
Machine Learning, 11, 217-235 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Balanced Cooperative Modeling
KATHARINA MORIK MORI K@KILO. 1NFORMATIK.UNI-DORTMUND. DE

University of Dortmund, Dept. Computer Science VIII, P.O. Box 500 500, 44227 Dortmund, Germany

Abstract. Machine learning techniques are often used for supporting a knowledge engineer in constructing a
model of part of the world. Different learning algorithms contribute to different tasks within the modeling pro-
cess. Integrating several learning algorithms into one system allows it to support several modeling tasks within
the same framework. In this article, we focus on the distribution of work between several learning algorithms
on the one hand and the user on the other hand. The approach followed by the MOBAL system is that of balanc-
ed cooperation, i.e., each modeling task can be done by the user or by a learning tool of the system. The MOBAL
system is described in detail. We discuss the principle of mutli-functionality of one representation for the balanc-
ed use by learning algorithms and users.

Keywords: Multistrategy learning, balanced cooperative modeling, MOBAL

1. Introduction

The overall task of knowledge acquisition as well as that of machine learning has often
been described as constructing a model of part of the world, on purpose. I f a system is
to support the person constructing a model, it must accep t new i tems and integrate them

into the knowledge base. It must present the state of the domain model and allow the user
to inspect it. It must support revis ions of all modeling decisions of the user. Finally, it
must support the r e f inemen t of rules or rule sets because of additional knowledge and
the introduction of new features or concepts. ~

The first two requirements are fulfilled by most of the knowledge acquisition environments.

Revisions are frequently supported only by a text editor. Then it is up to the user to check
consistency and integrity of the revised domain model. The user is supported only in per-
forming the addition of new items and the inspection of the domain model.

Machine learning algorithms are most often used for automating the construction of rules
as additional items of the knowledge base. Recently, automatic refinement and automatic

construction of new features or concepts (constructive induction) are also provided by some
machine learning systems. Moreover, inspection can also make good use of machine learn-
ing. Hence, for all of the modeling tasks listed above, there exists a machine learning tool
that automatizes at least parts of them.

A system that integrates several learning tools, each responsible for performing a dif-

ferent modeling subtask, is a multistrategy learning system (Michalski 1991). Questions
concerning the coopera t ion of tools are whether one tool can use the results of another,
whether several tools can use the same knowledge items, and whether one tool can call
another one. MOBAL is such a multistrategy learning system, where the learning tools
cooperate by means of input-output data so as to solve the global modeling task. But a
multistrategy learning system also needs some information about the domain and the desired

109

218 K. MORIK

domain model given by the user. The cooperation with the user is necessary even for
the most advanced learning system. This is not a disadvantage. On the contrary, the user
should guide the learning and be in control of the modeling process. On the one hand,
we appreciate machine learning to automate some tasks. On the other hand, we still want
the users to perform their tasks--supported by the system. The question is how to organize
the cooperation of user and system tools such that both system and user contribute to model
building. For MOBAL, a synergistic effect can be stated that is the result of both the user
and the learning tools contributing to the global modeling task.

2. Cooperation

There are different ways to use machine learning algorithms for knowledge acquisition.
They correspond to a different distribution of work between system and user. The work
share has consequences for the knowledge representation.

2.1. Work share between system and user

We may distinguish the following three prototypical ways of distributing the work between
system and user in modeling a domain:

1. one-shot learning, where the user prepares examples and background knowledge and
then runs an algorithm on the data (examples are ID3 (Quinlan, 1983), FOIL (Quinlan,
1991), or KLUSTER (Morik & Kietz, 1989; Kietz & Morik, 1991));

2. interactive learning, where the user prepares examples and background knowledge and
then interacts with a learning system (examples are DISCIPLE (Kodratoff and Tecuci
1989) or CLINT (De Raedt, 1991); and

3. balanced interaction of system and user, where learning contributes to the preparation
of background knowledge, enhancement of the domain knowledge, and inspection of
the (learned) knowledge (an example is MOBAL, described in this article).

These options of how to use machine learning correspond to different tasks handled by
a learning system. A learning task can be described by a certain type of input and the pro-
duced output. An additional characteristic of the learning task is whether the learning is
performed incrementally (which can be the case in the second and third option above).
Of course, the same learning task can be applied to various domains. In the first option
above, the user calls a learning algorithm for one particular task. Most often, this task
is to learn a set of rules from examples of complementary classes. The second two options
have the learning system cover a broader range of tasks. Each learning task corresponds
to a learning tool that solves it--regardless of whether implementation is in separate modules
or in one module.

Whereas in the first two options the user is requested to give some particular informa-
tion, in the third option the user can give any information and the system uses it. Of course,
the information must be sensible. However, the user is free to enter, e.g., facts or rules

110

BALANCED COOPERATIVE MODELING 219

or term sorts or predicate sorts. That is, the distribution of work between system and user
is strictly prescribed in the first two options, whereas it is flexible in the third one.

The control of the modeling process is in the users' hands in the first option; the user
call the learning tool. In the second option, the system is in control; the system prompts
the user to give the needed information. In the third option, control is mixed. The users
can call tools explicitly, as in the first option. I f they do not want to do so, the flow of
control between the tools is organized by the system. The users are never prompted to in-
put a (counter-) example or a declaration of background knowledge. However, by setting
some parameters they can state that they want to be asked by the system at certain decision
points.

In the first option, revisions of the learning results are performed by the user in an edit-
and-compile cycle with no more support than a text editor can give. If new, negative ex-
amples are acquired from the application, a new example set must be constructed, con-
sisting of the new and some already known examples. The learning algorithm then con-
structs new rules that probably are better than the ones learned before. In the second op-
tion, some revision of rules is performed by a learning tool because of negative examples.
In the third option, learning techniques are used for refinement and the construction of
new features or concepts. Moreover, revisions of all modeling decisions that have been
made are supported by some knowledge-editing tools.

The prototypical ways of using learning (cases 1 to 3 above) illustrate the aspects of work
share between system and user:

* Which tasks are performed by the user, and which tasks are performed by the system?
® Which information is given by the user, and which information is constructed or derived

by the system?
® Is the user, the system, or both in control of the modeling process?
o Which revisions are supported by the system, and which revisions are automatically done

by a learning tool?

If the user as well as the system can perform a task, construct knowledge items of a certain
kind, run (learning) tools, and revise given knowledge, then we call such a system balanced
cooperative. MOBAL is such a balanced cooperative system. It will be described in detail
in the next chapter.

2.2. Multifunctionality

The use of the system has consequences for the knowledge representation. In the first op-
tion for using a tool, the representation can easily be tailored for the needs of the one
algorithm. The representation of a multistrategy learner (option 2 and 3) has to be designed
with respect to several, possibly conflicting needs, or the different representations of dif-
ferent tools have to be integrated. The MOBAL system is a multistrategy learner that in-
tegrates various tools using a uniform representation. The integration problem with respect
to knowledge representation is then to develop a formalism that is powerful enough to suit
all tools well and that is still tractable. In contrast, the MLT system integrates several

111

220 K. MORIK

learning systems, each with its own representation (see Morik et al., 1991). The integra-
tion problem is then to integrate given representation formalisms.

Balanced cooperative modeling allows the user as well as the system to work on the evolv-
ing domain model. As a consequence, all knowledge sources (examples, background
knowledge, declarations, rules) have to be represented such that the system as well as the
user can easily input, modify, and inspect the knowledge. This constrains the representa-
tion to be designed. If revisions of all knowledge entities have to be processed and their
consequences have to be maintained by the system, this constrains the design of a represen-
tation even further.

The bidirectional use of knowledge bases has been discussed in other fields of artificial
intelligence. For instance, a grammar is supposed to be used by the parser as well as by
the generator of natural language sentences. Some efforts have also been made to use the
same knowledge for plan recognition as for plan generation. Analogously, we claim that
the same knowledge should be of good use for the user building up a model as well as
for the learning system enhancing the model and building parts of it.

3. Cooperation in MOBAL

All the knowledge needed for problem solving in a particular domain can be input by the
user. In this case, all the information is given by the user, who performs all modeling tasks
and completely controls the modeling process. The user is supported by an inference engine
and a human-computer interface (see below). However, the user does not need to input
almost everything. For each knowledge item that the user might input, there exists a cor-
responding learning tool that can acquire parts of that knowledge. The basic input that
the system expects from the user is facts and rule models (see next section). Of course,
a system cannot create a model without any given information! But with reference to those
basic items there also exist corresponding capabilities of MOBAL, namely, the inference
engine (deriving facts) and the model acquisition tool (producing rule models). Between
the extremes of modeling by the user alone and some automatic contribution to the model-
ing by the system, all variations of work share are possible. This flexibility also has a disad-
vantage that should not be hidden: new users of the system miss the strict guidance that
is given by interactive systems. They have difficulties selecting among all the possible
choices.

3.1. MOBAL 's representation

The MOBAL system is an environment for building up, inspecting, and changing a
knowledge base. Before we present the learning tools, we describe the items that constitute
a domain model in MOBAL.

The knowledge items integrated by the inference engine of MOBAL (Emde, 1991) are

• facts, expressing, e.g., relations, properties, and concept membership of objects;

owner (luc , d iane1) and no t (owne r (l uc ,me rcedes)) are facts

112

BALANCED COOPERATIVE MODELING 221

• rules, expressing, e.g., relations between concepts, necessary and sufficient conditions
of concepts, hierarchies of properties;

o w n e r (X , Y) & i n v o I v e d (Z , Y) - - > r e s p o n s i b I e (X , Z) is a r u l e

• sorts, expressing a structure of all the objects (constant terms) of the domain model;
• topology of predicates, expressing the overall structure of the rules of the domain; and
• rule models, expressing the structure of the rules to be learned.

The items are represented in a restricted higher-order logic that was proven to be tractable
(Wrobel, 1987). The user does not need to know all about the meta-predicates and the meta-
rules in which they appear. The user also does not need to know the internal representation
format. The windows of the human-computer interface provide presentations, both graphical
and as text, of the knowledge base that are understandable without knowing the internal
data structures. The user beginning an application regularly starts with facts and rules that
are easy to understand. In the following, the knowledge items are described.

3.1.1. Facts

Facts are used to state relations, properties of objects, and concept membership. Facts are
represented as function-free literals without variables. The arguments of a predicate are
of a particular sort. A fact p (o l , o 2 , 0 3) is only well formed if the constant terms of o l ,
0 2 , 0 3 belong to the sorts of the first, second, or third argument place of p, respectively.
For instance, the term at the first place of the predicate i nvo I ved must be a member of
the sort of events, the one at the second place must be a member of the vehicle sort. The
form of a fact is p(tl, . . . , tn) where p is a n-ary predicate and tj is a constant term or
a number of the sort sj.

The mapping from a fact to a truth value may obey a fuzzy logic because, in principle,
the inference engine handles continuous truth values (Emde, 1991). But, usually, it is dif-
ficult for a user to assign a fuzzy truth value to a fact. Therefore, only the truth values
unknown, t rue , f a l s e , con t tad i c t o r y are used. A derived or input fact without ex-
plicit negation is interpreted as t rue. Every fact that is to be interpreted as fa I se must
be explicitly negated. This explicit negation has some advantages compared with the closed-
world assumption. It enables the user to input incomplete examples and to build up the
model incrementally. The closed-world assumption requires the user to know in advance
which statements are necessary to complete the description of an example. But, as was
stated above, modeling does not start with such a precise idea. Therefore, leaving out some
statements in one example does not mean the negation of these statements. Hence, MOBAL
interprets missing information simply as u n known.

Explicit negation also allows us to explicitly contradict a derived fact of the system. Sup-
pose, the inference engine has derived the fact

o w n e r (l u ¢ , d i a n e 1)

113

222 K. MORIK

and the user knows that this is not true. The user then inputs

n o t (o w n e r (l u c , d i a n e l)) .

As a result, the fact owner (l uc , d i a n e l) becomes c o n t r a d i c t o r y . An explicit con-
tradiction does not lead to the counterintuitive behavior of standard logic that all formulas
become true. Instead, the contradictory parts of the knowledge-base are excluded from
inference processes. Hence, facts that are not contradictory keep their truth values. Con-
tradictions are resolved by a knowledge revision component (Wrobel, 1989).

3.1.2. Rules

In MOBAL, rules correspond to Horn clauses. In addition, the applicabili ty of rules is
maintained. For each variable occurring in a rule, its domain is represented as a suppor t

se t (Emde, Habel, & Rollinger, 1983; Wrobel, 1989). In the normal case, the support set
is a tuple of the sets of all objects. The rule

o w n e r (X , Y) & i n v o l v e d (Z , Y) - - > r e s p o n s i b l e (X , Z)

has a support set giving the domains for x, Y, z. In the regular case, these are a I I. The

support set then is a I I x a I I x a l I. But it is also possible to restrict the applicabili ty
of a rule to a more special support set. This can be done by exceptions of a variable's do-
main, by a tuple of exceptions of the support set, or by expressing a variable's domain
by a concept. The above rule is only valid for events that are members of the concept
m i no r_v i o I a t i on. The domain of variable z is restricted to instances of minor (traffic
law) violations: a I I x a I I x mi n o r _ v i o l a t i o n is the correct support set for that rule. 2

More formally, let a I I denote the set of all objects of a universe of discourse, D i denote
a I I or subsets of this set, Tj be a n-tuple of constant terms, and t l . . . t k be constant terms
(corresponding to part icular objects in D), covered by a concept C; then the form of a
support set for a rule with the variables X1 X, is

(X] X .) i n D 1 x . . . x D n e x c e p t {T ! T j }

where the e x c e p t part can be empty.
The Tj are tuples of objects that should not be instances of the variables X1 X,

of the rule because the rule would then lead to a contradiction. In a tuple Tj, each term
can be of a d i f fe ren t subse t of a l l . In our example , such a tuple is
(l uc , renau I t 2 , e v e n t 3) .

A particular D i can be restricted by a set of exceptions, {tl tk}, written D i e x -
c e p t {q, . . . , tk}, in our example a l l e x c e p t { e v e n t 3 , e v e n t 1 2 , e v e n t 13}. Or,
the variable's domain D i is restricted to a part icular concept such as m i no r v i o I a t i on
in the example above.

114

BALANCED COOPERATIVE MODELING 223

3.1.3. Sorts

Sorts are used to guarantee the (semantic) well-formedness of predicates in facts and rules.

Sorts can be named and given by the user in a predicate declaration:

owner/2: <person>, <vehic le>.

This means that the two-place predicate owner accepts only terms of sort p e r s o n as the
first a rgument and terms of sort veh i c I e as the second argument . It is not well formed

to state owner (j o h n , m i c h a e I) . A sort covers a subset D i of a I I. The sorts that are
buil t automatical ly by the sort taxonomy tool have constructed names, such as
a r g l (owner) , denoting the set of terms occurring at the first place of the predicate owner .

Sorts with the same set of terms form a class. For instance, a r g l (o w n e r) and
a r g l (r e s p o n s i b I e) have the same constant terms, e.g., [I uc , y v e s , e v e] . So, together

they form a class:

class21: [a rg l (owner) , a r g l (r e s p o n s i b l e)] [l u c , y v e s , e v e]

Classes are organized in a lattice. The most general class is a I I ; the most special class
is the empty class. There are subclasses and intersect ion classes. The lattice of classes

gives an overview of all sorts and classes, their subset relations, and their intersections.
In this way, the structure of an applicat ion domain can be presented with respect to the
objects of that domain. F igure 1 shows an except of the lattice of sorts for the traffic law
domain.

3.1.4. Topology of predicates

The topology of predicates is used to guarantee the (semantic) well-formedness of rules.
Sets of predicates form a named node of a graph. For instance, the node called v i o I a -
t i o n represented as

tnode: v i o l a t i o n -Preds:
u n s a f e _ v e h i c l e _ v i o l a t i o n]
veh i c l e , o b l i g a t i o n s]

[p a r k i n g - v i o l a t i o n , respons ib le ,
-L inks : [p laces ,c i r cumstances ,behav io r ,

contains the predicates pa rki n g - v i o I a t i o n , r e s p o n s i b l e , u n s a f e _ v e h i c l e_v i o -

I a t i on. In the graph, the subnodes of this node are called

[p l a c e s , c i r c u m s t a n c e s , o b l i g a t i o n s , v e h i c l e , behav io r] .

In a well-formed rule, if the predicate symbol of the conclus ion is a m e m b e r of a node

TN (e.g., v i o l a t ion) , the premises can only use predicate symbols f rom a subnode of
T N (e.g., pl a c e s , c i r c u m s t a n c e s , o b l i g a t i o n s , v e h i c I e , b e h a v i e r) or TN itself.
So, for instance, it is not well formed to conclude from the assurance contract of a vehi-
cle's owner to the evaluation of the owner 's parking behavior.

115

224 K. MORIK

)' :)' :) :i : : ? :i: :i :-:?-:) :) (: :;: :)' :i :" :i :' :i:' :i :':i:': i: ~:?':i: ":?.:). :? .::. ::.:: .:':-:? :?-:i :-:? ::': : '::' : :' :i :" :). :i:-::' :':-: :. ::-: :-:: ::-: : :': :': : ' : : : .:i:. :2:-:> :):~ :. :::. :) : :. ::,: :::. :': .:':. :':.

iii
Figure 1. E x c e r p t o f a l a t t i c e o f s o r t c l a s s e s .

The topology graph, where the nodes represent sets of predicate symbols that can be
premises of the supernodes, gives an overview of possible rules in an application domain.
Figure 2 shows the topology graph for the traffic law domain.

The topology graph can be viewed as a generalization of determinations (Davies & Russell
1987). There, it is stated that a rule is sensible if it relates some particular predicates. The
topology generalizes this to sets of predicates: rules are sensible that use predicates of the
same topology node TN or a predicate in TN for the conclusion, and predicates of sub-
nodes of TN for the premises.

3.1.f Rule models

A rule model is a rule in which predicate variables are used instead of actual predicates
of an application domain. A predicate variable can be instantiated by a predicate symbol
of the same arity. There is a substitution ~ for predicate variables. Let RS be a rule model;
then RS~ is a (partially) instantiated one. If all predicate variables are substituted by predicate
symbols, the rule RSE is a predicate ground. Hence, a fully instantiated rule model is a
rule. The rule model

RI(X,Y)&R2(Z,Y) - -> Q(X,Z)

can be instantiated

~: {R1/owner, R2/ invo lved, Q/ responsb i le }

thus becoming our example rule. Rule models are ordered with respect to their generality
such that the generality of fully instantiated rule models is given by theta-subsumption
(Plotkin 1970). RS1 is more general than RS2 iff for all r. there exists a substitution of
terms o such that RS2E _~ RSIEo. The above rule model is, for instance, more general
than the rule model R1 (x, ¥) &R2 (z , ¥) &R3 (x, ¥) - - > Q (x, z) , because every fully in-
stantiated rule of the first one is a subset of the second one. 3 ~ is not allowed to replace

116

BALANCED COOPERATIVE MODELING 225

Figure 2. Topology graph.

different predicate variables by the same predicate symbol. Rule models are labeled by
generated names such as, e.g., rl or 12. The generality structure is presented as a graph,
where the labels of rule models are the nodes and the generality relations are the links
(see figure 3).

Rule models can also be partially instantiated. All possible instantiations of all rule models
together form the hypothesis space for rule learning in MOBAL. The hypothesis space
is structured by the generality structure of rule models. This is used by RDT (see below)
in order to prune branches of rule models where no instantiation can lead to an accepted rule.

The following rule models can be used to model neighborhood relations. The domain
predicate symbol con n states a neighborhood relation; the predicate variables p0, 01,
02, 03, q can be instantiated to characterize the related objects. The most general rule
model is the statement of a two-place predicate that always is true. The next general rule
model has in addition a one-place premise.

r O (q) : -+ q (x , y) .

r l (p O , q) : p O (y) --~ q (x , y) .

r 2 (p l , p O , q) : p O (y) & p l (y) --* q (x , y) .

r 3 (q) : c o n n (y , nO) --* q (x , y) .

r 4 (p O , q) : p O (y) & c o r m (y , nO) ~ q (x , y) .

117

2 2 6 K. M O R I K

:::::-:::::. :! i:i.~:::. :i i:::-:::::-:::.i:! ::::. :.:i. :~ i:i :::i :i :::i-:::!. :! ::: .i:i. :i.i:i.i:i-:i i:i ::: !::: !::: i: .:::::. ::: i: i:i. :i i:i i::: :! :::!::::: : :-: :::.i:i :ii: i:i :i i:i ::::: :! ::: .i:i. ::..i: .:.:::.i: :::.~:ii:i :: i: i:~ :i i:: ~:i:i :i.!:!.::! !: .i i. :i i: .i:i. :i :i:

i:i :i:i:i:i: i:i: i:i:i:i: i:i:i:i :i:i :i:i::i:i:i:i:i: :i:i:i:i:i: :i:i:i:i:i: :i: i:: i:i:i:i :i: :i: :i:i:i:i: i::i:i: i:i :i: :i:i::ii::i:i: :i :i:i:i :i:i :i: i: :i:i:: i: i:i :i: :i:i: :i:i::i:i: :i:i:i:i :i: :i:i: :i: i:: i: i: :i: :i:i ::i ~: i:i i::. :::. ::-::: :::! ::: ::-:i ::: ::-::: ::.:. ::: :::. :~:i. i::: :;:.:. :::i

Figure 3. General i ty structure o f rule models.

r 5 (p l , p O , q) : pO(y) & p l (y) & conn(y, nO) --~ q (x , y) .
r6(q) : corm(y, nO) & conn(y, n l) -* q (x , y) .

r7(pO,q) : pO(y) & conn(y, nO) & conn(y, n l) --~ q (x , y) .

r 8 (p l , p O , q) : pO(y) & p l (y) & conn(y , nO) & corm(y, n l) --~ q (x , y) .
r9(pO,q) : corm(y, nO) & pO(nO) -~ q (x , y) .
r l O (p l
r11(p2
r12(pO

r13 (p l
r14(p2
q (x , y)
r15(p1
r16(p2

q (x , y)
r17(p3
p 3 (n l)

pO,q) : pO(y) & conn(y, nO) & p l (nO) --* q (x , y) .

p l , p O , q) : pO(y) & p l (y) &conn (y , nO) & p2(no) --* q (x , y) .
q) : conn(y, nO) & corm(y, n l) & pO(nO) -* q (x , y) .

pO,q) : p O (y) & c o n n (y , n O) & c o n n (y , n l) & p l (nO) --* q (x , y) .
p l , p O , q) : pO(y) & p l (y) & conn(y , nO) & corm(y, n l) & p2(no) --*

pO,q) : corm(y, nO) & conn(y , n l) & pO(nO) & p l (n l) ~ q (x , y) .
p l , p O , q) : pO(y) & conn(y, nO) & conn(y , n l) & p l (nO) & p 2 (n l) --~

, p 2 , p l , p O , q) : pO(y) & p l (y) & conn(y , nO) & conn(y , n l) & p2(nO) &
--~ q (x , y) .

3.2. MOBAL's learning tools

T h e M O B A L s y s t e m i n c l u d e s s e v e r a l l e a r n i n g t o o l s :

• a r u l e d i s c o v e r y t o o l (R D T) , w h i c h is a m o d e l - b a s e d , f i r s t - o r d e r l o g i c l e a r n i n g a l g o r i t h m

i n d u c i n g r u l e s f r o m f a c t s

• a c o n c e p t f o r m a t i o n t o o l (C L T) , w h i c h i n d u c e s n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s f o r
c o n c e p t s f r o m p o s i t i v e a n d n e g a t i v e e x a m p l e s

1 1 8

BALANCED COOPERATIVE MODELING 227

• a model acquisition tool (MAT), which abstracts rule models from rules
• a sort taxonomy tool (STT), which clusters constant terms occurring as arguments in facts
• a predicate structuring tool (PST), which abstracts rule sets to an overall structure of

the knowledge base

To describe each of the learning tools in detail requires much more space than we have
in this report. Since we want to concentrate on the use of the tools--either by the user
or by another tool--it is sufficient to describe them as black boxes and only indicate the
principle of how they work.

3.2.1. RDT

The rule discovery tool RDT helps the user to find regularities in facts. The task is that
of learning from observations or discovering regularities in order to predict new events.

Input: a set of facts, a set of rule models
Output: a set of rules that are most general inductive generalizations of the facts.

The necessary input to this model-based inductive algorithm is facts and rule models.
It is not necessary that the facts are complete descriptions of examples. If rules are already
learned or given by the user, they are taken into account by the algorithm. In particular,
they are not rediscovered, and they are not contradicted by a hypothesis for learning.
Moreover, the inference engine performs forward inferences from (learned or given) rules,
hence "saturating" the knowledge base for learning.

The learning strategy is top-down induction, i.e., the most general generalization is
specialized until a rule is found that obeys a user-given acception criterion.

RDT can be called in different ways. It can be called with a time limit so that RDT learns
within this CPU time limit and then stops. This allows us to use RDT incrementally. The
aim is that RDT can learn in the background during the modeling activity of the user. RDT
then tries to learn about the predicate that the user inputs as the predicate symbol of a
fact. I f the user wishes to focus on a particular predicate or a list of predicates. RDT looks
for rules with these predicates in the conclusion. The set of predicates can be given by
clicking on a node of the topology graph. RDT can also be called from CLT with a par-
ticular set of facts. The list of rule models is given by a parameter. The default is to use
all rule models that are part of the domain model. The evaluation criteria for accepting
a hypothesis can be set by the user. The basic building blocks for defining criteria are
prepared. A default setting is given. But the user can define particular criteria and input
them as parameter settings.

The learning result is a set of rules. The rules are not bound together in order to build
sufficient and necessary conditions for concept membership, nor is there an ordering of
rules, as in decision trees. Also, relations that hold between features are not distinguished
from relations that hold between concepts or between features and concepts. The user may
interpret the learned rules as characterizing concepts or as background knowledge. The
learning result is used by the inference engine; hence, RDT performs closed-loop learning.

119

228 K. MORIK

The basic idea behind this learning in predicate logic is to instantiate given rule models
systematically and test the instantiations (i.e., rules) against ground facts. First, the most
general rule model is instantiated. If an instance (i.e., a rule) is not accepted with respect
to the acceptance criterion and yet enough facts are available, the next special rule model
is instantiated. This procedure is similar to Shapiro's refinement operator (Shapiro 1981).
But whereas the refinement operator builds up a complete hypothesis space, the hypothesis
space of RDT is restricted by the rule models. Since the rule models regularly do not cover
the forms of all possible Horn clauses, they restrict the hypothesis space.

For a rule model, each possible instantiation is tested. An instantiation is possible if
the predicates that substitute predicate variables of the rule model have a compatible arity,
sort restriction, and topology restriction. That is, the resulting rule hypothesis must be
well formed with respect to the sorts and the topology of predicates (see above). This restricts
the hypothesis space further. For instance, the most general rule models can be

P(X)-->Q(X), R(X,Y)-->Q(X,Y),

All 1-ary domain predicates with the same sort of an argument type that are in the same
or linked topology node are tried as instances of the first rule model. If, for an instantia-
tion Q/q and P/p there are many matching facts but not all of
them justify the hypothesis, then the next special rule model is tried, e.g., p (x)&R (×, ¥)
-->q (×). All compatible 2-ary predicates are tried as instantiations of R. Specializing
hypotheses stops if a rule already exists, if it becomes accepted, or if there are not enough
facts that could match the (more special) hypothesis. As is easily seen, RDT is much quicker
than, e.g., FOIL(Quinlan, 1991) if the rule models are well suited for the desired learning
results. If a rule model is missing that would correspond to the desired result, RDT will
not find the desired rule. 4

3.2.2. CLT

The concept learning tool CLT learns from positive and negative examples. The task is
to define a concept on the basis of some concept instances

Input: a set of positive examples, a set of negative examples, a set of rule models
Output: a set of rules giving the sufficient and necessary conditions of a concept.

The new concept can serve as a feature for some other concepts. In other words; CLT
can be used to construct new features. The input to CLT is a set of rule models, the name
of the concept to be learned, and facts, among which are those with the target concept
name as predicate symbol. If such a fact is positive, it contributes to a positive example.
If such a fact is negated, it contributes to a negative example. The concept can be a rela-
tional one, i.e., a two-place predicate can be defined by CLT. As is the case for RDT and
also for CLT, the user can input an acceptance criterion as a parameter of CLT. The list
of rule models to be used by CLT needs not be identical with the list used by RDT.

CLT can be called by the user or by the knowledge revision module KRT. 5
The learning result is a set of rules that represent the sufficient and necessary conditions

for concept membership. The sufficient conditions are rules with the concept in the con-
clusion. The necessary conditions are rules with the concept as a premise.

120

BALANCED COOPERATIVE MODELING 229

CLT uses the RDT algorithm. It is the focused use of RDT with the additional require-
ment of finding necessary conditions for the concept. 6

3.2.3. MAT

The model acquistion tool MAT abstracts rule models from rules. The task is to generate
rule models.

Input: a set of rules, a set of rule models
Output: new, non-redundant rule models.

Since users prefer to input rules instead of rule models, the inputs to MAT are rules. The
learning strategy is that of abstraction over rules. The rules are abstracted by turning predicate
symbols from the application domain into predicate variables. It is checked whether a new
rule model corresponds to an already existing one. If there are constant terms in the rule,
these can be either turned into variables also or be introduced into the rule model. Rule
models including a constant term as the argument of a predicate may be of good use if
the desired learning result is to clarify all properties and relations concerning a particular
object or attribute value. The result is a rule model that is not redundant to any given one. 7

3.2.4. STT

The sort taxonomy tool STT organizes the objects (constant terms) of an application do-
main into sorts and classes of sorts. The task is to structure the constant terms or objects
of a domain. In other words, the task is to learn types for a typed logic. I f the fact base
of MOBAL changes and the non-incremental mode has been selected, then the user can
call the update of the sort taxonomy.

Input: a set of facts
Output: a lattice of classes of sorts.

The input to the algorithm is a set of facts. The output of it is a lattice of classes of sorts.
STT can be used either incrementally or as a single-step learner. The lattice gives an over-
view of the actual state of the fact base. It is used by the user for inspection and by the
system to check the sort compatibility of new facts and rules (rule hypotheses).S

The learning strategy is that of bottom-up induction, where the learned classes are de-
scribed by their extensions. The basic idea of the algorithm is to produce sets of constant
terms on the basis of their occurrence at particular argument places of predicates. These
sets are inspected with respect to subset relations, identity, or intersections. The sets are
sort extensions. Equivalence classes are built for these sorts. The classes are organized
in a lattice based on their subset relations or intersections. The most time-consuming part
of the algorithm is the calculation of intersections. The user can select whether intersec-
tions are to be built, or not. The algorithm is efficient, because it corresponds to learning
in propositional logic.

121

230 K. MORIK

3.2.5. PST

The predicate structuring tool PST organizes the predicate symbols of an application do-
main into linked sets of predicate symbols. The task is to structure the predicates of a domain.

Input: a set of rules
Output: an acyclic directed graph.

The output of it is an acyclic directed graph, the topology. The topology graph gives an
overview of the rule base. It is used by the user for inspection and by the system to check
the topology compatibility of rule hypotheses.

The learning strategy is that of abstraction over rule sets. The basic idea of the algorithm
is to create a rule graph and then to perform abstraction on it. A rule graph is a graph
where the predicates of rule conclusions are in one node and the predicates of the premises
are in its subnodes. Since a predicate can only be in one node, the graphs for several rules
can be combined easily to form the one rule graph for all rules of the rule base. This graph
can be cyclic. It is transformed into an acyclic one by the first abstraction: for each cycle,
a node is created with all the predicate symbols that occur in the cycle. The graph is fur-
ther reduced by merging all nodes with the same successors or predecessors. In the icterus
application, the rule graph had 127 nodes for about 200 rules, but the abstracted topology
had only 50 nodes, thus giving a good overview of the rule base. 9

3.3. Cooperating learning tools

The brief description of MOBAL's learning tools already indicated their task and their use
by user and system. The cooperation of the tools is

• to use the results of another tool
• more particularly, to call another tool
• to use the same knowledge as does another tool.

In MOBAL, RDT uses the results of MAT, STT, and PST, if the user has not given the
rule models, predicate declarations, or topology of predicates. In this way, the tools pro-
duce structures that on the one hand allow the user to inspect the evolving domain model.
On the other hand, the tools produce prerequisites for another tool, namely, RDT. Moreover,
in doing so, the tools take the burden of structuring, which otherwise would be on the
back of the user. The results of STT and PST, in particular, illustrate the multifunctionality
of represented knowledge. Figure 4 shows the interaction of the learning tools. The lines
between tool names indicate the use of knowledge produced by a tool. The arrows denote
a tool calling another one.

122

BALANCED COOPERATIVE MODELING 231

ST~PST

CLT

KRT

Figure 4. Learning tools cooperating.

CLT calls RDT with the name of the target concept and the list of rule models. CLT
can be called by the user or by the knowledge revision. If a support set of a rule has too
many exceptions (the criterion for "too many" given by the user or by default), CLT is
called to define either a concept for the good rule applications or for the exceptions. The
good and contradictive rule applications serve as positive and negative examples for CLT.
In this way, the knowledge revision prepares the set of examples for CLT. The support
sets are multifunctional in that they prohibit wrong inferences and can be used as examples
for introducing new concepts.

The same knowledge, namely, facts, is used by RDT, CLT, and STT, where STT can
use any set of facts and CLT needs positive and negative facts concerning a particular
predicate, the target concept. Indirectly, via forward inferences (saturation), RDT, CLT,
and STT use the rules also. In addition, RDT uses rules in order not to learn a known
rule again. If background knowledge were represented differently from the (learned) rules--
as is the case in many learning systems--RDT could not use its learning results for further
learning. MOBAL's uniform representation of background knowledge and learning results
enables RDT to use new facts that were derived from learned rules as additional descrip-
tions (examples). In particular, negated facts can be derived from learned rules with a
negative conclusion and serve as counterexamples for further learning.

3.4. MOBAL cooperating with the user

The user is supported in modeling by several capabilities of MOBAL. As was pointed out
above, we include inspection, testing (validation), and revisions in the modeling process.
The tools of MOBAL serve the overall modeling activity of the user. In addition to the
learning tools described above, there is an inference engine, a programmer's interface, a
user interface, and a knowledge-revision tool. In the following, first the user interface is
sketched. Then, it is shown how each knowledge item can be input by the user or inferred
by a tool. Finally, the opportunities of MOBAL for revising are indicated.

3.4.1. The interface

In general, all items are input using a edit-window named "scratchpad," where the user
can edit the items before entering them into the system. A help window associated with

123

232 K. MORIK

the scratchpad shows the format of each item for input. If the data are available, they can
also be read into the system as text files in the scratchpad format. Using the programmer's
interface, which offers high-level system calls, MOBAL can be coupled with another system
directly. Data can be exchanged between the systems using the commands of the program-
mer's interface.

All items can be displayed as texts in windows. The windows reflect changes of the
knowledge base immediately. The content of a window can be focused so that only items
containing a particular predicate symbol or constant term are displayed. Several windows
can be opened for facts, rules, or rule models, in parallel.

The windows are easily used for some operations. A double click with the mouse on
a particular item pops up a menu from which the user can select an operation (e.g., delete)
or can display the item graphically.

The user interface eases the inspection of the evolving domain model. But the overview,
the consequences of changes, and the detection of contradictions are delivered by the tools
and provide the real support for inspection.

3. 4. 2. Balanced adding of items

In this section, the balanced cooperation of system and user is described with respect to
adding knowledge items. It is shown that for each type of knowledge there exists a tool
that creates items of this type and an interface that supports the user in adding items of
this type.

The user may input predicate declarations with named sorts. This is sometimes useful,
e.g., when it is easy to forget what argument type was supposed to occur where in a predicate.
The predicate declaration then serves as a reminder of, e.g., where to put the person name
in the predicate owner. If, however, the facts are already electronically available, the user
needs not input predicate declarations. STT will do the job.

The user may input a topology of predicates in order to structure the domain model
beforehand, e.g., with respect to steps of problem solving, which uses the (learned) rules. 1°
For instance, the leaf nodes of the topology may consist of predicates that refer to the given
data (observations) in an application. Intermediate nodes may refer to intermediate problem-
solving results. The root node may consist of predicates that refer to possible results of
problem solving (possible solutions). In this way, the topology is a task structure for the
performance element, which uses the built-up knowledge base in an application. If, however,
the user does not know the overall domain structure, PST can construct it on the basis
of the rules.

The user may input rules and set the parameter such that MAT is called in order to ob-
tain rule models from them. Or, the user may set the parameter to "direct rule input" so
that MAT is not called for an inputed rule. The user may also input some rule models
and call RDT for discovering rules. Thus, here again, there is a flexible work sharing by
system and user.

The user must input some facts. Facts are necessary for learning, inferring, and building
the sort taxonomy. But facts can also be added by the system's inferences. By selecting
an inference depth for forward and for backward inferences (parameter of the inference

124

BALANCED COOPERATIVE MODELING 233

engine), the user can force the inference engine to derive as many facts as possible within
the selected inference depth (inference path length).

Hence, for each knowledge item, there is a system tool adding it to the knowledge base,
and there is the option that the user enters it. Balanced modeling is the flexible use of
the tools in supporting the user to add items or to have the system adding items to the
knowledge base.

3.4. 3. Revisions

Revisions of all knowledge items are supported by MOBAL, and the consequences are
immediately propagated. If a rule or fact is deleted, all its consequences are deleted, too.
Consequences are the facts derived from this rule or fact. Also, updating the sort taxonomy
and the abstracted topology reflects the change. It is not (yet) maintained, however, that
a particular rule was learned because of facts that were deleted afterwards. This requires
more bookkeeping and would slow down the inference engine.

The interface allows us to react to the displayed knowledge base. If, for instance, the
user detects a (derived) fact that he wants to reject, he can either delete it in the fact win-
dow or, better, can input this fact with the explicit negation. In this case, the negated fact
serves as a constraint and influences learning. No rule covering the rejected fact can be
learned anymore. The knowledge revision detects contradictions of facts and displays
graphically the inference paths leading to the contradiction (Wrobel, 1993). The user or
the system may perform the blame assignment and repair the rule base. Also, the explicit
representation of exceptions in support sets and the call of CLT to form a new concept
if too many exceptions of a rule have occurred helps to refine the domain model. In this
way, MOBAL integrates inspecting, inputting, and revising a domain model.

4. Conclusion

There are some typical ways of using MOBAL. The extremes are to begin with facts and
rule models and to have the system learning rules, the sort taxonomy, and afterwards call-
ing the topology tool. This is the "automatic mode." The other extreme is to begin with
some known rules, declare the predicates, build up the topology, then input some facts,
and call the learning tools RDT or CLT. This is the "manual mode" where STT and PST
are called for inspection purposes. The revision options of inference engine and knowledge
revision are frequently used. Usually, modeling is performed using the system manually
and automatically. The applications of MOBAL are

® traffic law domain--a self-made knowledge base with a rich structure and not so many
facts; the knowledge base evolved in the automatic mode.

• icterus--facts and rules were provided by Dr. Mueller-Wickop, and the knowledge base
was built up in the manual mode, using the tools for inspection only.

® maldecensus testis--data were provided by the Foundation of Research and Technology,
Hellas (FORTH); the data do not reflect the diagnosis model, which was manually input
by us in collaboration with a medical expert (Prof. Charisis).

125

234 K. MORIK

• SPEED--knowledge about the supervision of security policy in distributed systems was
provided by Alcatel-Alsthom Recherche, Marcoussis (AAR); the domain offers a rich
structure where CLT successfully invented a new concept for rule refinement.

Some lessons have already been learned from the applications. Becoming acquainted with
a system as complex as MOBAL takes some time. Setting the evaluation criteria, for in-
stance, seems to be a skill that requires some experience with MOBAL. If users are familiar
with attribute-value learning systems such as ID3, for instance, they tend not to input rela-

tions and not to use all the options that MOBAL offers. In this case, the users have already

done beforehand what could have been learned using MOBAL. More naive users (with
respect to computers) more easily exploit the opportunities of MOBAL. The main advan-
tage of MOBAL was the ease of inputting background knowledge or learning parts of the
background knowledge. Users also employed the inspection and revision abilities of
MOBAL. Moreover, MOBAL offers all advantages of a first-order logic learning tool as

opposed to a propositional logic one.
In conclusion, MOBAL indeed accepts new items and integrates them into the knowledge

base, supports the user in inspecting the knowledge base, detects contradictions, and refines
the rules. All these tasks can be performed by the user or by a tool of the system. The
users choose when to let the system do a task and when doing the task themselves. In both

cases, the same knowledge representation and operations are applied. Therefore, MOBAL

is a balanced cooperative system.

Acknowledgments

Work reported in this article has partially been conducted within the project MLT, which
is funded by the ESPRIT programme of the European Community under P2154.

The MOBAL system is developed at the German National Research Center for Com-
puter Science by (in alphabetic order) Joerg-Uwe Kietz, Volker Klingspor, Katharina Morik,
Edgar Sommer, and Stefan Wrobel. It is a successor of the BLIP system, which was

developed at the Technical University, Berlin. The author of this article wishes to thank
the colleagues from the Berlin days as well as the colleagues from the Bonn days.

Notes

1. For details of the modeling process see Morik (1989, 1991).
2. In Germany, the owner of a car has to pay a fine for a minor violation, even if he was not driving the car.
3. The more general rule model must be instantiated to become a subset of the more special one. This is the

underlying meaning of theta-subsumption: a more general rule must be instantiated to become a subset of
a more special rule.

4. For a detailed description of RDT see (Kietz, Wrobel 91).
5. Only the learning tools are described in this paper. The knowledge revision is a tool which handles con-

tradictions, selects a rule to be deleted, or to be refined. The rule refinement is then performed either by
the user or by the system. If a concept is missing which restricts the support set appropriately, KRT calls
CLT to learn that concept.

6. For a detailed description of CLT see Wrobel (1989).
7. For a detailed description of a previous version of MAT, see Thieme (1989).

126

BALANCED COOPERATIVE MODELING 235

8. For a more detailed description, see Kietz (1988).
9. For a detailed description of PST, see Klingspor (1991).

10. Learning serves the acquisition of a rule base for a particular application where the rules are put to use!

References

Davies, T.R., & Russell, S.J. (1987). A logical approach to reasoning by analogy. Proceedings oflJCAI-87.
Morgan Kaufmann.

Emde, W., Habel, C., & Rollinger, C.-R. (1983). The discovery of the equator or concept-driven learning.
Proceedings of IJCAI-83. Morgan Kaufmann.

Kietz, J.-U., & Morik, K. (1991). Constructive induction: Learning concepts for learning. Arbeitspapiere der
GMD, No. 543.

Kietz, J.-U., & Wrobel, S. (1991). Controlling the complexity of learning through syntactic and task-oriented
models. In S. Muggleton (Ed.), Inductive logic programming, London: Academic Press.

Kietz, J.-U. (1988). Incremental and reversible acquisition of taxonomies. In M. Linster, J. Boose, & B. Gaines
(Eds.), Proceedings of EKAW-88. GMD-Studien 143.

Klingspor, V. (1991). MOBAL's predicate structuring tool. Deliverable 4.3.2/G of the MLT project (MLT-
Report, No. GMD/P2154/2211).

Kodratoff, Y., & Tecuci, G. (1989). The central role of explanations in DISCIPLE. In K. Morik (Ed.), Knowledge
Representation and Organization in Machine Learning. New York: Springer.

Michalski, R.S. (1991). Inferential learning theory as a basis for multistrategy task-adaptive learning. In R.S.
Michalski & G. Tecuci (Eds.), First International Workshop on Multistrategy Learning. West Virginia.

Morik, K. (1989). Sloppy modeling. In K. Morik (Ed.), Knowledge Representation and Organization in Machine
Learning. New York: Springer.

Morik, K., & Kietz, J.-U. (1989). A bootstrapping approach to conceptual clustering. In A. Serge (Ed.), Pro-
ceedings of 6th 1WML. San Mateo: Morgan Kaufmann.

Morik, K. (1991). Underlying as sumptions of knowledge acquistion and machine learning. Knowledge Acquisi-
tion Journal, 3, 137-156.

Morik, K., Causse, K., & Boswell, R. (1991). A common knowledge representation integrating learning tools.
In R.S. Michalski & G. Tecuci (Eds.), First International Workshop on Multistrategy Learning, West Virginia.

Quinlan, R. (1983). Learning efficient classification procedures and their application to chess end games. In
R.S. Michalski, J.G. Carbonell, & T. Mitchell. Machine learning--An artificial intelligence approach, vol.
I, Palo Alto, CA: Tioga.

Quinian, R. (1990). Learning logical definitions from relations. Machine Learning Journal, 3, 239-266.
Shapiro, E.Y. (1981). Inductive inference from facts. (Yale Research Report No. 192). Yale University, New

Haven, CT.
Thieme, S. (1989). The acquisition of model knowledge for a model-driven machine learning approach. In K.

Morik (Ed.), Knowledge representation and organization in machine learning. New York: Springer.
Wrobel, S. (1987). Higher-order concepts in a tractable knowledge representation. In K. Morik (Ed.), Pro-

ceedings of the German Workshop on AI. Berlin, Heidelberg: Springer.
Wrobel, S. (1989). Demand-driven concept formation. In K. Morik (Ed.), Knowledge representation and organiza-

tion in machine learning. New York: Springer.
Wrobel, S. (1993). On the proper definition of minimality in specialization and theory revision. In P. Brazdil

(Ed.), Machine learning-ECML-93, New York: Springer.

Received September 30, 1991
Accepted December 19, 1991
Final Manuscript February 28, 1992

127

