U/~=l F/ in the LC-ARBweak model. Let hi be A's 
initial hypothesis, and for each 1 < t < p - 1 + ~P=a ki, let ht be A's hypothesis, given 
that each previous hypothesis h,. had received s as a counterexample. Define g: { 1,. , p - 
1 + ~--P-1 ki} -~ {1 . . . . .  2p} by g(t) = ht(t). Let i0 < p be such that 

Ig-l({2io - 1,2io})1 < kio. 

Note that such an i0 must exist since otherwise 

1 . . . . .  p - l + ~ k i  
i=1  

= [U/ '= lg - ] ({2 i -  1,2i})1 

P 

= ~ l g - l ( { 2 i  - 1, 2i})1 
i=1  

P 

>_ ~ ( k ~  + 1) 
i=1  

P 

= p + ~ _ k i ,  
i=1  

a contradiction. Define f :  N -+ {1 . . . . .  2p} as follows 

/ 2io if  g(x) = 2io - 1 
f ( x )  = [ 2io - 1 otherwise. 

Since 

I g - l ( { 2 i o -  1})1 _< Ig -1 ({2 io -  1,2io})1 _< kio, 

we have f e  Fio, and therefore f e U//'_l Fi. Furthermore, for each t < p - 1 + }-~f-1 ki 

ht(t) = g(t) # f ( t ) ,  

and if f is the target, t is a valid counterexample for hr. Since A was chosen arbitrarily, 

P 

LC-ARBweak(UL1Fi) >_ p -- 1 + ~_jki.  
i=1  

Combining this with (3.14) yields the desired result. [] 
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Notice that the fange of uP=a Fi used in the lower bound argument above was in- 
creasingly large as p gor bigger. Thus, for example, determining the best bounds on 
LC-ARBweak(U~'=~ Fi) that can be obtained in terms of 

LC-ARBweak (FI) . . . . .  LC-ARBweak(Fp) 

and the size of  the range of u/P=I F i remains an open problem. 

4. Learning the Maximum of Linear Functions 

A natural and commonly studied function class is the set of piecewise linear functions. 
Piecewise linear functions are simple enough to allow efficient algorithms (e.g. linear 
programming); they are easy to handle and easy to describe. On the other hand, they 
are sufficiently complex to approximate and model most functions occuring in practice. 
Unfortunately, the following example sbows that no finite mistake bound can be obtained 
eren for the very restricted case of continuous functions consisting of  three linear pieces 
and with arbitrary functions as hypotheses. 2 

BXAMPLE 1. For 0 < a < b < 1, we define continuous piecewise linear functions 
g~,»: R ~ IR with 

{ 0 i fx  < a  
gù,»(x)= ( x - a ) / ( b - a )  i f a  < x  < b  

1 i fb  < x .  

An infinite sequence o f  CEs can be constructed as foIlows: Let al = O, bi = 1. For all 
i > 1 the i-th CE is given by ((ai + bi)~2, f i )  where fi ~ {0, 1} depending on the learner's 
hypothesis. I f  f i  = 0 then ai+l = (ai + bi)~2, bi+l = bi; if fi  = 1 then ai+l = ai, 
bi+l = (ai q- bi)~2. CIearly this process does not terminate and for  an), i the function gai,»~ 
is consistent with all previous CEs. 

The function in Example 1 is non-convex. In this section we will show that under the 
restriction of  convexiß,, the class of  piecewise linear functions admits mistake-bounded 
algorithms, thus yielding one of  the first positive results for functions of more than one real 
variable. We will present two algorithms for this learning problem. The mistake bound 
for the first algorithm grows polynomially in the number of pieces for a fixed number 
of  variables, and the mistake bound for the second algorithm grows polynomially in the 
number of variables for a fixed number of  pieces. These results trivially imply mistake- 
bound algorithms for the class of  arbitrary continuous functions consisting of  two linear 
pieces, since all such functions are either convex or concave. 

For a class 5 c of functions, we denote by 5c~ nax the class {f :  3f l  . . . . .  fk ~ 5 r Vx ( f ( x )  = 
maxl ___i_<~ 3')(x))}. Let £(d)  consist of  the linear functions I~ d --+ R. (A linearfunction is 
defined as usual by a vector c E R d, c 5~ 0 and a b 6 R. Points x E tR d are mapped to 
c~x + b.) 
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4.1. The Maximum of Linear Functions of a Fixed Number of Variables 

We first present the algorithm whose mistake bound is polynomial in the number k of pieces 
if the numbër d of  variables is constant. Hence, let T c £(d)~  ax be the unknown target 
function, with T(x)  = maxl_<i_<k f i (x)  for certain fi ~ £(d). We begin by defining a 
technical quantity central in our analysis. 

DEFINITION. For integers k > 2, 3 > 1, we define ~k(3) = (3k ~ - 2k *-1 - 1)/(k - 1). 
(Note that 7ek(3) is integer for all k, 3). Moreover, we define ~ßk(0) = 1 and ~1 (3) --- 3 + 1. 

DEFINITION. For P ___ IR ~+1 , the dimension 3(P) of P is defined to be the dimension of  
the smallest dimensional affine subspace S(P)  of R «+1 with P c_ S(P). A set P c R ~+1 
is called safe with respect to £(d)~ nax, if IP] >_ ~Pk(3(P)). 

Since the intersection of  two affine subspaces yields another affine subspace, 3(P)  is 
well-defined. The reason for dealing with point sets in R «+l is easy to explain: every 
counterexample presented to out learning algorithm consists of a point x c R d together 
with the real value T(x).  Together, these d + 1 real numbers form a point in R e+l . Hence, 
the learning process may also be interpreted as receiving points in R ~+1 (counterexamples) 
and trying to cover these points by a small number of hyperplanes (hypotheses). 

Out main problem in learning T (x) is to avoid getting large numbers of counterexamples 
in low-dimensional affine subspaces of R «+l . Suppose, we already received as counterex- 
amples three points a, b and c that lie in this order on a straight line. Clearly, this line must 
be part of  some f j .  If  we receive another counterexample on this line, we cannot deduce 
any new information. Thus, we should avoid receiving four counterexamples that lie on 
a common line. As a second example, consider 3k counterexamples lying in a common 
plane. Such a plane need not be part of any f i  : In the worst case, there are k groups each 
consisting of 3 points on a line such that the intersections of the f j  with the plane exactly 
yield these lines. However, if there are 3k + 1 counterexamples lying in a common plane 
and if no four of the counterexamples lie on a common line, it can be checked that this plane 
must be part of  some f i .  Hence, any line containing three counterexamples and any plane 
containing 3k + 1 counterexamples should be incorporated in the construction of out hy- 
potheses. Similarly, for higher dimensional affine subspaces there are 'critical' numbers of 
points that force the subspace to be a subspace of some f i  (in case we simultanously avoid 
getting too many counterexamples in lower dimensional affine subspaces). It turns out that 
this critical number in a 3-dimensional affine subspace is exactly ~Pk(3) as defined above. 

Safe subsets are those subsets of the counterexamples that span affine subspaces contain- 
ing a critical number of  counterexamples; all safe subsets should be u sed in the construction 
of  the next hypothesis. This is also the main idea of algorithm B1 below. Algorithm B1 
maintains the following invariant: for any safe set P contained in the set of counterexamples 
received by the algorithm, which is consistent with some function T in Z;(d)~ nax, S(P) is 
contained in the graph of one of the linear functions defining T. 

The Algor i thm BI. Let Ps-1 = {(xl, T(xl)) ,  (x2, T(x2)) . . . . .  (x.~.-1, T(x~.-1))} C R d+l 
be the set of  counterexamples known in the beginning of Step s. Let 
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be an enumeration of the safe subsets of  P,.-1. For x E R d, an affine subspace S(p,}i_>I) of 
IR d+l assigns a (d + 1)st coordinate to x iff the projection of the subspace into R d contains 
the point x. Let Coord,._i (x) denote the set containing the (d + 1)st coordinates assigned 
to x by the S(P~!iBa) for all i. In other words, 

Coord«_1(x) = {u: z,i, (xl . . . . .  xd, u) G S(Py)I)}. 

Then the hypothesis h,. of algorithm B1 is defined by 

{ m a x  Coords_l (x) if Coords_ 1 (x) is not empty 
h,.(x) :=  0 otherwise. 

LEMMA 14. For all s > O, and for every safe subset p,!i> 1 , (i) there exists some component 

f i  o f T  such that S( ~!01) c_ f i ,  and (ii)IP,!Oll = ~B~(~(P,!~1)). 

PROOF. Assume the statement does not hold, and consider the first Step s in which a 
contradiction occurs. We consider the smallest dimensional P = P.,!~I that does not fulfill 
condition (i) or condition (ii). We distinguish three cases depending on the dimension of P 
and on whether condition (i) or (ii) is violated. 

Suppose, 3 (P)  > 1 and P does not fulfill (i). Then we consider the intersections 
f l  N P . . . . .  fk 71P. Each of these intersections is at most 3 (P)  - 1 dimensional and hence 
contains at most grk (3 (P)  - l) of  the counterexamples. Consequently, P would contain at 
most k~k(6(P)  -- 1) = ~ßk(~(P)) -- 1 counterexamples and could not be safe. 

Next suppose, 6 (P)  > 1 and P fulfills (i) but not (ii). In the preceding Step (s - 1), 
all safe subsets fulfilled (i). Therefore, subspaces spanned by safe subsets agreed with the 
target function and could not receive any further counterexamples. Since IP1 was equaI to 
~k(3(P) )  in Step (s - 1), it is also equai to 7rk(~(P)) in Step s. 

Finally, for ~(P)  = 0, the statement trivially holds. [] 

THEOREM 12. For d, k > 1, LC-ARB(£(d )~  ax) < k~k(d) ~ O(kd). Moreover, the 

hypotheses used in the learning algorithm consist of at most 0 (k d2+2d) linear pieces, and 
the learning algorithm is computationally feasible. 

PROOF. By Lemma  14, every f/ contains at most ~ßk(d) counterexamples. Hence, B1 
must terminate after at most k~ßk (d) counterexamples. 

To get the bound on the combinatorial complexity of the hypotheses, we will use the 
notion of the VC-dimension of set systems: A set X is shattered by a set system S, if all 
2 rxl subsets of  X can be obtained by intersecting X with some set in $. The VC-dimension 
of a set system $ is defined to be the cardinality of  the largest set shattered by S (in case no 
Iargest shattered set exists, the VC-dimension is infinite). Sauer (1972) proved that a set 
system on p points with VC-dimension v consists of at most O ( S  ) sets. 

We argue that the VC-dimension of the set system induced by all affine linear subspaces 
of ]R d+l is at most d ÷ 2: A set pVC of points shattered by this system can only contain 
extreme points (otherwise, some non-extreme point is contained in a simplex formed by 
several other points in pVC. The set consisting of the corners of  this simplex cannot be 
obtained by intersecting P vc with an affine subspace without containing this non-extreme 
point at the same time). If  we have d + 3 extreme points in (d + 1)-dimensional space, the 
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affine hull of  any d + 2 of them is already all of S(P vc). Then this spanning set cannot be 
represented by intersecting P vc with an affine subspace without containing the other point 
at the same time. 

Finally, we take the set of  counterexamples as a ground set and consider the set system 
induced by the affine subspaces used in the construction of the hypothesis. There are at 
most O (k a) counterexamples and the VC-dimension of the system is at most d + 2. Now 
by Sauer's result the claimed result follows. [] 

For d = 1, we can strengthen Theorem 12 to the following optimal result. 

THEOREM 13. Fork > 1, LC-ARB(£(1)p  ax) = 3k - 1. 

PROOF. The upper bound is obvious for k = 1. For k > 2, !/rk(1) = 3 holds and the 
result in Theorem 12 yields LC-ARB(£(1)p  ax) < 3k. We can do better by observing that 
after 3k - 1 counterexamples, these points determine k - 1 lines exactly (with each line 
containing three points) and leave two points for the last line. This yields the upper bound 
(with a computationally feasible learning algorithm). 

For the lower bound, we will give an adversary argument. To this end, we define so-called 
bad point sets Bi's j, 1 < j _< k fulfilling the following two properties. 

(i) BPSj consists of 3 j  - 1 points in convex position. Let Pl . . . . .  p3j-1 denote the points 
in BPSj sorted by increasing x-coordinate. 

(ii) There exists an index a > 0 divisible by three such that BPSj is divided into three 

parts Lj  = {Pl . . . . .  p~}, Mj = {P~+I, Pa+2} and R i = {Pa+3 . . . . .  P3j-1}. Scanning 
through Lj  from left to right, every triple P3i-2, P3i-1, P3i lies on a common line segment. 
Similarly, in Rj every triple P3i-3, P3i-2, p3i-1 lies on a common line segment. Note 
that Lj or Rj might be empty. 

We claim that a malicious adversary can confront the learner with bad sets of counterex- 
amples BPS1 . . . . .  BPSk. This yields 3k - 1 counterexamples and proves the lower bound. 

For k = 1, the claim trivially holds, and it remains to show how to reach a BPSj+I from 
some BPSj. We assume that neither Lj  nor R j is empty; otherwise analogous arguments 
will work. Thus, we must construct three legal counterexamples ql, q2 and q3, no matter 
how the learner chooses his hypotheses. 

The first counterexample is given somewhere between Pa+l and P~+2, below the line 
thru Pa+l and pa+2 but above the lines thru Pa, pa+l and pa+2, pa+3. There is ample space 
to place the new point ql such that the convexity condition still holds. 

The x-coordinate of the second counterexample q2 is chosen very close to the x-coordinate 
of ql. The y-coordinate of q2 is determined such that q2 either lies on the line thru P~+I, 
ql or on the line thru ql, P~+» The actual choice depends on the learner's hypothesis; he 
can assign to any x-coordinate at most one y-coordinate, and we present to hirn the other 
point as new counterexample. (If the x-coordinate of q2 lies to the left of ql and to the right 
of the intersection of the lines thru Pa, Pa+l and thru q, Pa+2, the new point q2 does not 
violate the convexity condition). 

Depending on the choice of qz, either the triple P~+I, q2, ql is added to Lj or the triple 
q2, ql, qù+2 is added to Rj (since these points lie on a common line segment). In any case, 
we are left with a single point between L i and R i. Counterexample q3 is put somewhere 
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close to this single point such that it invalidates the hext hypothesis and does not violate the 
convexity condition. 

Obviously, BPSj together with ql, q2 and q3 forms a new bad point set Bpsj+I. We keep 
on presenting counterexamples till we reach BPSk. The corresponding hidden function 
consists of the maximum of all k - 1 lines going thru the triples in Lk and Rk together with 
the line thru the two points in Mk. [] 

4.2. The Maximum of a Fixed Number of Linear Functions 

Next, we describe an algorithm for learning the maximum of a fixed number of linear 
functions. Our algorithm will be obtained by reducing the problem of learning Z;(d)~ nax to 
the problem of learning unions of k subspaces in d dimensions. 

For all positive integers d, k, define HYPERd,k to be the set of all f :  R d --+ {0, 1} such 
that there exist äl . . . . .  äk ~ lRd, bl . . . . .  bk ~ R such that for all )7 ~ R d, 

f()7) = 1 <:~ 3 j  _< k, äj -)7 = bi. 

The following lemma is a straightforward consequence of a result of (Long & War- 
muth, 1993). 

LEMMA 15 (Long & Warmuth, 1993). Choose positive integers d and k. There is a learning 
algorithm B for HYPERd.k such that, for any learning process with target T, for each t, 
B's tth hypothesis ht has h,()7)<T(Y) for all )7 ~ R d, and which makes at most (d + 1) k 
mistakes. 

We apply this in the following. 

THEOREM 14. For integers d, k > 1, LC-ARB(£(d)~ nax) < (d + 2) k. 

PROOF. Choose integers d, k > 1. Consider the following computationally feasible algo- 
rithm B for learning £(d)r~ ~ using as a subroutine an algorithm B' for lem'ning HYPERd+I,k 
with the properties described in Lemma 15. B works by maintaining a simulated learning 
process for B'. In each round, B generates a hypothesis from the hypothesis of B ~, receives 
a counterexample, and then generates a counterexample for B from its counterexample. 

Suppose hrt is the tth hypothesis of B ~. Then if for each )7 E IR d, 

PROJ(hlt, )7) = {Ud+l:ü E R d+l, hlt(ü) ---- 1, (Ul . . . . .  Ud) = 2}, 

then the tth hypothesis ht of B is defined by 

{sup PROJ(h't, )7) if PROJ(h~, )7) y~ 0 
ht ()7) ---= 0 otherwise (4.15) 

If B receives (£t, Yt) as a counterexample to ht, then it passes ((xt, l . . . . .  Xt,d, Yt), 1) to Bq 
Suppose B is learning a target T ~ £(d)~ ax defined, for äl,  - . . ,  äk E R d, b~ . . . . .  bk 

~ R ,  by 

T(Y) ----- max{äj • Y + bi: j < k}. 
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Then define T'  c HYPER«+I,k by 

T ' ( ü ) = l i f f 3 j < k ,  ä i . (u~  . . . . .  u a ) + b j = u d + l .  

Notice that for each ~ 6 R a, 

T(Y) = max{r: T'(Xl . . . . .  xa, r) = 1}. (4.16) 

We claim that for each t, the tth counterexample ((xt.! . . . . .  xt,a, yt), 1) passed to B' 
satisfies h~((Xt,l . . . . .  xt,a, Yt)) = 0. If  {ü 6 Ra+l: htt(ü ) = 1, (ul . . . . .  ua) = 2} = 13; this 
is trivial. Assume otherwise. Since, by Lemma 15, 

{ü:h~(ü) = 1} __ {ü: T'(ü) = 1}, 

we have 

sup{ud+I: ü C R d+l, h't(ü) = 1, (ul . . . . .  ua) = 2t} 

< sup{ud+I: ü e It~ d+l, Tl(ü) = 1, (ul . . . . .  ua) = £t}. 

By (4.16), h(~t) ~ Yt = T(.~t) then implies 

sup{ua+l: ü ~ R a+l, h't(ü) = 1, (/,tl,.. • , üa) = xt} 

< Yt = max{ua+l" ü c R a+l, T'(ü) = 1, (Ul, ù ,  u d )  = 7at}. 

Thus h't(xt, 1 . . . . .  xt,d, Yt) = 0, and ((xt,1 . . . . .  Xt,d, Yt), 1) is a valid counterexample for B f 
learning T'. Since t was chosen without loss of generality, B'  makes at least as many mis- 
takes learning T t as B does learning T. Applying Lemma 15 then yields the desired result. 

[] 

5. Learning the Maximum of d-Defined Functions 

In this section we investigate learning maxima of functions. This is a natural generalization 
of the preceeding section and (among others) learning OR's  of  boolean functions. We 
describe a condition on a class ~- of  functions of  a single variable, such that the maximum 
of functions from this class is efficiently learnable. This condition is satisfied by a variety 
of natural function classes as indicated below. 

Let 5 c c yX be some function class where X and Y are totally ordered by <. In 
addition t o  .T'~ nax we define the class fpmax ofpiecewise k-maxima. We call a k-maximum 
f = maxl_i_<k fi  piecewise if there are disjoint intervals I 1 . . . . .  I k with X = U1<_i<_k Ii 
such that x ~ I i implies f (x) = f i  (x). Informally this means that each function f i  appears 
only once in the graph of maxl_<i_<k fi. 

pmax • Unfortunately it is not true that f~ is easy to learn if 5 is easy to learn. Consider e.g. 
the class g of functions ilùb: ]R --+ R with 

{1 i f x  >_b 
B , b ( x ) =  ( x - a ) / ( b - a )  i fx  < b  
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for a < b ~ R. It is quite easy to see that LC-ARB(£)  = 2 but that LC-ARB(g pmax) = cx~, 
since functions like 

ga,b(X) = m a x { f ù , » ( x ) ,  f o ,2 (x ) }  

{ 1 i f x  <_b 
= ( x - a ) / ( b - a )  i f 2 a / ( 2 + a - b )  < x  < b  

x / 2  i fx  _< 2a / (2  + a  - b), 

b - 2 < a < b < 2, are in C pmax (compare with Example 1). 
Therefore we need a stronger restriction on the function class 2- than LC-ARB (5)  < ec 

to bound LC-ARB (f~pm~x). A property which suffices is the notion of a d-deßned function 
class, where a function class ~" is d-defined if any two functions f l ,  f 2  E U intersect in 
at most d points, i.e. [{x 6 X: f l ( x )  = f2(x)}l > d implies f l  = f2.  Examples o f d -  
defined classes are among others the class 79d of polynomials of degree at most d, the class 
of polynomials with at most k(d - 1)/4j terms ("sparse polynomials"), quotients of sparse 
polynomials, and functions of the form ~~=I aicr(bix q- Ci) for arbitrary ai, bi, ci E Ii~, 
and bounded k E N (where cr (y) :=  1/(1 + e-Y) is the widely studied sigmoid activation 
function in neural networks). The d-definedness of these classes (for suitable d 6 N) 
follows from the fact that any polynomial with m terms has at most 2m + 1 zeros (by 
(Uspensky, 1948, p. 121)). Functions ~~=1 aicr(bi x + ci) can be rewritten as "rational" 

~~ where Ci = e -el and y = e -x. Observe that bi iS not integer but functions ~ik_l l+C~y»i 
that the result of  (Uspensky, 1948) can be generalized to this case. For the class of quotients 
of  sparse polynomials a suitable d is 4kl + 1 when nominator and denominator have at most 
k and l terms, respectively, and for sums of k sigmoids a suitable d is 4k22k-1 + 1. 

Note that in contrast to Section 4 the here considered function class ä rpmax may also 
include non-convex functions, and in contrast to (Kimber & Long, 1992) the norm of the 
derivative of  functions in this class need not be bounded. 

THEOREM 15. I f  S is d-defined with d > 1 then LC-ARB(5 rpmax) = O(dk). 

REMARK. The above result is optimal up to constants insofar as for polynomials we can 
prove that LC-ARB ((79d) pmax) = f2 (dk). This can be seen by considering functions 

/ ~0 ~ ~ / m a x  a i j ( x  - 2 i )2J : i  = 1, . . . ,  
j = o  

d - 1  where for all i aid = - -  1 and ~ j = o  ai.i _< 1. The coefficients aij must be learned indepen- 
d dently for each i since Y~~j=0 aii(x - 2i) 2j < 0 only if rx - 2i1 _< 1. 

REMARK. A learning result for 5~ nax is given in Section 5.3. The learning algorithms for 
both 5 cpmax and 5~ nax are computationally feasible, see the final Remark of  Section 5.1. 

At first glance the proof of  Theorem 15 seems easy because one could argue that the 
learner just has to get d + 1 examples for each piece of the target. But the problem is to 
determine which of  the examples belong to which piece of  the target function, i.e. how to 
partition the examples into subsets such that each subset belongs to one piece of the target. 
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rhus  the main point of the proof  of  Theorem 15 is to construct an algorithm which partitions 
the counterexamples and constructs its hypotheses in such a way that any piece of the target 
does not receive more than O (d) counterexamples on its graph. 

We achieve this goal by constructing an algorithm which only adds a new piece to its 
hypothesis if there is strong evidence that this piece is part of the target. The algorithm also 
maintains a set of  cutting points to partition the set of counterexamples. These cutting points 
are also used to protect pieces which are very likely to be in the target against overlapping 
pieces which are less likely. 

5.1. The A lgorithm 

Denote by E« the set of X-coordinates of the counterexamples up to and including the s-th 
counterexample and denote by y(x)  the corresponding Y-value of the counterexample if 
x E Es. Since the algorithm always constructs hypotheses consistent with the previously 
seen counterexamples we have IE,,I = s. Some of the x E E,. are used to cut X into 
intervals. We denote the set of these "cutting points" by C,. _c Es. (The algorithm will 
maintain the set C,. dynamically.) Furthermore denote by xl < .. • < xs the sorted elements 
of  E, .  For notational convenience we set x0 = - e c ,  xs+l = +cx~. 

At first the algorithm looks for all functions from ~- consistent with at least 2d + 1 
consecutive counterexamples (this is "strong evidence" that these functions build pieces of 

the target). Let 

Qs = {q: 1 < q < s - 2d A ~f~q ~ 7 V j  = 0 . . . . .  2d (f~q(Xq+j) = y(Xq+j) 

A Xq+j ~ G)} 

where the second condition states that none of the 2d + 1 counterexamples are cutting points 
(cutting points are not considered as regular counterexamples and do not give "evidence"). If  
q E Q, wedenote theappropr ia te  functionby f,q. Foreachq  E Q, ler D q = (L q, R.q~) c_ X 
be the maximal  interval around Xq which contains no cutting points and no inconsistent 

counterexamples for f q ,  

L q = max{x < Xq:X E E,. f ,q(x) --/= y(x)  v x  ~ C,.}, 

R q = min{x > Xq:X E Es, f~q(x) ¢ y(x)  v x  E C,}, 

such that the "range" D q of a function/piece f,q is bounded by inconsistent counterexamples 
or cutting points and contains at least 2 d +  1 counterexamples consistent with f,q. (As usual 
we define max 0 = - e c ,  min 0 = +cx~.) Observe that each x E X is element of at most 
two distinct ranges: Assume x E Dls N D s2 N D s ,3 Ls~ _< Ls2 _< Ls .3 i f R  3, -< R~ then D 2 •  --- D2s 
which by the d-definedness of 5 c implies # = # and therefore D~ = D~. I f  R~ < R~ 

_ o f D  s N D  s o r D  s N D  s i s a t  then D 2 c D~ U Ds 3 and the number of counterexamples in one 2 1 a 3 
least d + 1, which again implies 3~~2 = f l, D~ = D J ,o r  )r} = f3 ,  D~ = D?, respectively. 

The next hypothesis proposed by the algorithm is defined as the maximum of all pieces f,q, 

y(x) ,  i f x  ~ E, 

H,.(x) = max{f,q(x) "q E Qs A x  E Dq}, i f x  E UqeQ.~D q 

0 otherwise. 
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(Instead of 0 any element from Y may be used.) 
I f  (x~, y.,f) is a new counterexample with H.,(x~) ~ y.~ then E,. is updated as E.,+I = 

E~ U {x~} and the cutting points are updated according to the following rules U1 and U2: 

UI :  (There is a function f J  consistent with the new counterexample but this function has 

been overlapped by another function f r .  Now the "correct" function is protected 
against the "wrong" function by introducing a new cutting point. Eventually the 
wrong function will not appear in the next hypothesis because its range becomes too 
small by the new cutting point.) 
Assume 

U2: 

e q e e)  Bq c Qs (xs E D  q A  f , . (x  s)=y~~ . (5.17) 

e q~ e q e Then there taust be also some q'  6 Q, with x, c D., , H, (x,)  = f f  (x~) > f~. (x~) = 

y.~'. Since f~.q seems to be the con'ect function the algorithm "protects" it against f f  

by defining a new cutting point. If  L, q' < L q then C.~.+I := C,. U {Lq}. If  R~ < Rs q' 
then Cs+l :=  Cs U { R q }. If  C.,+1 = C,. U {L q } this means that in the next hypothesis no 
function from the left can overlap f~.q. From the definition of Q, and the d-definedness 

q, qr 
of 5 ~ one easily obtains that exactly orte of  the conditions L,. < L],  R q < R, is 

satisfied, since otherwise f~q and f f  would intersect in at least 2d + 1 points. 
Let F be the set of  all functions f c 7" with f (x~)  = y.~ for which there exists 

e 0 < r f  < s - 2d for which Xr s < X,. < Xrs+2d+I, f ( x r l )  # y(Xrs), f(Xrs+I) = 
y(Xrs+I) . . . . .  f(Xrs+2d) = y(Xrs+2d ), and f(Xrs+2d+l ) ¢ y(Xrs+2d+l ). Then set 
C,.+1 := C,\UscF{xri+l  . . . . .  Xr~+2d}- (We set forall  f c Uthat  f ( -cx~)  ¢ y(-cxz) ,  
f ( - } - ~ )  ¢ y ( + ~ ) ) .  
The second update U2 is a more technical update rule. It removes some cutting points 
if there is evidence that they are misleading, partitioning the counterexamples into too 
many subsets. Evidence is given by the set F of  candidates for new pieces in the next 
hypothesis, consistent with exactly 2d consecutive counterexamples in E,. and also 
consistent with the new counterexample (x~, y.~). The update U2 enforces that the 
functions in F appear in the next hypothesis. Observe that the set F of U2 is empty 

q' 
if condition (5.17) is satisfied: With the notation of U1 and assuming L,. < L, q we 

q'  q '  q' e have I(L q, Rs ) N Es [ < d (otherwise f,.q = f,i ). Thus I(L., , x~.) Ffl E,. ] < d + 1 
and I(x e ,Rq)  71Es] < d +  1. Let f ~ F and D$ = {Xre+l . . . . .  Xr;+2d}. Then 

q~ qf 
I D s N D~- [ > d + 1 or [D l N Dql > d which implies that f coincides with f~: or 

f~q in at least d + 1 points (observe that f (x~)  = y (x  e) = Ysq (x~.)).e Thus f = L'q' or 
f = f,.q and therefore f is consistent with at least 2 d +  1 consecutive counterexamples 
in Es, which contradicts the definition of F. 

REMARK. Observe that the hypotheses of our algorithm consist of at most O (dk) pieces 
of functions from Y2 vma×. This follows from Theorem 15 which stares that the algorithm 
receives at most O (dk) counterexamples, and from the fact that each x 6 X is element of  
at most two distinct ranges D q. 

Concerning computational complexity, let the amount of  time for computing the unique 
function consistent with some d + 1 examples and calculating f ( x )  for f 6 f ,  x 6 X, be 
bounded by some constant CC:r. Then the computational complexity of our algorithm is 
bounded by some small polynomial in d, k, CC~-. 



2 2 6  AUER ET AL. 

5.2. Analysis 

We will argue that the above algorithm can receive at most O (dk) counterexamples. Let 
T = maxl_<i<k T i be the target function and let 11 . . . .  , I k be the corresponding intervals. 
Furthermore, set v i,,. = l1 i n Es[. To bound the number of counterexamples we will show 
that 

s <5  E • i mm{v,, 2d + 1} -t- IGI, (5.18) 
l < i < k  

IC~.l<s/(d + 1) + 1. (5.19) 

This implies s _< [5k(2d + 1) + 1]/[1 - 1/(d + 1)] = O(dk)  for d > 1. 
At first we prove that there can be only few cutting points, showing that there are at least 

d counterexamples between two cutting points. 

LEMMA 16. I f  xr,, xr2 are counterexamples with rl ~ r2 andxrl,  Xr: ~ C, then Irl - r21 _> 
d + l .  

PROOF. The proof is by induction on s. Since new cutting points are only generated 
q~ 

by U1 we assume with the notations of U1 and w.l.o.g, that Ls < L q and that L q is 

the new cutting point. Since ]D q n D q' N E,.[<d (otherwise f,q = fq ' )  it follows that 

](g q', L q] N E.,.I > d + 1. Since I(L~, R q) N Esl > 2d + 1 the lemma follows from 

G n (D q u D]') = ~. [] 

Clearly Lemma 16 implies (5.19). 

COROLLARY 1. U2 deletes at most 4 elements from Cs. 

PROOF. Since for all f c F Xr s < x~ < Xrs+2d+l we have 

U {Xrs+l . . . . .  Xrs+2d } _<4d 
f ~ F  

which together with Lemma implies the corollary. [] 

For proving (5.18) we start showing that there are no cutting points in I i if v~ < 2d + 1. 

LEMMA 17. I f  x E E,. N I i and v i < 2d + 1 then x ¢ C,.. 
S - -  

- - i  -- i  - - i  
PROOF. To prove the lemma we have to introduce some notation. Let D~. = (L s, R,.) be 
the maximal interval where T i is consistent with the counterexamples seen so far, 

- - i  l i  L,. = max{x < :x ~ E, ,  y (x )  % Ti(x)} ,  

- - i  [ i  : R,. = min{x > x ~ E.,, y (x )  ¢ Ti(x)}, 
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(x < I i has the obvious interpretation). Furthermore let - i  -- i  v,. = [D,. N E,. [ be the number 

- - i  - - i  i < --i Thus it is of counterexamples in this interval. Clearly I i c__ Ds+ 1 c D s and v, v,.. 
- - i  

sufficient to prove that 0-~. > 2d + 1 implies D,. f3 C,. = 0. 
The proof  is by induction on s. Since gi increases by at most 1 if s increases by 1, we 

S 
- - i  

first prove that g~. = 2d and -iG+l = 2d + 1 implies Ds+ 1 N C,,+1 = 0. If  -iv s = 2d and 

- i  = 2d + 1 then x e - - i  - - i  - - i  T i  Vs+l s E D., and D s = Ds+ 1. Furthermore ~ F as can be seen by 
- - i  

checking the conditions of  U2. Thus all cutting points are removed from D,.  
It remains t° pr°vethat ifgi .  > 2 d +  1 and-iG+l -> 2 d +  1 thenno cutt ingpointis  generated 

• - - i  

m D,.+I. Since new cutting points are only generated by U1 we assume w.l.o.g, that with 
q' e q' t h e n o t a t i o n o f U 1  L,. < L q < x,. < R~ < R q a n d L ,  q. is the newcut t ingpoin t .  Now 

- - i  q '  
assume that L q ~ Ds+ 1. Since by the d-definedness of  5- i(L q, R,. ) A E,.[ < d (otherwise 

q' - - i  
f,q = f , f ' ) w e g e t  I(L q ' , L ] ] A E , . [  _ > d +  1. Thus [ ( L . , L , q . ] N D . , N E , . [  _< d +  1 or 

q' 
[(L q, R q) A D  I, N E,,I > d + 1 which implies T i = ]q '  or T i = f,.q. Since T i = f,: yields 

« q' « q « = f,q. Now the contradiction T ( x  e) »_ T/(xs) = f~: (xs) > f~: (Xs) = y(x~)  we have T i 
- - i  - - i  

L q E Ds+ 1 C D s implies L q ¢ Cs (by the induction hypothesis) and by the definition of 
L q y ( L  q) 7~ q q f~ (Ls ) which contradicts f~q (L q) = Ti  (L  q) = T ( L q) and proves the lemma. 

[] 

i = 0 a n d C 0 = 0 .  Now (5.18) follows by induction on s from the lemma below since v 0 

LEMMA 18. 5 ~ 1  <i<_k min{v~i+l, 2d + 1} + [C.,+1 ] > 5 ~l_<i_<k min{v.il, 2d + 1} + lCs  I +  1. 

e i PROOF. I f x  s E I i and v,. < 2 d +  1 the statement holds by Corollary 1. If  v~ > 2 d +  1 then 
.~_ , ~ e ~cq ( x e ' ~  by Lernma 17 there exists q ~ Qs with fiq T i and x~ c D~. Since y~~, Ti ( G )  = J s ~ ~, 

condition (4.17) is satisfied and a new cutting point is generated, thus IC,~+I] = IC~,-I + 1, 
which gives the lemma. [] 

5.3. Learn ing  2=~ ax 

THEOREM 16. I f  s-  is d-def ined with d > 1 then LC-ARB(5-~ nax) = O(dk2) .  

Ler again T = maxl<i<_k T i be the target and Es the set ofcounterexamples.  Furthermore 
ler/z[. = I{x 6 E,.: y ( x )  = T i ( x ) } l  be the number of counterexamples consistent with 
T i. The following lemma will prove useful in constructing a computafionally feasible 
learning algorithm for 5-~nac It states that any function consistent with at least (d + 1)k 
counterexamples appears in the target. 

LEMMA 19. For all  f ~ 5- with I{x e Es: f ( x )  = y(x)}] ~ (d + 1)k there exists a T i 
with f = T i. 

PgOOF. Since there taust be a T/ with I{x 6 E,.: f ( x )  = y ( x )  = T/(x)}[ > d + 1 the 
lemma follows from the d-definedness of f .  [] 
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Now the hypothesis of the learning algorithm is constructed as follows. Let 

F~. = {f  E S: ]{x ~ Es: f ( x )  = y(x)}J>(d + 1)k} 

and 

H,.(x) = / y ( x ) ,  if x ~ E~. 
• [ maxfeF,, f ( x ) ,  otherwise (if F,. = 0 any y c Y will do). 

Theorem 16 follows from the following lemma which states that each T i will receive at 
most (d + 1)k counterexamples. 

LEMMA20. V i =  1 . . . . .  k A4[. < ( d + l ) k .  

PROOF. Assume/zi~ ( d +  1)k i e i e = and/xs+ 1 > ( d + l ) k .  ThenT i ~ E~. andy(x  s) = T (xs). 
Thus y(x~,) < H~.(x~.) which yields the contradiction y(x~.) < T(x~) since by Lemma 19 
H~.(x) < T (x )  for all x ~ X. [] 

6. Conclusion 

We have shown in this paper a number of general structural properties for the complexity of 
learning functions with a larger range than {0, 1 } in the most common non-stochastic models 
for on-line learning. One somewhat surprising structural symmetry that has emerged in 
section 2 is the "dual" definition of the learning complexity for arbitrary function classes. We 
have exhibited in Theorems 2, 4, and 5 (with the help of adversary trees) purely combinatorial 
"max-min" definitions of the learning complexity of a function class, which turns out to 
be equivalent to the usual "min-max" definition of the learning complexity in terms of the 
performance of learning algorithms for the respective learning-"game". On the side these 
equivalences show that it suffices to consider in these worst case models for on-line function 
learning only adversaries of a relatively simple nature. 

In section 3 we have investigated another general structural property of the complexity of 
function learning: the relationship between the learning complexity of a complex function 
class in terms of the learning complexity of its parts. We have been able to give optimal 
upper and lower bounds, and we have exhibited a universal constant 1/log(4/3) that plays 
an important role in these relationships. 

In sections 4 and 5 we have substantially enlarged the pool of interesting function classes 
for which positive learning results can be achieved in a worst case model for on-line function 
learning. Theorem 12 provides a computationally feasible learning algorithm for convex 
piecewise linear functions over R d, thereby breaking the barrier of exhibiting larger "learn- 
able" classes of functions of several variables than the standard example of linear functions. 
In section 5 we have investigated in a systematic manner the conditions for achieving a 
positive learning result for the class of functions that are pointwise maxima of arbitrary 
finite sets of functions from a certain class 5 c. In particular we have exhibited a general 
structural property ("d-definedness") for function classes )c, which provides a sufficient 
condition for proving a positive learning result for pointwise maxima of functions from 5 c. 
As a special case we get the first positive learning results for the classes of pointwise max- 
ima of polynomials of bounded degree, of sparse polynomials, and of linear combinations 
of a fixed number of sigmoidal functions over a single variable. 
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Notes 

1. Some lower bounds require that ]Y[ > 2. The case IY[ _< 1 is trivial. 

2. This is in contrast to the case of probabilistic models ofleaming, where efficient atgorithms with good learning 
performance have been discovered for this function class (Kearns, Schapire & Sellie, 1992). 
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