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Abstract. This article reports the results of a study of domain-independent function finding based on a collection 
of several hundred real scientific data sets. Prior studies have introduced the controversial idea of discovering 
functional relatonships of interest to scientists directly from the data they collect. The evidence presented here 
supports the view that this is sometimes possible, but it also suggests how often purely data-driven discovery 
is not possible and how much more difficult it may be than has often been assumed. Experience with sampled 
examples of real scientific data suggests as well that emphasis on search in prior studies may have been misplac- 
ed. For the function-finding problems studied here, scientists typically propose only a handful of different func- 
tional relationships. The difficulty is not in searching through a large space of relationships but in evaluating 
a few common ones to determine if they are likely to be of scientific interest. 
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1. Introduction 

The idea that it may be possible to discover laws like Ohm's V = IR  or Kepler 's  D 3 = 
k P  2 directly from scientific data has spawned development of  a series of  domain- 
independent scientific function-finding systems: the BACON programs (Langley, Simon, 
Bradshaw, & ;~ytkow, 1987), the ABACUS programs (Falkenhainer, 1985; Greene, 1988), 
COPER (Kokar, 1986), DISCOVER (Wu, 1988), KEPLER (Wu & Wang, 1989), 
FARENHEIT (:~ytkow, 1987), the function-finding component of IDS (Nordhausen, 1989), 
DATAX (Hamilton, 1990) and others. Whether  it is often possible to discover laws of in- 
terest to scientists using nothing but their data remains controversial, however, and little 
evidence has been offered to settle the question. The systems just  cited have normally been 
demonstrated on just  a handful of selected problems, many of them involving artificial data 
or even data generated to conform precisely to the relationship to be discovered. Moreover, 
researchers have regularly intervened in these demonstrations by adjusting key system 
parameters.  Demonstrations of  this kind may be useful as rational reconstructions of 
discovery or  as indirect evidence of the plausibili ty of a data-driven approach, but they 
cannot take the place of controlled prospective tests on problems sampled from a real scien- 
tific environment. 

This study is the result of  an attempt to conduct tests of  this kind. The sample of test 
problems is biased in certain important respects; only the earliest of the cited systems has 
been tested; and the evaluation of  performance is less objective than would be desirable. 
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Nevertheless, the study provides evidence of a very new kind about the potential for data- 
driven discovery of functional relationships in real scientific applications. It supports the 
plausibility of purely data-driven function-finding discovery, but at the same time suggests 
that the applicability of this approach is limited and indicates how much more difficult 
it may be than prior research has assumed. 

Extensive contact with sampled examples of real scientific data also suggests that the 
emphasis of prior research may have been misplaced. This research has concentrated on 
the problem of searching a potentially infinite space of relationships to find one that fits 
the data. Once search has identified a candidate relationship, evaluating its acceptability 
has been treated as trivial; function-finding systems generally just check if a possible law 
accounts for available observations within one or more prespecified tolerances. In the sample 
of problems studied here, however, scientists typically propose only a very limited number 
of functional relationships. Searching through these is a simple matter. Determining when 
the fit of a candidate relationship is so compelling that scientists will choose to report it 
to their colleagues may be quite difficult, however. The key to function finding in this envir- 
onment appears to be, not search, but evaluation. 

The core of the work reported here is a series of four experiments providing quantitative 
support for the points just outlined. The first demonstrates that B(~), a reimplementation 
of the earliest of the BACON programs, is often successful, on the sampled suite of test 
problems, in discovering the relationship proposed by a scientist directly from his or her 
data. Even more often, however, it is unsuccessful, either failing to note this relationship 
or proposing a different one, which the scientist would presumably value less highly. 

A second experiment shows that the reliability of B(/~) can be improved substantially 
by severely limiting the search it undertakes. The restricted version of B(A) proposes a 
relationship in fewer cases, but when it does, this relationship is much more likely to match 
the one favored by the reporting scientist. 

The restricted B(/~) is still conceptually like the original BACON program in that it focuses 
on search. Given how few relationships it considers, however, it is natural to wonder whether 
search is the key to its limited success. A third experiment suggests that the real key is, 
in fact, BACON's simple, tolerance-based criterion for evaluating functional relationships. 
In this experiment, a search-free algorithm that applies this criterion to a few common 
relationships duplicates the performance of the restricted B(/~). 

Finally, a fourth experiment shows that performance can be improved substantially if 
this emphasis on evaluation is carried farther. A more elaborate evaluation-based algorithm, 
E*, proposes the scientist's relationship in nearly as many cases as the original B(~) while 
achieving a higher level of reliability than the restricted version. 

E* performs best of the algorithms tested, but even this improved approach is successful 
only in about a third of the test cases. Moreover, the cases sampled for this study represent 
the very simplest of the many function-finding problems considered in previous research. 
Thus, while the results go some way toward answering skeptics who would rule out the 
possibility of purely data-driven discovery, they also provide a sobering dose of reality 
for those engaged in designing data-driven discovery systems. 
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2. Preliminaries 

2.L Data collection 

The basis of this study is a collection of 352 bivariate data sets organized into 217 cases. 
Each case normally contains one to four data sets reported together in a single scientific 
publication in conjunction with a common hypothesized relationship. All data are available 
on-line? 

Cases 1 through 62 were drawn selectively from a wide variety of sources: dissertations, 
handbooks, journals, textbooks, and undergraduate laboratory reports. Remaining cases, 
however, were collected systematically from issues of the Physical Review published in the 
first 20 years of this century. Every effort was made to include all examples of data for which: 

1. The reporting scientist hypothesized a functional relationship. 
2. This relationship was bivariate. 
3. The data was reported in tabular, rather than graphic form. 

The first two criteria restrict attention to the very simplest of the function-finding prob- 
lems studied by machine learning researchers and set a standard for evaluating relation- 
ships proposed by automatic function-finding systems. To ensure that function-finding 
systems deal with precisely the same data analyzed by scientists, the third criterion rules 
out graphical data, since reading data from graphs necessarily introduces errors. Data were 
collected from the early 1900s because editorial standards then favored tabular reporting; 
modern issues of the Physical Review almost always present data graphically. 

The Physical Review data sets--Cases 63 through 2222 --provide for the first time an 
extensive, wide-ranging, real-data testbed for function-finding systems. As an exhaustive 
sample, they can be expected to be much more representative of problems faced in a realistic 
scientific environment than examples hand picked for demonstration purposes. Of course, 
because of the host of filters to be passed before data appear in the pages of an important 
scientific journal, the Physical Review cases are a far cry from the mass of raw data col- 
lected for analysis in scientific laboratories. Still, they constitute our best approximation 
to date of a broad sample of laboratory data. 

2.2. Methodological notes 

The study reported here was conducted in two phases. In the first, 117 of the 217 cases 
were collected, including 60 from the Physical Review. A reimplementafion of the BACON 
program was tested on these cases and a number of new function-finding algorithms were 
also designed and tested. The results of these preliminary investigations suggested a series 
of formal experiments--the four described above--to be run on fresh data. 

In the second phase, these experiments were conducted using 100 new cases collected 
for the purpose from the Physical Review. All algorithms and parameters were fixed before 
any data were collected for this phase in order to make the tests strictly prospective. One 
of the experiments was begun after 25 cases had been collected, and reporting for this 
experiment is thus restricted to results for the 75 remaining cases. 
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In tests of function-finding systems, each case is treated as a single problem. I f  a system 
analyzing a case consisting of four data sets gives the scientist's answer for two, a different 
answer for one, and no answer for the last, it will be credited with half a "reference" answer 
and one quarter of  a "presumed spurious" one. Of  course, the relationship presumed 
spurious might plausibly be an important pattern missed by the reporting scientist. Given 
the scientist's domain knowledge advantage, however, it seems much more likely that, when 
the system and scientist disagree, the system's answer is simply a false lead of no scientific 
significance? 

For purposes of this study, two functional hypotheses are considered equivalent if  they 
are of the same form. I f  a scientist studying voltage-current data proposes V = 2.2•, a 
function-finding system proposing V = 2 .158I  or even V = kI will be credited with a 
reference answer--since it agrees with the scientist in hypothesizing a direct proportion- 
a l i t y - b u t  a system proposing V = kI 2 or V = k~I + k2 will be considered to have 
hypothesized a spurious relationship. This evaluation scheme has many serious deficien- 
cies, but it has the advantage of having been used in past research efforts beginning with 
the BACON project. 4 Adopting it facilitates comparison. 

- ' ~ k  

2.3. The BACON algorithm 

Function-finding research in artificial intelligence was initiated with work on the BACON 
system, which set the tenor of most subsequent investigations. BACON, described most 
completely by Langley et al. (1987), is actually a series of  related programs: BACON.1 
through BACON.6. These programs are designed to deal with a number of facets of scien- 
tific data analysis, including detection of multivariate relationships and integration of sym- 
bolic data. With the exception of BACON.2 and BACON.6, however, all the programs are 
built on the foundation of a basic bivariate function-finding algorithm. 

A brief review of this core algorithm will help to lay a foundation for interpreting results 
presented below. Consider, for example, how it detects a relationship between the distance 
to the sun, d, and period of revolution, p, of five planets known to Kepler. A modern ver- 
sion of data for these two variables is reproduced from Case 2 and given in the first two 
columns of table 1. 

Table L BACON on planetary data. 

Input data Computed by BACON 

d p d/p d2/p d3/p 2 

36.00 88.0 0.4090909 14.72727 6.024793 
67.25 224.7 0.2992879 20.12711 6.023802 
93.00 365.3 0.2545853 23.67643 6.027670 

141.75 687.0 0.2063319 29.24754 6.034701 
483.80 4332.1 0.1116779 54.02979 6.033935 
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The BACON algorithm attempts to find an invariant based on the variables given as in- 
put. It begins by noting that period increases monotonically with distance. Following a 
heuristic intended to promote discovery of invariants, it creates a new term--the quotient 
of the original two--as shown in the third column of the table. Next, it notes that the new 
term d/p decreases monotonically as d increases and follows a second heuristic to form 
the product of these two: d2/p. This fourth term increases monotonically as the third term 
d/p decreases. Thus, applying the second heuristic once more, BACON creates the prod- 
uct: d3/p 2. 

BACON then notes that the newest term d3/p 2 is essentially constant, and it proposes 
the law d3/p 2 = k. In the sense of the previous section, this proposed functional relation- 
ship matches Kepler's third law of planetary motion. 

The essence of the BACON algorithm is to create new terms from old ones heuristically 
and to check for potential invariants. The heuristics for creation of new terms are just the 
two already mentioned. BACON's invariants are also of two types: the program is designed 
to detect either the invariance of a ~ingle composite term, as in the example just described, 
or the invariance of slopes of lines joining successive points in a plot of any' pair of terms. 
This second kind of invariance amounts to a nonstandard definition of a linear relationship 
between two terms. 

Figure 1 illustrates the detection of a linear relationship in data from Case 5, originally 
reported by Ohm. Having created the term xy by the second heuristic above, BACON 
calculates the slopes between successive points in a plot of xy vs. x. Since these slopes 
vary only between -18 .0  and -23 .3 ,  BACON decides that the slope is essentially in- 
variant, i.e., that xy is linearly related to x. 

Detection of either kind of invariant depends on a definition of approximate constancy. 
In order to deal with inexact relationships, BACON relies on the following definition: 

A term is considered constant if its known values deviate no more than a maximum 
percentage A from the sample mean. 

For a composite term like d3/p ~ in the previous example, this definition applies directly. 
In detecting a linear relationship, as in Ohm's data, it applies to an implicit term that takes 
on values of the successive slopes. 
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Figure 1. BACON on Ohm's data. 
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The parameter A determines the extent to which deviations from perfect invariance will 
be overlooked, and the BACON algorithm thus depends critically on how it is set. In the 
example of Ohm's data, slopes vary up to 14.1% from their average value. Hence, BACON 
will not report a linear relationship between xy and x if A is set below this value. 

When BACON was demonstrated on three sets of real scientific data in previous work 
(Langley et al., 1987), researchers set A at a different level in each case--always just high 
enough to cause the program to discover the relationship scientists historically proposed 
for the same data. Here, A was instead fixed at a number of predetermined levels, including 
the three cited by Langley et al. (1987), before any data were collected. 

A last point to note about the BACON algorithm is that it includes a control structure 
that determines the order in which new terms are created and the order in which various 
potential invariants are considered. If  more than one relationship satisfies the A-constancy 
criterion, this search order affects performance, since BACON will report the first such 
relationship it finds. 

In reimplementing BACON, no attempt was made to recreate the original search order. 
The reimplementation uses BACON's heuristics to create composite terms and checks all 
possible invariants involving these terms--invariants of the first kind for each individual 
term and invariants of the second kind for each pair of terms. Then it lists all the invariants, 
each with its A-constancy--the minimum A setting at which it would be considered 
constant--in order of increasing A. Normally, even a rough idea of BACON's search order 
makes it easy to tell from this listing which relationship the original system would have 
chosen for any given setting of A. Here, however, BACON has simply been given the benefit 
of the doubt in one of two ways. One is to assume that, when more than one relationship "~ 
meets a given A criterion, BACON's search order will cause it to choose the scientist's. 
Another is to assume a fixed search order that maximizes BACON's performance over the 
test suite. These assumptions are noted below when results are reported; neither affects 
reported performance drastically. 

The reimplemented BACON algorithm is denoted by B(A): B(30) if A is set at 30%; 
B(15) if it is set at 15%; and so on. 

3. Experimental results 

As noted above, preliminary work with Cases 1 through 122 suggested a number of ex- 
periments. In these experiments, the performance of four algorithms was measured on fresh 
data from the Physical Review. Three algorithms were tested on Cases 123 through 222. 
The remaining algorithm was tested on Cases 148 through 222. In all four experiments, 
programs and parameters were fixed before the respective test suites were collected. Ex- 
periments were run simultaneously, but it will be clearer to consider them one at a time. 

3.1. Results for the B(A) algorithm 

A first experiment measured performance of the B(A) algorithm on the full suite of 100 
cases. Results are reported in table 2 for A levels of 7.5 %, 15 %, and 30%--the three reported 
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Table 2. Results for the B(A) algorithm. 

Algorithm Reference Presumed Spurious Cost 

B(50) 37.91 37.16 .98 
B(30) 33.00 31.33 .95 
B(15) 24.91 24.25 .97 
B(7.5) 17.75 13.83 .78 
B(3.75) 12.83 10.33 .81 
B(1.875) 4.58 4.42 .96 
B(.9375) .50 1.92 3.83 

by Langley et al. (1987), as having been used in cases involving real scientific data--as 
well as several others above and below. 

In table 2, the column headed "Reference" gives the number of cases out of 100 for 
which B(A) proposed the reference relationship, the one hypothesized by the ,original report- 
ing scientist. Fractional numbers reflect the fact that the algorithm proposed the reference 
relationship for only some of the data sets making up a case. I f  more than one relationship 
considered by B(/x) meets the A-constancy criterion, it is assumed that search order will 
cause the algorithm to propose the reference relationship. The column headed "Presumed 
Spurious" gives the number of cases for which the algorithm gave a different answer than 
the scientist's. The figures in these two columns do not sum to 100 since, in many cases, 
B(A) will fmd no relationship that meets its given A-constancy criterion; in these cases 
it reports nothing. The column headed "Cost" gives the number of spurious relationships 
proposed for every reference relationship, a measure of the degree to which resources would 
be wasted if scientists were to follow up relationships proposed by the program. 

Perhaps the most important point about this table is that it proves, in a sense, that B(A) 
works. With A set at 30% to 50%, it appears we can expect the algorithm to report the 
reference answer about a third of the time in this environment without relying on any of 
the complex domain knowledge scientists bring to bear in analyzing data. On the other 
hand, B(A)'s useful answers are produced at a high cost. Roughly speaking, the algorithm 
gives about one spurious answer for every reference answer. A scientist who takes these 
answers seriously would spend nearly half of his or her time following up false leads. 

Also, this cost remains remarkably constant as A changes. Intuition might lead us to 
expect that we could improve reliability by setting A at a low value, so that B(A) gives 
only answers for which the evidence of invariance is extremely strong. In fact, however, 
table 2 shows that, even for A in the range of 2 % to 4 %, B(A) will give spurious answers 
about as often as it gives the scientist's. 

By considering linear relationships between constructed terms, BACON may potentially 
discover complex relationships. In the case of Ohm's data in figure 1, for e:~tmple, it pro- 
poses x y  = k l x  + k2 or, as Ohm put it, x = k2/(y - kl). In preliminary work, however, 
B(A) seemed to do considerably worse in proposing complex linear relationships than 
in proposing simple linear relationships between x and y or p o w e r  proport ionali t ies ,  
x i l /y  i2 = k. The evidence of the prospective test confirms this impression. Table 3 shows 
results just for cases for which B(A) proposes a linear relationship more complex than 
y = k lx  + k2. 
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Table 3. Results for the B(A) algorithm: Complex linear relationships. 

Algorithm Reference Presumed Spurious Cost 

B(50) 3.75 9.67 2.58 
B(30) 2.75 8.83 3.21 
B(15) .75 9.42 12.55 
B(7.5) .50 5.08 10.16 
B(3.75) .50 6.16 12.33 
B(1.875) 0 3.25 NA 
B(.9375) 0 1.00 NA 

Cost figures are clearly only suggestive after the first two rows. Still, the results pro- 
vide strong evidence that, in this environment, B(A) is unlikely to propose complex linear 
relationships of interest to the reporting scientists. It seems safe to say that true costs here 
are on the order of at least two false leads for every answer of scientific significance. 

3.2. Results for B*(A) 

Since B(A) is unreliable when it gives complex answers, it is natural to think of modifying 
the algorithm so that it reports only power proportionalities and linear relationships bet- 
ween the original variables. Table 4 shows the results of running the resulting algorithm 
B*(A) on the 100 test cases. 5 B*(A) is given the same benefit of doubt as B(A) when the 
search order affects the relationship proposed. 

The first row of this table shows that the simple cost containment strategy is quite effec- 
tive. B*(30) has nearly the coverage of B(30)--it still proposes the reference relationship 
in almost a third of the test cases--but it cuts the cost in spurious relationships below the 
lowest level recorded for B(A). 

Moreover, although we must be careful not to trust the cost figures unduly, it appears 
that, if we are willing to limit coverage to approximately one in every five cases, B*(10) 
cuts costs by roughly another 20%. 

As noted, results in table 4 give B*(A) a strong benefit of the doubt when search order 
may affect performance. In comparing B*(A) with other algorithms, figures from table 
5 will be used instead. These show B*(A)'s performance under the most favorable fixed 
search order assumptions. 

3.3. Results for the E algorithm 

BACON's core bivariate function-finding algorithm relies on heuristics for creating new 
terms, search control to determine the order in which terms are created, and A-constancy 
to measure invariance. The presentation in Langley et al. (1987) casts function finding 
as a search problem in which the central difficulty is navigating a potentially explosive 
space of functional forms. Thus, it tends to stress BACON's heuristics and search control. 

Experience with preliminary cases, however, suggested that BACON did not primarily 
rely on its ability to find appropriate functional forms through the application of heuristics. 
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Table 4. Results for the B*(A) algorithm. 

Algorithm Reference Presumed Spurious Cost 

B*(30) 30.25 22.50 .74 
B*(10) 19.41 11.25 .58 

Table 5. Results for B*(A) with optimal search order. 

Algorithm Reference Presumed Spurious Cost 

B*(30) 28.00 24.75 .88 
B*(10) 19.16 11.50 .60 

Although scientists proposed many varied relationships, BACON's  successes were limited 
to a few common ones. The key seemed not to be heuristics and search control, but evalua- 
tion of  a few potential invariants on the basis o f  A-constancy. 

A third experiment, designed to test this hypothesis, measured the performance of  a 
new algorithm called E to emphasize that it stresses evaluation rather than search. The 
algorithm is as follows: 

1. Calculate the A-constancy of six potential invariants: y/x 2, y/x, y2/x, X~, xy, and x2y. 
2. If  one or more invariants are constant at A < 10, report the most constant of  these; 

otherwise, do not report a relationship. 

Table 6 shows the results of a prospective test of the E algorithm. Because E was designed 
after the first 25 test cases had been collected and analyzed, the table shows only results 
for fresh data--the 75 cases numbered 148 through 222. 6 

The results shown in table 6 strongly support the tested hypothesis. Apparently, in this 
environment, we may dispense with the bias implicit in BACON's search order and even 
with its basic term-forming heuristics. A much simpler algorithm relying solely on BACON's 
method of evaluating potential invariants produces as many or even somewhat more reference 
answers with virtually the same reliability as the original. 

3.4. Classification versus search 

Previous research has treated function finding as a problem of heuristic search. The results 
of the previous section suggest, however, that it might be better to view the problem as 
a kind of classification task. 

Table 6. Comparison of results for B*(A) and E. 

Algorithm Reference Presumed Spurious Cost 

B*(10) 10.42 8.08 .78 
E 13.00 9.42 .72 
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Search-based systems--even simple ones like BACON--can potentially detect any of an 
infinite number of functional relationships. In practice, though, this potential must go 
unrealized unless a system can be equipped with reliable means of distinguishing between 
real and spurious relationships among those it can consider. By construing function find- 
ing as classification, we turn our attention from this infinite but likely untappable potential 
to the problem of identifying a fixed, finite set of functional patterns reliably. Comparison 
of the performance of B*(10) and E suggests that we may give up very little with this shift 
of emphasis. 

Part of the reason is that, at least in the Physical Review environment, scientists very 
often propose relationships of a few basic kinds. Table 7 shows the distribution of reference 
relationships for the 100 test cases. 7 These cases are drawn from reports in one of the 
foremost journals of physics in the United States during the years 1903 to 1922, a period 
of revolutionary upheaval in the field; contributing scientists include such giants as Millikan 
and ~ngstr6m. Nevertheless, four general functional forms account for 70% of all bivariate 
functional hypotheses. 

Determining when scientists are likely to consider one of these forms acceptable and 
which they will choose is no easy matter, however; and emphasis on search has left this 
question of evaluating potential relationships largely unstudied. Previous researchers have 
directed their attention to broadening the scope of function finding. They have considered 
complex multivariate functions, integration of nominal information, transcendental func- 
tional forms, multiple functional relationships in a single data set, outliers, and other ex- 
tensions of the simple bivariate problem considered here. Through all this work, however, 
the level of sophistication of evaluation criteria has remained remarkably constant. In one 
form or another, researchers have simply included tolerance parameters that allow their 
algorithms to accept a certain degree of imprecision. If we intend to work with real scien- 
tific data of the kind reported in the Physical Review, however, this approach appears to 
be inadequate even in the simplest bivariate cases. 

3.5. The E* algorithm 

The E algorithm may be viewed as a means of classifying an input data set into one of 
six general categories representing low-order power proportionalities. Classification is deter- 
mined on the basis of a single rule: Choose the category associated with the most A-constant 
invariant, so long as A is less than 10%. 

A fourth algorithm, E*, adds a new category for linear relationships, but it differs from 
E mainly in taking a much more sophisticated approach to evaluation. This approach was 
developed on the basis of preliminary work with Cases 1 through 122. 

Although E* uses different criteria in evaluating linear relationships and power propor- 
tionalities, in both cases the criteria may be seen as involving two basic abstract notions. 
The first is significance--the strength of a pattern measured in terms of how unlikely it 
is to have arisen by chance in purely random data. The second may be called distinction, 
an indication that the fit provided by a candidate function stands apart from the fit pro- 
vided by other functions with which it might easily be confused. 



FUNCTION FINDING IN REAL DATA 177 

Table Z Distribution of reference functions. 

Functional Form Number of Cases 

y = kx 14.00 
y = klx + k~ 21.00 

y = kl xk' 16.25 

y = klxk~ + k 3 ~ 
x klyk~ + k3 ~ 18.75 

Other 30.00 

3.5.1. Evaluating power proportionalities 

E* considers precisely the same power proportionalities as E, but in the form y = kx n 
for n E {-2 ,  -1,  -5 ,  .5, 1, 2} rather than in the form of corresponding invariants. A 
statistician might measure the fit of such a relationship by regressing y on x n (without in- 
cluding an intercept) and checking the associated R 2 value. In E*, the basic measure of 
fit is a monotonic transformation of this statistic: 

1 
M F - - -  

1 - R 2 

E* begins by measuring M F  for each of the six power proportionalities it considers. The 
relationship with the greatest degree of fit--the highest M F  value--is designated the "can- 
didate?' As a measure of the distinction of this candidate relationship, E* uses the ratio 
of its M F  value to the next highest value among the original six. This ratio, D, will be 
two if the best relationship leaves half as much unexplained variation in y as the next-best 
relationship, ten if it leaves a tenth as much unexplained variation, and so on. In general, 
the higher the value of D, the more the candidate is distinguished from other low-order 
power proportionalities and the more confident E* may be in reporting it. 

Significance is applied by E* indirectly. It considers the relationship, y = kl xn + ka, 
uses standard regression techniques to calculate an optimal value for ka, and then measures 
the statistical significance of this value. 

Evidence regarding the significance of k2 is provided by the statistician's t-statistic. E* 
considers large absolute values as evidence of the significance of the intercept--hence, 
evidence against the candidate y = kx n. Conversely, it considers near-zero values as 
evidence against the intercept and in favor of the candidate. 

Having calculated t and D, E* proposes the candidate power proportionality if In t < .6 
In D - 2. This rule is based on experience with preliminary data, as summarized in the 
graph of figure 2. The figure shows one point for each data set in Cases 1 through 122 
plotted according to the values of D and t calculated for the candidate. Logarithms of D 
and t have been taken, since the raw values span many orders of magnitude. 

In the graph, a " + "  symbol represents a data set for which the candidate matches the 
reference relationship, and a " - "  symbol represents one for which these relationships are 
different. In the first case, E* would be correct in proposing the candidate; in the second, 
it would not. The question of evaluating the candidate thus boils down to identifying the 
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Figure 2. Using D and t to evaluate power proportionalities. 

largest possible region of the D-t plane in which we may be fairly sure that a new point 
will be associated with a " + "  rather than a " - "  case. This region appears to be delineated 
satisfactorily by the line In t = .6 In D - 2 shown in the graph. 

3.5.2. Evaluating linear relationships 

I f  the D-t criterion rejects the best-fitting power proportionality, E* considers the linear 
relationship y = klX + k2. In evaluating this new candidate, three evaluation criteria come 
into play. 

First, as with power proportionalities, E* compares the fit of  the candidate to the other 
functional forms with which it might easily be confused. The candidate may be written 
as y = kl xl + k2; hence, E* checks functions of  the form y = klx ~ + k2 for n near 1. 
Normally, E* uses the values .5 and 1.5 for n. I f  any value o fx  is negative, the transforma- 
tions x "5 and x 1"5 are impossible, and E* uses the values - 1  and 2 for n instead. I f x  also 
takes on the value 0, the algorithm uses just 2 for n. 

E* begins by calculating the measure of fit MF for each of three fitted functions, i.e., 
the candidate and y = kl xn + k2 for n in either {.5, 1.5} or {-1,  2} or {2}. It then checks 
if the fit of the candidate is the best of the three--a  kind of local maximum. This is clearly 
a very different instantiation of the concept of distinction than the one presented above, 
but the purpose in both cases is to provide evidence that the candidate may be distinguished 
from similar functional forms. 

I f  the candidate is distinguished in this new sense, E* proceeds to consider a second 
criterion, which applies the concept of significance in a straightforward fashion. Having 
fit the linear formula y = klX + k2 by regression, E* calculates t-statistics associated with 
the two fitted coefficients and rejects the relationship unless both are of absolute value greater 
than two. 

E*'s third criterion for evaluating linear relationships is based on the statistician's notion 
of "systematic lack of fit." Consider the lefthand graph in figure 3, which shows a scatter 
plot of  one data set from Case 161. By all appearances, this is an excellent example of 
a linear relationship. 
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Figure 3. Data from case 161. 

But suppose we fit coefficients in klX + k 2 through regression to arrive at a formula 
that may be used to predict values of  y. Even for the data used to determine k~ and k2, 
the predicted value klX + k 2 will differ from the observed value of y by the small amount 
y - (klx + k2) that statisticians call a residual. Under the assumption that y is linearly 
related to x, we would expect to see no particular pattern in these residuals. I f  we plot 
residuals against x in this case, however, we find a remarkably clear pattern, as shown 
in the righthand graph in figure 3, and we say that the proposed linear relationship suffers 
from systematic lack of fit. 

The second graph provides strong evidence that the relationship between x and y is not 
linear and, in fact, the scientist's reference relationship in this case is far more complex. 
In general, we might expect that systematic lack of fit is grounds for suspecting that a rela- 
tionship is not the one proposed by a scientist and hence that it will be useful as an evalua- 
tion criterion. 

Automatic detection of systematic patterns in residuals is, in itself, a major research prob- 
lem, but E* restricts its attention to a simple special case. Having calculated the residuals 
r of the best-fitting linear relationship, it carries out a second regression to fit a quadratic 
formula relating r to x. That is, it determines optimal coefficients in the equation 

r = kl x2 + k2x + k 3 

I f  there is no functional relationship between x and r, we would expect the statistical 
significance of  these coefficients to be low. On the other hand, if there is a functional 
relationship between x and r and if a second-order approximation to this relationship is 
at all accurate over the given range, we would expect the coefficients to appear signifi- 
cant. Thus, E* considers t-values associated with the coefficients kl, k2, and k 3 and con- 
cludes that it has detected systematic lack of fit if the absolute value of  any these is greater 
than five. 

I f  the linear relationship is distinguished, significant and free from lack of fit according 
to the criteria just described, E* will propose it. Otherwise, it proposes no relationship. 
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3.6. Results for  E* 

Table 8 shows the results of a prospective test of E* on the 100 test cases numbered 123 
through 222. The table gives a very clear impression of the new algorithm's superiority. 
I f  we compare E* with B*(10), the most reliable of the BACON-derived algorithms, we 
see that it cuts costs nearly in half while increasing the number of reference answers by 
about 64%. That is, it increases coverage while improving reliability. 

Of these two facets of function-finding performance, it might be argued that reliability 
is the more critical. A program that cries wolf too often is unlikely to gain acceptance 
and, in any case, such a program leaves most of the hard work of deciding when to trust 
an apparent functional relationship to the user. For this reason, E* was designed to com- 
pete with the relatively reliable B*(10). Very little is lost by stressing reliability, however. 
As table 8 shows, the coverage of E* is comparable to even the most liberal of the B(A) 
algorithms. Both handle about a third of the test cases correctly. 

4. Discussion 

The results just presented constitute both positive and negative evidence on the question 
of domain-independent scientific function finding. On the one hand, they begin to show 
that purely data-driven algorithms can regularly detect functional relationships of interest 
to scientists in sampled examples of real scientific data. On the other hand, they strongly 
suggest the limitations of this approach. Function-finding research conducted without ex- 
tensive reference to sampled examples of real data tackled function-finding problems much 
more complex than those considered in this study. Here, we have considered just simple 
bivariate relationships, and yet, the best of the tested algorithms are successful only about 
a third of the time. 

The successes of the BACON- and evaluation-based algorithms in a significant number 
of prospective tests suggest that extreme skepticism regarding data-driven discovery may 
be considered unjustified, but the fact that there are so few successes even when we con- 
sider the very simplest of function-finding problems should also act to counter the extreme 
optimism of some prior research in the area. 

Table 8. Results for the B(A), B*(A), and E* compared. 

Algorithm Reference Presumed Spurious Cost 

B(50) 37.91 37.16 .98 
B(7.5) 17.75 13.83 .78 
B(3.75) 12.83 10.33 .81 

B*(30) 28.00 24.75 .88 
B*(10) 19.16 11.50 .60 

E* 31.50 10.16 .32 
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Skeptics often wonder if there is any difference between scientific function finding--as 
carried out by BACON and its successors--and the curve fitting conducted by statisticians 
and numerical analysts. The tests reported here emphasize the difference. An infinite number 
of curves provide a good fit to any given data set, and a bit of work with a regression 
package may well turn up One or more of them, but machine learning researchers have 
always aimed more particularly at finding relationships favored by scientists--Ohm's law 
from Ohm's data, for example. Very many of the Physical Review data sets can be fit ac- 
curately by adjusting parameters in the general form y = kx x~2 + k3, but scientists report- 
ing in the journal prefer simple relationships like y = k.~ in some cases and transcenden- 
tal relationships like y = k l~  in others. Scientific function-finding systems are meant to 
exhibit the same preferences, and the tests show that they are successful to some extent 
in doing so. 

At the same time, measuring the performance of function-finding systems explicitly by 
this criterion shows how often the systems fail to act as intended--proposing curve fits rather 
than the relationships hypothesized by scientists--and how difficult it is to improve reliabil- 
ity in this respect. While past work has concentrated on detecting relationships, contact 
with sampled, real-data problems brings out the complementary importance of avoiding 
detection of spurious relationships, and it suggests the advantages, as a means to this end, 
of construing function finding as classification rather than as search. 

This report has focused on quantitatative results, but a number of qualitiative findings 
also have important ramifications for research. One is that little space is devoted to discus- 
sion of function finding in articles published in the Physical Review. Machine learning re- 
searchers have freely admitted that function finding is only one of many component elements 
of scientific activity, but the evidence of this journal suggests that it may in fact be one 
of relatively minor importance even in the physical sciences. 

A second finding is that data in the Physical Review often fail to satisfy the requirements 
of function-finding systems produced by machine learning research. Many of these systems 
have presumed that data can be collected at will--that a scientist who wants to know the 
value of y when x is 3 can go to the laboratory to measure it. Articles in the Physical Review 
make it clear, on the contrary, that data are costly to collect, that collection of the most 
informative and desirable data points is often technically impossible, and that, in many 
cases, scientists cannot run controlled experiments at all and must rely on passive observa- 
tion. Likewise, function-finding systems designed to detect multivariate relatoinships have 
often assumed that scientists will begin by controlling all but two variables and then pro- 
ceed to add degrees of freedom one at a time. Data collected in this fashion are extremely 
rare in the Physical Review, however, and, in fact, the journal includes few reports of func- 
tion finding of any kind in multivariate data. In short, common assumptions about the nature 
of scientific data are not borne out by the Physical Review cases; methods that depend on 
these assumptions are often inapplicable in this environment. 

Machine learning research in function finding has also sometimes assumed that rela- 
tionships hypothesized by scientists--particularly physical scientists--will be dimensionally 
consistent. In an attempt to focus search, several systems rule out relationships that do 
not satisfy this criterion (Kokar, 1986; FalkerLhainer, 1985; Green, 1988)o Unfortunately, 
dimensional analysis using reported units of measurement would almost always preclude 
consideration of the scientist's reference relationship in cases collected from the Physical 
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Rev/ew. One reason is that, either for convenience or because appropriate units are unknown, 
arbitrary standards of measurement are often employed in laboratory work. Ohm, for ex- 
ample, used strips of metal of various lengths as resistors in the experiments that led to 
his famous law and thus measured what we now call ohms in inches. 

Additional qualitiative findings and details of quantitative results are presented in Schaf- 
fer (1990). This longer report also deals directly with many of the meta-issues implicitly 
raised here: the place and purposes of function finding in scientific practice, the adequacy 
of the standard used here for measuring function-finding performance, the cost of "false 
leads," the importance of distinction, significance and lack of fit to real scientists, and so on. 

It is ironic that, until very recently, research in data-driven approaches to scientific 
discovery has itself been conducted almost entirely within a theory-based paradigm. The 
research reports included in the reference section below--and those in the more comprehen- 
sive bibliography compiled by Schaffer (1990)--refer to a total of only six or seven ex- 
amples of function finding in real scientific practice. This article has attempted to show 
how much we sland to gain by collecting a larger and more representative set of examples 
and by founding our understanding of function finding on this empirical base. 

Notes 

1. Use ftp with user identification and password "anonymous" to retrieve data from the directory -/pub/machine- 
learning-databases at ics.uci.edu. 

2. As stated above, there are 217 cases in all; some of the earliest cases collected were multivariate or otherwise 
unsuitable for this study and were therefore discarded. 

3. See Schaffer (1990) for an in-depth discussion of the issue raised here and the general difficulty of choosing 
an appropriate standard for measuring scientific function-finding performance. 

4. BACON is considered to have discovered the underlying relationship in the voltage-current example if it con- 
cludes that V/I is essentially constant. Again Schaffer (1990) analyzes the validity of this evaluation scheme 
in depth. 

5. Again, though the exposition might suggest otherwise, both the B*(A) algorithm and the A levels reported 
here were fLxed on the basis of preliminary work, before any test data were collected. In retrospect, it seems 
clear that B*(A) should also have been run with A set at 7.5 % or 15 % to facilitate comparison with results 
for B(6). These runs cannot be made and reported now, however, without violating the methodological princi- 
ple of reporting only results of prospective tests. 

6. The top row here gives results for precisely the same B*(10) algorithm referred to in table 5. Entries are dif- 
ferent in this table only because a subset of the 100 basic test sets is considered. In particular, the fact that 
the cost figure has risen from .60 to .78 is due entirely to the fact that, by chance, the last 75 cases proved 
more difficult for B*(10) than the first 25. 

7. For an explanation of the fractional quantities appearing in this table, see Case 194b in appendix A of Schaffer 
(1990). 
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