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Abstract. Discovery involves collaboration among many intelligent activities. However, little is known about 
how and in what form such collaboration occurs. In this article, a framework is proposed for autonomous systems 
that learn and discover from their environment. Wit_kin this framework, many intelligent activities such as perception, 
action, exploration, experimentation, learning, problem solving, and new term construction can be integrated 
in a coherent way. The framework is presented in detail through an implemented system called LIVE, and is 
evaluated through the performance of LIVE on several discovery tasks. The conclusion is that autonomous learn- 
ing from the environment is a feasible approach for integrating the activities involved in a discovery process. 
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1. I n t r o d u c t i o n  

Learning from the environment requires integration of a variety of  activities. A learning 
system must be able to explore, to plan, to experiment,  to adapt,  and to discover. These 
activities should be studied together in a coherent way so that they can benefit each other. 
For example, cooperation between prediction, model  construction, problem solving, ex- 
ploration, experimentation, and new term construction can be seen as follows: prediction 

is used as an evaluation criterion for model  construction; model  construction (refinement) 
provides a means for improving prediction; problem solving makes use of  the approximate 
model  and detects when and where exploration and experimentation are needed to further 
improve the model;  and new term construction provides more building blocks for con- 
struction, prediction, and problem solving. 

The main purpose of this article is to define the problem of  learning from the environ- 
ment and show how various intelligent activities can be integrated. The article is organized 
as follows. Section 2 discusses related work on learning from the environment. Section 
3 defines the problem of learning from the environment. Section 4 introduces the notation 
for predict ion sequences and their key role in integration. Sections 5 through 8 present 
an implemented system called LIVE and describe how each of the integrated activities works. 
I will  use a variation of the Tower of Hanoi  puzzle as the main example to illustrate most 
of the ideas. The article concludes with a discussion on the strengths and limitations of 
this approach. 
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2. Related work 

The central problem of learning from the environment is model construction and its in- 
tegration with model application. 

A model of an environment is a set of mappings, S(t) × A(t)  ~ S(t + 1), each of which 
describes the consequence of some action on the environment: if the action A is applied 
to the state S at time t, the result state, at time t + 1, will be S(t + 1). One way to build 
a model is to memorize the history of the interactions with the environment (Stanfill & 
Waltz, 1986; Atkeson, 1989). This approach requires little effort for modeling but more 
effort for retrieving information. An alternative approach is to abstract/generalize the history 
into a condensed form. There are symbolic methods (Mitchell et al., 1983; Bundy et al. 
1985; Angluin, 1978; Rivest & Schapire, 1989; Shen & Simon, 1989; ~ytkow, 1991) and 
statistical methods (Friedman & Stuetzle, 1981; Nguyen & Widrow, 1989; Barton & Cover, 
1991; Drescher, 1989) for doing this. Each has its own strength: the symbolic methods can 
build models that are easier to understand, while the statistical methods can build models 
from noisy data. 

The necessity of integration between model construction and model application is real- 
ized by Hayes and Simon (1974), and it is implemented in many existing systems (for exam- 
ple, Mitchell et al., 1983; Shrager, 1985; Shen & Simon, 1989; Laird et al, 1990). Some 
integration approaches are based on firm mathematical ground (Goodwin & Sin, 1984; 
Watkins, 1989). 

Compared to the related work, the approach in this article has several unique features. 
First, it views the variety of autonomous activities as instantiations of prediction sequences. 
Second, it uses a new learning method, called complementary discrimination, that utilizes 
both discrimination and generalization in a unified way. Finally, the approach provides a 
simple but effective way to coordinate the activities between model construction/refine- 
ment and model application (the dual control problem in control theory). In contrast with 
the strategy of periodically checking the correctness of the model (Kaelbling, 1990), our 
strategy is to have application of the model as the default while always being ready for 
model improvement. 

3. Learning from the environment 

Learning from the environment can be expressed as follows: An autonomous system L learns 
through experience what it can do and see in an environment E to the extent that L can 
drive E into a set of states that L wants E to be in. 

Figure 1 shows the relation between the learner and the environment. The learner is 
a system that can perform a set of actions to the environment and perceive a set of percepts 
from the environment. It has a set of goals, expressed in terms of percepts, that are either 
self-generated or given by external commands. Its objective is to construct a model of the 
environment so that it can drive the environment into states that match its goals. 

The environment is a system that changes its states when acted upon. The environment 
changes its state according to some set of unknown rules or functions. The state of the 
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Figure 1. The basic definition of learning from the environment. 

environment is not necessarily completely perceived by the learner; it depends on the physical 
ability of the learner. For example, a color-blind learner cannot perceive the color of an 
object even though most objects in the environment may have colors. 

In this article, I assume that the environment is only manipulated by the learner and 
that there is no noise in the observations and actions. Readers interested in "noisy" en- 
vironments may find adaptive control theories (Goodwin & Sin, 1984) useful. Moreover, 
I assume that the learner has sufficient computational resources to process all of the perceived 
percepts. Readers interested in the problem of "focus of attention" can find more informa- 
tion in Whitehead and Ballard (1991). 

To be more precise about the learner, we need to define the terms action, percept, men- 
tal language, goal, and model. An action is a physical change that occurs inside the learner. 
It is typically a signal sent to the interface devices that will affect the environment. For 
example, it can be a muscle contraction inside a human's arm, or a signal sent to the motor 
that controls a robot arm. Note that an action is separated from its external consequence. 
A learner can execute its action in any environment regardless of the consequence of the 
action. For instance, a contraction of one's arm muscle can be executed regardless of whether 
the arm is free to move. Ideally, actions are innate to learners, while consequences depend 
on environments. In this article, however, actions may still have external objects as their 
parameters. 

A percept is a representation inside the learner of information received from the en- 
vironment. The devices for creating such an internal representation from the environment 
are innate to the learner. For humans, such devices are the sensing organs, and percepts 
are the signals that are sent to the brain from the sensing organs. In this article, I assume 
that a percept can be a representation of an object (e.g., a book), a feature (e.g., blue), 
a function (e.g., Color: object -~ feature), or a relation (e.g., On: object × object). Of 
course, a percept can be something about the learner itself, such as whether the hand is 
open and how much the left arm is bent. We shall call the set of all percepts perceived 
from a state of the environment an observation. 

A goal is a specific set of percepts representing some state of the environment. We say 
that a goal is satisfied in an observation if the percepts of the goal are a subset of the obser- 
vation. For example, a goal that is represented by a singleton set of percept {"blue-triangle"} 
is satisfied in all observations that contain the percept "blue-triangle." 

Actions and percepts are part of a mental language of a learner. Besides the actions and 
percepts, the language may also have other primitive symbols, such as logical quantifiers 
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and connectives (e.g., 3, ^ ,  -~), predicates (e.g., =,  > ) ,  or functions (e.g., -~, - ,  ×). 
In this article, I assume that each learner has a fixed mental language. The learner uses 
this language to build new mental conceptS. For example, if  "force" f a n d  "distance" d 
are percepts and multiplication × is a function, then a term "moment" can be defined 
as ( f  × d). Mental concepts can be built using not only percepts but also actions. For 
example, if "push" is an action, and "location" is a percept, then the concept "heavy" 
(not directly perceivable) can be built as "the location before pushing is equal to the loca- 
tion after pushing." Concepts like this example are conjectures made dynamically by the 
learner; they are not directly perceived from the environment. The major use of the men- 
tal language is to define models of the environment. 

A model of the environment is defined as a set of prediction rules. A prediction rule 
is a triple (condition action prediction), where condition and prediction are expressions 
in the mental language that represent sets of percepts that have certain properties (e.g., 
what they are, how they are related, and how they have come about). A condition or a 
prediction is satisfied in an observation if the observation satisfies the properties specified 
in the condition or the prediction. A prediction rule says that if the action is applied to 
a state whose observation satisfies the condition, then the observation of the resulting state 
should satisfy the prediction. It is a prediction failure if the observation of the resulting 
state does not satisfy the prediction. Note that prediction rules are different from STP4PS 
operators (Fikes & Nilsson, 1971) in the way they are used. A prediction in a prediction 
rule is only a template to be matched to observations of states. It does not change states 
as the add/delete list would in STR~P'S case. A prediction can fail, while add/delete lists, 
as they are used in STRIPS, cannot. 

An interesting property of this kind of model is its bidirectional usage. Used in the for- 
ward direction, it can make predictions to monitor the consequences of executing actions 
(to detect the deficiency of the current model). Used in the backwards direction, it can 
decompose a goal into subgoals in the planning process, thus selecting "control" actions. 

Now, with all the definitions in place, the precise definition of learning from the en- 
vironment can be given as follows: 

Given an Environment, a Learner, defined as a set o f  Actions, Percepts, and a Mental 
Language, is to learn a set o f  Prediction Rules that enable it to achieve its Goals deliber- 
ately O.e., no prediction failure shouM occur in the solution plan). 

To illustrate the definition of learning from the environment, consider a special implemen- 
tation of the Tower of Hanoi puzzle. There are three balls and three plates. The balls have 
different sizes and they can be moved from one plate to another according to the following 
rules: (1) Only one ball can be picked up from the plates at a time. (2) A ball can be put 
onto a plate only if that ball is smaller than all the balls on that plate. (Attempts to put 
a ball into a plate that contains any smaller ball will cause the larger ball to be popped 
onto the table). (3) A ball can be picked up from a plate only if it is the smallest on that 
plate. The reason I use balls and plates instead of disks and pegs is that these three rules 
are not given to the puzzle solver. Instead, they must be learned through the interaction 
with the device. This environment may seem a little artificial, but I chose the puzzle for 
its familiarity in the literature of Artificial Intelligence. For convenience, let us call the 
puzzle the "Plate of Hanoi." 
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Let us define a learner, RML, in this environment as follows. It can see certain relations 
between objects. In particular, it can see ON(ball,plate/table), SIZE>(bal lx ,ba l ly) ,  and 
INHAND(ball) .  It can PICK balls up from or PUT balls on the plates and the table. Let 
us assume that the learner's mental language also has the primitives A, -~ and 3, and its 
goal is to move all the balls to a particular plate, say PLATE3. (Let us assume BALL1 
is smaller than BALL2, and BALL2 is smaller than BALL3.) 

The RML Learner in the Plate of Hanoi Environment 

Environment: 
Percepts: 
Actions: 
Primitives: 
Goals: 

The "special" balls and plates. 
ON(ball,plate/table), SIZE> (ballx,bally), INHAND(ball). 
PICK(ball,plate/table), PUT(ball,plate/table). 
A, -~ and3 .  
{ON(BALL1,PLATE3),ON(BALL2,PLATE3),ON(BALL3,PLATE3) }. 

An example of  prediction rule, Rule0, learned by RML may look like the following: 

Condition: 
Action: 
Prediction: 

INHAND(ballx) ̂  -~ ON(ballx plate/table) 
PUT(ballx plate~table) 
ON(ballx plate/table)A -~ INHAND(ballx) 

[Rule0] 

It says that the action PUT can put a ball in hand onto a plate or the table if  the ball is 
not already there. The reader can see that this rule, although legitimate, is clearly incomplete. 

Note that in this environment, other learners can be defined too. For example, I can 
define a learner to be a robot with a hand and an eye, with its percepts as features of  ob- 
jects (location, size, color, shape) and its actions as the movement of its hand and the rota- 
tion of its arm. In this article, however, I will concentrate on the RML learner due to space 
limitations. Interested readers may find more information on other types of learners in Shen 
(1989). In general, the more primitive a learner's percepts and actions are, the more general 
the learner is. For example, the actions of the robot learner involve only its own body parts, 
it can learn from any environment in which it can move its a rm and hand. While the ac- 
tions of the R M L  learner involves objects in this particular environment (such as balls and 
plates), it can only learn from environments where balls are moved among plates and table. 
Naturally, the more general a learner is, the more difficult its learning task is. 

4. Integration via prediction sequences 

As I mentioned earlier, the main objective of learning from the environment is to integrate 
model application with model construction. However, model application is a diverse notion 
in itself. A model can be used to solve problems (planning), to gather new information 
(exploration), or to find out why the model is incorrect (experimentation). 

Regardless of the superficial differences, planning, exploration, and experimentation are 
all sequences of actions with predictions. Recall that a prediction, relative to a condition 
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and an action, is a statement that describes the expected observation from the result state. 
In learning from the environment, predictions can be sequenced as follows: 

(So, al, P1, a2, P2 . . . . .  an, Pn), 

where So is the observation from the current state, a i is an action, and Pi is a prediction. 
As the actions in this sequence are executed, observations from the environmental states, 

S/, are perceived in a sequence: So, al, St, a2, $2 . . . .  , an, S,. A prediction failure occurs 
as soon as a prediction Pi is not satisfied in the correspondent observation Si. Notice that 
a prediction failure is different from a failure/success for achieving a goal. With respect 
to a goal, an action can be successful by accident (i.e., the result state is the goal) but 
the prediction still fails (i.e., the result state does not satisfy the prediction). Thus, learn- 
ing from prediction failures means both learning from failures and learning from successes. 

With a prediction sequence so defined, planning, exploration and experimenation are 
all special cases: 

• A plan is a prediction sequence whose accumulated prediction, 1 [-J~=l Pi, satisfies the 
goal G (recall that a goal is a set of percepts). A plan may or may not produce prediction 
failures. A plan succeeds only if no prediction failure occurs. 
• An exploration is a prediction sequence in which some of the predictions are "false?' 

Since a false prediction cannot be satisfied by any observation, an exploration is guaranteed 
to produce prediction failures, thus improve the model. The motivation of this is that 
when you don't know what might happen after an action (i.e., when you explore an ac- 
tion), whatever happens will be valuable information for improving the model. 

• An experiment is a prediction sequence whose final prediction is expected to fail. This 
is an effective way to seek counterexamples (prediction failures) when the current model 
is known to have particular errors. For example, if the model says (Pn-1, a) ~ Pn but 
there is a strong reason to believe this is false, then experiments of ( . . . .  Pn-1, a, Pn ) 
will be very useful for revising the model because it may produce a prediction failure. 

The integration of model application and model construction is accomplished by the loop 
in figure 2. We can see that the learner's default activity is model application (i.e., using 
the model to construct prediction sequences), and it switches to model construction only 
when there is a prediction failure. When the model is revised, the learner starts model 
application again. This loop goes on until a successful plan for the goals is constructed 
and executed. 

I n t e g r a t i o n  Loop: 
1. G e n e r a t e  a p r e d i c t i o n  sequence u s i n g  the  c u r r e n t  model;  
2.  E x e c u t e  a c t i o n s  and p e r c e i v e  r e s u l t s  in the  e n v i r o n m e n t ;  
3 .  I f  t h e r e  is a p r e d i c t i o n  f a i l u r e ,  

c a l l  model c o n s t r u c t i o n  to  expand or r e v i s e  t h e  mode l .  

Figure 2. The integration loop. 
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It should be clear that learning from the environment is essentially rule induction from 
examples in the context of problem solving. The examples are the observed consequences 
of actions in the environment (i.e., the triples of (state action state)). The quality of the 
learned rules is then measured by their utility for problem solving. From this point of view, 
the integration loop is a special case of the theory of unifying problem solving with rule 
induction, first proposed by Simon and Lea (1974). 

5. T h e  o v e r v i e w  o f  LIVE 

The integration idea presented in the last section is implemented in a syste~n called LIVE. 
The structure of LIVE is in figure 3. Corresponding to the three steps in the integration 
loop, LIVE has three modules; the prediction sequence generator (for model application), 
the model builder/reviser, and the executor/perceiver (for interfacing to the environment). 
LIVE is an architecture, in the sense that it can be instantiated into different learners by 
giving it different percepts, actions, and mental languages, as discussed in section 3. 

The prediction sequence generator is responsible for generating a prediction sequence, 
for both the model and the goals. It has three submodules: the Planner, the Explorer, and 
the Experimenter. The submodules are coordinated as follows. The Planner is called first 
to construct a solution for the goals using the current model. If it fails, then either the 
Explorer or the Experimenter will be called. The Explorer is called if the failure of plan 
construction is due to the lack of prediction rules in the model (i.e., there is, given the 
current rule set, no chaining path between the current state and the goals). The Experimenter 
is called when prediction rules cause errors during planning. Two common types of plan- 
ning errors are regression deadlock or a regression loop. A regression deadlock means 
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Figure 3. The LIVE architecture. 



150 W.-M. SHEN 

that subgoals proposed by rules conflict with each other no matter how they are ordered. A 
regression loop means that the same subgoal is repeatedly proposed forever. How the Ex- 
plorer and the Experimenter generate their prediction sequences is described in later sections. 

The executor/perceiver module executes the generated prediction sequence in the environ- 
ment. This module compares the result of each action with the corresponding prediction. 
If there is a prediction failure, it calls the builder/reviser module. At this point, the execu- 
tor/perceiver will normally relinquish its control and wait for a new prediction sequence. 
But, if the current sequence is an exploration, it will resume execution after the model 
is revised. It relinquishes the control after the whole exploration sequence is completed. 

The builder/reviser module has two submodules. If the failed prediction is equal to "false" 
(i.e,, the action is an exploration), the builder submodule will be called to create a new 
prediction rule. Otherwise, the reviser submodule will be called to revise the rule that made 
the incorrect prediction. If necessary, the reviser may also call its submodule, the term 
constructor, to define new relations and terms. 

To illustrate the interrelation of all these modules, let us go through an example to see 
how the RML learner learns a model and solves a problem in the Plate of Hanoi environ- 
ment (defined in section 3). Suppose the observation from the initial state is 
ON(BALL1,PLATE1) ON(BALL2,PLATE1) ON(BALL3,PLATE1), and the given goals are 
ON(BALL1,PLATE3) ON(BALL2,PLATE3) ON(BALL3,PLATE3). Since RML starts with 
an empty model, the Planner fails and the Explorer is called. An exploration {PICK(BALL1 
PLATE1), False; PUT(BALL1 PLATE2), False} is generated (see section 6). Two predic- 
tion failures will occur in executing this sequence, out of which two rules, Rule0 (listed 
in section 3) and Rulel (see section 6), will be created by the Rule Builder. 

Since the model now contains two rules, the Planner generates a prediction sequence 
intended to put bails on PLATE3 one by one, in an order that is arbitrarily chosen. As 
a result, BALL1 is successfully put on PLATE3, but not BALL2. After PUT(BALL2 
PLATE3), a prediction failure occurs because BALL2 is ON the TABLE. The Rule Reviser 
is called to revise Rule0, which made this failed prediction. This revision causes Rulel 
to be replaced by two new rules, Rule2 and Rule4. 

In the same fashion, Rule3 and Rule5 are learned because of a prediction failure caused 
by Rulel (see section 7.1). Now the Planner tries again to construct a plan. This time it 
fails because of a regression deadlock caused by Rule2, which claims that in order to put 
a ball on a plate, the plate must be emply (see section 7.2). Thus, the Experimenter is 
called and an experiment is constructed to try to put a ball on a nonempty plate. The ex- 
periment succeeds and produces a prediction failure for Rule4 (the sibling rule of Rule2), 
which triggers the Rule Reviser to replace Rule2 and Rule4 by Rule6 and Rule8 (see sec- 
tion 7.1). After that, a new plan is constructed again. This time, the plan is successfully 
executed without producing any prediction failure. At the end of the plan, all the goals 
are accomplished and LIVE begins to generate new goals. 

In the following sections, I discuss the submodules in detail according to the flow of 
control. Section 6 describes the Explorer and the Rule Builder, which are responsible for 
creating new prediction rules. Section 7 describes the Rule Reviser, the Planner, and the' 
Experimenter, which are responsible for revising prediction rules. Finally, section 8 describes 
the term constructor submodule, which is responsible for creating new relations and new 
terms. 
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6. Exploration and rule creation 

Exploration in an unknown environment is a difficult task because the number of possibilities 
is potentially too large to be exhaustively explored. Here, a partial  solution is presented 
as a set of  three heuristics. The general idea is to direct the exploration towards the goals 
whenever possible. 

Heuristic 1 (goal-seeking): If  an action B is known to change the feature F of objects, 
then explore B to change the value o fF  of the learner to be equal (or some other rela- 
tion) to the value of F of some goal objects. 

For example, i f  the action Rotate is known to change the direction of  an arm, then the 
arm should be rotated to the direction of  a goal ball.  

Heuristic 2 (anomolous behavior resolution): Explore actions that apparently have no 
effect in the environment. 

For  example, PICK has no effect when the ball  to be picked is not the smallest on its plate, 
and PUT has no effect when there is no ball  in the hand. Such actions need to be explored 
until effects are observed. The philosophy behind this heuristic is that all actions ought 
to have some effect on the environment. 

Heuristic 3 (curiosity): Once in a while, randomly explore some not-yet-explored ac- 
tions with random parameters. 

To illustrate these heuristics, suppose the RML is exploring the Plate of Hanoi environ- 
ment. Heuristics 2 and 3 force RML to repeatedly try PICK and PUT on randomly selected 
balls and plates until PICK picks up a ball.  After that, Heuristic 2 will force R M L  to keep 
exploring PUT until the ball  in hand is put down on some plate. 

The purpose of exploration is to create new prediction rules. This is the task of  the Rule 

Builder. When triggered by a prediction failure in exploration, the Rule Builder creates 
a new predict ion rule by the algorithm in figure 4. 

1. Compare the condition observation (before the action) with the result observation (after the action). Let the 
"vanished" percepts be those that are in the condition observation but not in the result observation, and the 
"merged" percepts be those that are in the result but not in the condition. 

2. Create a new prediction rule: 

Condition: the vanished percepts in conjunction with the negations of the merged percepts; 

Action: the executed action with parameters specified in terms of objects which were acted upon; 

Prediction: the merged percepts in conjunction with the negations of the vanished percepts. 

and generalize all objects in the rule, except those belonging to the learner (such as Hand and .Ann), into variables. 

Figure 4. Create new prediction rules. 
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As an example, suppose RML meets the prediction failure specified in table 1. (The predic- 
tion "False" is not satisfied by the result observation.) It is easy to see that the vanished 
percept is ON(BALL1 PLATE1) and the emerged percept is INHAND(BALL1). A new 
rule is created as follows: 

Condition: 
Action: 
Prediction: 

INHAND(ballx) A -~ ON(ballx plate~table) 
PUT (ballx plate~table) 
INHAND(ballx) A -~ O N (ballx plate) 

l~ule~] 

In real-world situations, a single action may cause many changes, and finding the rele- 
vant changes is essentially a qualification problem (Ginsburg & Smith, 1988). Here, LIVE 
takes a pragmatic approach called incremental enlargement (Shen, 1989). The idea is to 
focus changes that are related to the learner and use as few changes as possible in the new 
rule. Technically, the condition observation and the result observation are viewed as graphs 
with nodes being objects and links being relations. A comparison of the two graphs begins 
from a small set of nodes that correspond to the learner itself (e.g., the ann, the hand, 
and the body) or objects that are mentioned in the action. For example, when the action 
is Rotate(Arm, 30°), the comparison starts from the object ARM. When the action is 
PICK(BALL1 PLATE1), the comparison starts from BALL1 and PLATE1. If changes are 
found in these small subgraphs, the search will terminate. Otherwise, the subgraphs are 
enlarged incrementally through links until changes are found. Furthermore, not all changes 
so found are used in the new rule. Only one of each type of change is used by LIVE. For 
example, if a robot's hand is above a stack of disks Diskl, Disk2 . . . . .  Disk/, then mov- 
ing the hand away will cause all the relations ABOVE(HAND, Disk/) to "vanish." In this 
case, only one (any one) of them will be used in the new rule. 

7. Model revision during model application 

The newly created rules, like the one produced in the last section, are clearly over-general 
and incomplete. However, they serve as a springboard for problem solving and further 
learning. Because of their generality, LIVE has chances to attempt goals, to meet prediction 
failures, and hence to increase its knowledge about the environment. This section describes 
how these steps are accomplished by the Rule Reviser, the Planner, and the Experimenter. 

Table L A prediction failure in exploration. 

Action: PICK(BALL1 PLATE1) 

Condition Observation Prediction Resulting Observation 

ON(BALL1 PLATE1) False INHAND(BALL1) 

ON(BALL2 PLATE1) 

ON(BALL3 PLATE1) 

SIZE > (BALL3 BALL2) 

SIZE > (BALL3 BALL1) 

SIZE > (BALL2 BALL1) 

ON(BALL2 PLATE1) 

ON(BALL3 PLATE1) 

SIZE > (BALL3 BALL2) 

SIZE > (BALL3 BALL1) 

SIZE > (BALL2 BALL1) 
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7.1. Revising rules by complementary discrimination 

Rule revision is the task of the Rule Reviser. It is triggered by a prediction failure. The 
rule that made the prediction is called the faulty rule. The reviser uses Complementary 
Discrimination Learning (Shen, 1990) to explain prediction failures and revise the rules. 
The prediction rules in the model are organized as pairs of sibling rules. Two rules are 
siblings if they have the same action but have complementary conditions and different predic- 
tions. The purpose of rule revision is to adjust the boundary between sibling rules' condi- 
tions. In this article, we assume that each rule has at most one sibling. Extensions to multi- 
ple predictions can be found Shen (1992). 

Previous applications of each rule are remembered.  Each application contains a rule in- 
dex, a condition state observation (to which the rule is applied), and a set of variable bind- 
ings. When a prediction failure indicates a faulty rule, LIVE will search for the rule's 
previous, successful applications, and find the difference between the condition states now 
and then. The difference is used either to split the rule into two new rules (if the faulty 
rule has no siblings), or to revise the rule and its sibling together. Notice that sibling rules 
help each other in future development. I f  a rule's condition is too general (i.e., causes 
a prediction failure), then it will be specialized and its sibling condition is generalized. 
I f  a rule's condition is too specific (its sibling must be too general), then it will be generalized 
when its sibling rule causes a prediction failure. The algorithm for revising prediction rules 
is given in figure 5. 

To illustrate the algorithm, suppose RML meets the following prediction failure: 

Action: PICK(BALL2 PLATE1) 

Rule: Rule1 

Bindings: (ballx=BALL2)(plate=PLATE1) 

Condition Observation Prediction Resulting Observation 

INHAND(BALLI) -- 
ON(BALL2 PLATE1) INHAND(BALL2) 
ON(BALL3 PLATE1) -- 
SIZE > (BALL3 BALL2) -- 
SIZE > (BALL3 BALL1) -- 
SIZE > (BALL2 BALL1) -- 

INHAND(BALL1) 
ON(BALL2 PLATE1) 
ON(BALL3 PLATE1) 
SIZE > (BALL3 BALL2) 
SIZE > (BALL3 BALL1) 
SIZE > (BALL2 BALL1) 

To explain this prediction failure, the rule's last application, which was illustrated in table 
1 with the bindings ballx=BALL1 and plate=PLATE1, is fetched. After comparing these 
two applications, R M L  finds the difference to be -~ INHAND(BALL1) and generalizes it 
to -~ INHAND(bally). Based on the difference, Rulel is then split into the following two 
sibling rules: 

Index: Rule3 
Condition: ON(ballx plate)A -~ INHAND(ballx)A -~ INHAND(bally) 
Action: PICK (ballx plate) 
Prediction: INHAND(ballx)A -n ON(ballx plate) 
Sibling: Rule5 
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1. Explain the prediction failure by finding the relation differences between the faulty rule's previous success 
and its current failure (using the incremental enlargement heuristic described before). 

2. I f  no difference is found, call Search-Rel-Terms (see Section 8) to find the "hidden" differences. 

3. Let the result be a set (D 1 D 2 . . .  Dj), where Dj is either a conjunction of relations or a negation of conjunc- 
tive relations that is true in the successful state but false in the surprising state. 

4. I f  the faulty rule m does not have a sibling (this means the rule has not failed since its creation), then it is 
split into a pair of sibling rules as follows (the condition of rule m will be called the I-Condition for the purpose 
of explanation): 

Index m' 
I-Condition AD 1 A D 2 . . .  A Dj 

= Action 
Index m Prediction 
I-Condition Sibling n 
Action 
Prediction Index n 
Sibling 0 I-Condition A-n (D 1 A D 2 . . .  A Dj) 

= Action 
The unexpected effects 
Sibling m' 

5. I f  the faulty rule m already has a sibling n, then modify both of them as below. Notice that sibling rule n's 
non-I-conditions O1 . . . .  , 0 i are replaced by -~ (C 1 . . .  A C i ^ DI . . .  /X Dj). This guarantees the result rules 
are still siblings. 

Index m Index m 
1-Condition AC 1 . . .  A C i 1-Condition AC 1 . . .  A C i A D 1 . . .  A Dj 
Action = Action 
Prediction Prediction 
Sibling n Sibling n 

Index n Index n 
I-Condition AO 1 . . .  A 0 i I-Condition A-~ (C 1 . . .  A C i A D 1 . . .  A Dj) 
Action ~ Action 
Prediction Prediction 
Sibling m Sibling m 

Figure 5. The algorithm for revising prediction rules. 

I n d e x :  R u l e 5  

C o n d i t i o n :  O N ( b a l l x  p l a t e ) ^  -~ I N H A N D ( b a l I x ) A I N H A N D ( b a l l y )  

A c t i o n :  P I C K  ( b a l l x  p l a t e )  

P r e d i c t i o n :  O N ( b a l l x  p l a t e )  

S i b l i n g :  R u l e 3  

To  i l l u s t r a t e  h o w  s i b l i n g  r u l e s  a r e  r e v i s e d  t o g e t h e r ,  c o n s i d e r  t h e  f o l l o w i n g  t w o  r u l e s :  
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Index: 
Condition: 
Action: 
Prediction: 
Sibling: 

Rule2 
INHAND(ballx)A -~ ON(ballx plate)^ -~ ON(bally plate) 
PUT(ballx plate) 
ON(ballx plate)A -~ INHAND(ballx) 
Ruleg 

Index: 
Condition: 
Action: 
Prediction: 
Sibling: 

Rule4 
INHAND(ballx)A -~ ON(ballx plate)AON(bally plate) 
PUT(ballx plate) 
ON(ballx TABLE) A -~INHAND(ballx) 
Rule2 

Suppose RML now applies the action PUT(BALL2 PLATE1) in the state whose obser- 
vation is INHAND(BALL2) ON(BALL3 PLATE1) ON(BALL1 PLATE2) SIZE > (BALL3 
BALL1) SIZE > (BALL2 BALL1) SIZE> (BALL3 BALL2). The prediction of the action 
is ON(BALL2, TABLE), which is made by Rule4 with variable bindings: (ballx=BALL2, 
plate=PLATE1, bally=BALL3). After executing the action, RML is surprised because 
BALL2 is now on PLATE1. To explain this prediction failure, RuiN's last application is 
fetched, which, in this case, is in an identical state observation but with a different set 
of bindings: (ballx=BALL2, plate=PLATE2, bally=BALL1). Comparing these two ap- 
plications, RML finds the difference to be (SIZE > ballx bally). Based on the difference, 
Rule4 is then revised into Rule6, and its sibling Rule2 is revised into Rule8. Notice that 
the first two condition elements of Rule4 are not changed because they are I-conditions. 
Rule6's condition is made by putting the difference in conjunction with Rule4's condition. 
Rule8's condition is made by putting the I-Conditions in conjunction with the negation 
of non-I-Conditions of Rule6. 

Index: 
Condition: 
Action: 
Prediction: 
Sibling: 

Rule6 
INHAND(ballx)A -~ ON(ballx plate)AON (bally plate)ASIZE > (ballx bally) 
PUT(balk plate) 
ON(balk TABLE)A -~ INHAND(ballx) 
Rule8 

Index: 
Condition: 
Action: 
Prediction: 
Sibling: 

Rule8 
INHAND(ballx)A -~ ON(ballx plate)A -~ [O N(bally plate) ASIZE > (ballx bally) ] 
PUT(ballx plate) 
ON(ballx plate) A -~ INHAND(ballx) 
Rule6 

7.2. Generating plans and experiments 

Plans and experiments are generated by the Planner and the Experimenter, respectively. 
Since the Planner uses the standard goal regression method (Waldinger, 1977; Genesereth 
& Nilsson, 1987), I will focus our discussion on the Experimenter. 
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As I mentioned in section 5, the Experimenter is called when the Planner meets either 
a regression deadlock or a regression loop. This indicates that the rule that causes such 
problems is erroneous (or the problem is unsolvable, in which case LIVE will fail). The 
objective of the Experimenter is to design a situation in which a prediction failure may 
occur in such a way that the faulty rule will be revised. 

An error at planning time does not provide enough information about how to fix a faulty 
rule. It only indicates that the condition of the rule is too restrictive. For example, Rule2 
claims that in order to put a ball on a plate, the plate must be empty (-~ ON(bal ly  plate)) .  

This causes a regression deadlock because no matter how the subgoals (to put each ball 
on the same plate) are arranged, they always conflict with each other. Since it has been 
observed before that more than one ball can be on the same plate, there must exist situa- 
tions in which Rule2's action, currently forbidden to apply, can indeed realize Rule2's 
prediction. 

The purpose of an experiment is to find a situation in which the condition of a faulty 
rule F can be proven to be too restrictive. Moreover, such a "proof '  should be a prediction 
failure that "involves" F, possibly through another rule R, so that F can be revised using 
complementary discrimination learning. Thus, an experiment must specify a situation S 
and an existing rule R such that (1) R can be applied to S but F cannot, (2) R's action 
is the same as F's, and (3) R's prediction is complementary to F's so that whenever F's 
prediction is realized there will be a corresponding prediction failure for R. 

Fortunately, the relationship between F and R is exactly the "sibling" relation of the 
prediction rules. For example, for sibling rules Rule2 and Rule4, their respective predic- 
tions and conditions are complements of each other and their actions are the same. This 
is not a coincidence. It is an advantage of learning by complementary discrimination. If 
a rule is known to be overly specific, then its sibling rule must be overly general. Since 
they are siblings, the only thing the learner needs to do is to find a chance to specialize 
the sibling rule so that the faulty rule will be generalized as a by-product. 

Therefore, an experiment is nothing but an instantiation of the faulty rule's sibling. The 
sibling's condition specifies a set of states Se as the experiment's setting; its action a e 
specifies the action to be performed in the experiment; and its prediction Pe specifies the 
experiment's prediction. Once these are identified, the Experimenter calls the Planner to 
find a plan J = < s, a~, P1, • • . ,  ai, Se ~ to reach the experiment's condition states. The 
concatenation of this plan and the experiment's action and prediction, < J, ae, Pe >,  is 
the final prediction sequence. 

An experiment is successful if the outcome of its action produces a prediction failure. 
Otherwise, new experiments must be proposed by instantiating the sibling rule differently. 
In general, experiments are instantiated from a faulty rule's sibling by alternately assigning 
different objects to the parameters of the action. For instance, if the action in an experi- 
ment is PICK(bal l ,  p la te) ,  then different balls will be assigned to the variable ball, and 
different plates to plate.  When instantiating a rule in an experiment, the heuristic of trying 
to keep the required "preparing sequence," J, as short as possible is taken into consideration. 

Back to our example, Rule4 can be instantiated to construct the following experiment: 

Experiment: Instantiated from Rule4 
Condition: INHAND(BALL2)^-~ ON(BALL2 PLATE1)AON(BALL3 PLATE1) 
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Action: 
Prediction: 
Bindings: 

PUT(BALL2 PLATE1) 
ON(BALL2 TABLE)A -~ INHAND(BALL2) 
( (ballx . BALL2)( plate . PLATE1)(bally . BALL3)) 

This experiment is preferred to others because its condition can be easily established from 
the current state, i.e., simply picking up BALL2 from TABLE, and the action has not been 
previously performed. The experiment will be a success because it will indeed cause a 
prediction failure. Based on the prediction failure, Rule2 and Rule4 are revised into Rule6 
and Rule8 as described in section 7.1. 

8. Constructing new relations and terms 

No matter how many percepts a learner is capable of, there are always entities in the en- 
vironment that it cannot perceive. New relations and terms must be constructed when such 
invisible entities are essential for building a correct model of the environment. 

New relations and terms are necessary when the learner finds that executing the "same" 
action in the "same" state "produces different consequences. In LIVE, this is when the 
Rule Reviser (see figure 5) fails to find any differences between a successful state and a 
failed state. Consider, for example, a new learner RML2 modified from RML as follows. 
RML2 cannot perceive the relation SIZE > .  Instead, it can perceive "size" of objects (e.g., 
size(BALL3)=3). To RML2, the two states listed at the end of section 7.1 are perceived 
as follows: 2 

So = {BALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), 
ON(bally plate), ON(BALL1 PLATE2), size(bally)=3, size(ballx)=2, size(BALL1)=l}, 

where ballx=BALL2, plate=PLATE1, bally=BALL3. 

T O = {BALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), 
ON(BALL3 PLATE1), ON(bally plate), size(BALL3)=3, size(ballx)=2, size(bally)=l}, 
where ballx=BALL2, plate=PLATE2, bally=BALL1. 

Since SIZE > is not perceivable, RML2 cannot find any relation difference between So 
and T O according to the incremental enlargement heuristic (see section 6). 

Given two such states, where no differences are found according to the learner's percepts, 
the search for new relations and terms is accomplished as follows. The learner applies 
its mental relations and functions to the objects in So and To to see if any new relations 
or terms can be defined to distinguish So and T 0. For example, suppose RML2 has men- 
tal relations " > "  and " = " ;  then applying them to S O and To will result the following ex- 
panded states? 

So = {BALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(bally 
plate), ON(BALL1 PLATE2), size(bally)=3, size(ballx)=2, size(BALL1)=l, > (size(bally) 
size(ballx) ) > (size(bally) size(BALL1)), > (size(ballx) size(BALL1))} 
where ballx=BALL2, plate=PLATE1, bally=BALL3. 



158  W.-M. SHEN 

T O = {BALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), 
ON(BALL3 PLATE1), ON(bally plate), size(BALL3)=3, size(ballx)=2, size(bally)=l, 
> (size(BALL3) size(ballx)), > (size(BALL3) size(bally)), > (size(ballx) size(bally))} 
where ballx=BALL2, plate=PLATE2, bally=BALL1. 

From these two enlarged states, the difference can be easily found. Using the incremental 
enlargement heuristic, the relation > (size(ballx) size(bally)) is found to be true in To but 
false in So. Since it is the relation > (size(objx) size(objy)) that makes the difference, a new 
relation REL(objx objy) is defined as > (size(objx) size(objy)), and the difference REL(ballx 
bally) is then returned to the Rule Reviser (see section 7.1). Subsequently, RML2 will always 
apply the relation REL to objects. In some sense, its perceptual ability is improved. 

In general, mental functions are applied to features of objects to define new terms, and 
then mental relations are applied on these new terms to form new relations. For example, 
the term "torque" is defined as a function × on visible features "distance' and "weight", 
i.e., torque(x)=distance(x)×weight(x). Then the relation "torque > (x y)" is defined as 
> (torque(x),torque(y)). The process of defining new relations and terms is essentially a 
process of search. The learner systematically selects mental functions and relations and 
applies them to objects until such applications result in differences between states. At present, 
LIVE uses only a breadth-first strategy for this search. 

The procedure for searching for new relations and terms is listed in figure 6. Relating 
this procedure to the example of RML2 above, the relation r specified in the algorithm 
is " > " ,  the functionfis identity, and feature functions are Pl = size and P2 = size. Related 
to the example of torque > ,  the relation r is "> , "  the functionfis ×, the feature functions 
are Pl = distance and P2 = weight, and the new term is torque(x)~distance(x)× 
weight(x)). Notice that all the terms defined in this fashion are action-independent, for 
they can be defined without actions. 

Discovering action-independent terms is not the end of the story in learning from the 
environment. When all the mental relations and functions cannot help the learner to find 
any difference between states (this is possible when the learner does not have enough percepts 
to start with), then the procedure Search-Action-Independent-Rel-Terms(S0, To) will return 

Procedure Search-Rel-Terms(S, T) 
Let Difference=Search-Action-Independent-Rel-Terms(S, T), 
return Difference to the Rule Reviser (see Figure 5). 

Procedure Search-Action-Independent-Rel-Terms(S, T) 
1. Select a relation r (of arity n) and a function f (of arity m); 
2. Select rn unary functions Pl,  P2, • • . ,  P,n whose domains are features; 
3. I f  there exists n objects Ol, 02 . . . .  , o n such that 

r[v~, q . . . . .  ~ ]  ~ rive, v~, . . . .  V~n] 
where v/s = f [Pl(Oi) ,  p2(oi) . . . . .  pm(Oi)] in state S, 

and v/r = f [ p l ( o i ) ,  P2(Oi) . . . . .  pm(Oi)] in state 7~ 
then return r[vS~, vS~ . . . . .  vS,]. 

4. If  all the selections are exhausted, then return FAIL, else goto 1. 

Figure 6 Searching for action-independent relations and terms. 
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FAIL. For example, suppose RML2 is further restricted to become RML3. The learner 
RML3 is the same as RML2, except it cannot see the size of objects. To RML3, balls are 
of  the same size, and the states So and T O are perceived as 

So = {BALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(bally 
plate), ON(BALLI PLATE2)}, where ballx=BALL2, plate=PLATE1, bally=BALL3. 

T O = {BALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), 
ON(BALL3 PLATE1), ON(bally plate)}, where ballx=BALL2, plate=PLATE2, 
bally=BALL1. 

Since RML3 cannot perceive any features of  objects, applying the mental functions and 
relations will not result in any difference between these two states. 

When situations like this arise, we say that the environment has hidden features that are 
action-dependent. The learner must search back into the history of So and To to find the 
differences there. New terms must be defined in terms of not only percepts but also ac- 
tions. These terms are defined to carry the difference to the present so that the learner 
can predict the future. In the case of RML3, what must be discovered are the following 
conditions for the actions PICK and PUT: 

PICKable(x,p)(0 ~- ON(x,p)(t ) A -~ INHAND(z)(0 A -~ [ON(y,p)(t) A [y was put on p more 
recently than x]] 

[y was put on p more recently than x] ~- V(n)3(n')[PUT(x,p)(t_n) A PUT(y,p)(t-n') A 
(n' < n)] 

PUTable(x,P)(0 ~ INHAND(x)(t) A -~ [ON(y,p)(0 A [y was pickable from p' when 
ON(x,p')]] 

[y was pickable from p' when ON(x,p')] ~- 3(n)[ON(y,p')(t-n) A ON(x,p')(t_n) A 
PICK(y,p')(t_,,) A INHAND(y)(t_n+I)] 

The predicate PICKable(x, P)t says that x can be picked up from p at time t, if x is on 
p, the hand is empty, and there is no y on p such that y was put on p more recently than 
x. The predicate PUTable(x, P)t says that x can be put on p at time t, if x is in hand and 
there is no y on p such that y was pick, able from a plate p' at a previous point in time 
when x was on p'. From these definitions, one can see that action-dependent terms are 
defined in terms of  both actions and percepts. Moreover, their values may depend on the 
values in previous states and can be changed by actions. (In this sense, they are also known 
as "recursive theoretical terms"; see Shen and Simon (1990). 

To discover action-dependent terms, LIVE searches back into the history of So and To 
when Search-Action-Independent-Rel-Terms(So, To) returns FAIL. It then identifies two 
"relevant" historical sequences of  So and To and finds the difference between them. This 
difference then becomes the definition of a new predicate that is returned to the Rule Reviser. 

In the current example, the history of LIVE is listed in the first column of  table 2. As 
described in section 7.1, each historical item contains a rule index (omitted in this column), 
a state observation to which the rule's action was applied, and a set of variable bindings 
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T a b l e  2.  Search for historical differences. 

So's Ancestors T0's Ancestors 
t n History x=2,p =2,y = 1 x =2,p = 1,y =3 

t 1 ON(1 1)ON(2 1)ON(3 1) PICK(1 1) 
t 2 1NHAND(1)ON(2 1)ON(3 1) PUT(1 2) 
t 3 ON(1 2)ON(2 1)ON(3 1) PICK(2 1) 
t 4 INHAND(2)ON(1 2)ON(3 1) PUT(2 2) 
t 5 ON(1 2)ON(2 Tbl)ON(3 1) PICK(2 Tbl) 
t 6 INHAND(2)ON(1 2)ON(3 1) PUT(2 1) 

S_ 30N(y 1)ON(x 1) PICK(y 1) 
S_ 2 1NHAND(y)ON(x 1) PUT(y p) 
S_ 10N(y p)ON(x 1) PICK(x 1) 
S O ON(y p)INHAND(x) PUT(x p) 

T_ 30N(y p)ON(x p) PICK(x p) 
T_ 20N(y p)INHAND(x) PUT(x 2) 
T_ 10N(y p)ON(x Tbl) PICK(x Tbl) 
r 0 0N(y p)INHAND(x) PUT(x p) 

(also omitted in this column). As we can see, the item t6 is what we call T 0. It is the cur- 
rent state in which the application of Rule4 results in a prediction failure. The item t 4 
is what we call So, for it was the last successful application of Rule4 in the history. The 
second and third columns in table 2 are the ancestor states of So and To, respectively. They 
are "v iews"  of the items in the first column of the same row through the variable bind- 
ings of So and To (listed in the top row of these two columns). Such views are created 
by copying the corresponding item from the first column, replacing the balls and plates 
with the variables according to the bindings, and then deleting those elements that have 
no variables. For example, S-1 is a view of t3, according to the bindings (x=2 p = 2  
y =  1), in which ON(1 2) is replaced by ON(y p), ON(2 1) is replaced by ON(x 1), 
ON(3 1) is deleted, and PICK(2 1) is replaced by PICK(x 1). Likewise, T-3 is also a 
view of t3, but according to the bindings (x=2 p = l  y=3) .  

This particular way of "viewing" ancestor states from a particular rule application is 
a general heuristic, and a very powerful one, to identify the relevant histories. It focuses 
the learner's attention on the history of the objects that are related to the current action. 
When comparing two histories, LIVE identifies the relevant historical sequences (say from 
time to-u  to t0-v, where (0 - u )<  (0 - v) and they are relative to So and To), and finds 
the difference there. 

The time to_ u is identified by searching back from T O and So to the first states, say Tt0_ ~ 
and Sto_u, where the objects (now represented as variables) that do not have apparent rela- 
tions in T O and So had some visible relations. In our current example, searching back from 
T O in this way leads to T_ 3 because the object x and y, which are not related in T 0, were 
both on the plate p. Likewise, searching from So in the same way leads to S-3. 

The time t0-v is identified by searching back from T O and So to the first states, say Tt0_v 
and Sto_v, where the difference between Tt0_v and Sto_v first become visible. In our ex- 
ample, this leads to T_ 2 and S-2 where INHAND(y) was true in S-2 while INHAND(x) 
was true in T-2. 

After (S0-u.. • So-v)  and (To_ u . . .  To_v) are identified, the di f f e rence  between these two 
history sequences are those relations and actions (except the action at time 0 - v) that 
appear in (So_ u . . .  So-v)  but not in (To_ u . . .  To_v). In our current example, this difference 
is [ON(y,1)(0_3) A ON(x,1)(0_3) A PICK(y,1)(o_3~ AINHAND(y)(0_3+I~ A 
ON(x,1)(o_3+l) ]. Generalizing this difference, say plate 1 to p ' ,  time 0 to t, and time 
- 3  to - n ,  we have the definition of a new predicate: [ON(y,p')(t-n) A ON(x,p)(t-n) 
A PICK(y,p')q_n~ AINHAND(y)~t_n+I~ A ON(x,p')(~_n+l)], which is equivalent to the 
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predicate "y was pickable from p' when ON(x,p')", as we described in PUTable. This new 
predicate is then returned to the Rule Reviser in figure 5 and a correct rule for PUT will 
be built. 

We can modify the procedure Search-Rel-Terms in figure 6 to search for both action- 
independent and action-dependent terms. The new version of Search-Rel-Terms is illustrated 
in figure 7. When the procedure Search-Acfion-Independent-Rel-Terms(S0, To) returns 
FAIL, this new procedure will search into the history of So and To, find the difference 
there, and return the difference in terms of some newly defined action-dependent predicates. 

9. Performance of LIVE 

LIVE has been tested in many different domains. These include the Plate of Hanoi, the 
Balance Beam problem defined in Siegler (1983), the gene discovery experiments (Shen 
& Simon, 1990; Shen, 1989), the little prince world defined in Rivest and Schapire (1987), 
the hidden bits register problem, also defined in Rivest and Schapire (1987), and randomly 
generated Moore machines with hidden states. Before I give the results of the experiments 
in the first two domains in detail, let me briefly describe the gene discovery experiments. 

The gene discovery experiments are formalized as an environment in which LIVE can 
breed garden peas that have different colors. This is inspired by Mendel's experiments 
(Mendel, 1865) that led him to discover genes. It is a case where the importance of action- 
dependent terms is illustrated naturally. In this environment, LIVE has a single action Breed, 
and can observe only the colors of peas. Its mental language includes relations such as 
= and < and functions such as max (maximum), min (minimum), and EvenDistr (Even- 
Distr(uv, xy) = (ux, uy, vx, vy)). LIVE's task is to predict the colors of offspring when 
two peas are bred. To make the task feasible for LIVE, the environment is simplified so 
that two parent peas produce four and only four offspring and their genes are evenly 
distributed into their children. LIVE is given a fixed sequence of actions instead of being 
free to choose which peas to breed. In this environment, LIVE must define action-dependent 
terms because genes are not visible; two pairs of green peas may look exactly the same, 
yet they produce offspring with different colors. The action-dependent terms are defined 
by searching back to the ancestors of peas and find the difference there. In this environ- 
ment, LIVE successfully discovers the hidden genes of peas and incorporates them into 
the prediction rules. Interested readers may see Shen and Simon (1990) and Shen (1989) 
for details. 

Procedure Search-Rel-Terms(S, T): 
Let Difference= Search-Action-Independent-Rel-Terms(S, T), 
If Difference ~ FAIL, then return Difference to the Rule Reviser (Figure 5), else 

Identify the revelant history of S O and To, 
Define new predicates based on the difference between the identified history, 
Return the difference so found to the Rule Reviser. 

Figure 7. Search for both action-independent and action-dependent terms. 
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9.L The RML learner and the Plate of Hanoi 

In the Plate of Hanoi environment, I have tested the RML learner by giving it (1) different 
goals, (2) different exploration plans, and (3) different numbers of balls. LIVE's perfor- 
mance is sensitive to the difficulty of the goals and to the order in which the goals are 
expressed. When the same goals are given but expressed in different orders, LIVE learns 
the same set of rules but the time spent is inversely proportional to the correctness of the 
order of the goals. The correct order of goals, in this particular environment, means that 
larger balls are put on the goal plate before smaller ones. Interestingly, LIVE spends less 
time when the goals are expressed in an incorrect order than when they are in the correct 
order. This is because the goals in an incorrect order force LIVE to meet prediction failures 
at an earlier stage of problem solving, and thus correct rules are learned before wasting 
too much time on attempting to solve the goals with a set of bad rules. In other words, 
LIVE prefers to meet prediction failures as early as possible. This is consistent with the 
fact that learning correct rules is more important than making superficial progress in prob- 
lem solving. 

LIVE's performance is also sensitive to the difficulty of the goals. On the one hand, 
if the goals are difficult enough to achieve (i.e., they require the learner to know all the 
rules), LIVE will learn a complete set of rules to solve the Plate of Hanoi. This may re- 
quire a longer time, since LIVE makes more mistakes and designs more experiments. On 
the other hand, if the goals are too trivial, LIVE solves the problem quickly but may not 
have the chance to learn the complete rule set. For example, if a goal can be achieved 
by just moving the smallest ball to a different plate, then LIVE will be satisfied after learn- 
ing two rules that accomplish the goal. This behavior is consistent with the definition of 
learning from the environment: to construct a model adequate enough for solving the pro- 
blems (not for mastering the whole environment). 

The effect of exploration on LIVE's performance was tested by forcing LIVE to take 
different exploration actions. This resulted in two interesting observations. First, problem 
solving will take less time when exploration is more thorough. This is consistent with the 
earlier observation that learning and discovery enhances problem solving. Second, in some 
exploration, LIVE learns some rules that are not directly used in problem solving. For 
example, a rule says that the PUT action will cause no effect if the hand is empty. Although 
these rules are not used in solving problems, they prevent LIVE from creating similar rules 
again in future exploration. 

Finally, I also tested the RML learner in problems with more than three balls. It is observed 
that the time for learning the correct rule set is the same regardless of the number of balls 
(although the total problem-solving time increases). This has a simple explanation. The 
rules that LIVE learned do not depend on how many balls are on plates but on how balls 
relate to each other in actions. The rules learned are general. Once they are learned, they 
can be used to solve the Plate of Hanoi problem irrespective of its size. 

9.2. The balance beam environment 

A balance beam is a seesaw with pegs on both sides of the fulcrum where weights can 
be placed. The task is to predict whether the beam will tip to the left, to the right, or balance. 



DISCOVERY AS AUTONOMOUS LEARNING FROM THE ENVIRONMENT 163 

In this environment, LIVE is given the ability to perceive the weights on each side of the 
beam and the distances from the weights to the center of the beam. To be able to predict 
correctly, LIVE must discover the invisible concept of "torque" (weight(x)×distance(x)). 
LIVE is tested in three kinds of experiments: (1) different orders of training instances, 
(2) different orders of mental relations and functions, and (3) different number of mental 
relations and functions. 

To test how LIVE behaves when training instances are given in different orders, I limited 
LIVE's mental functions to × and +,  and its mental relations to > and =. LIVE is given 
a large number of randomly generated sets of prediction tasks. It is observed that LIVE's 
discovery of torque in this environment depends on when "informative" prediction failures 
happen (i.e., when the procedure Search-Rel-Terms is called). From the experiments I have 
run, LIVE always discovers the torque concept, although sometimes earlier and sometimes 
later. 

When mental relations and functions are given in different orders, LIVE's performance 
changes. For example, if the list of relations is (= >)  instead of (>  =), LIVE will con- 
sider the relation (w×d)=(w×d) first. The correct relation (w×d)> (w /d )  is discovered 
later when a prediction fails after (w×d)=(w×d) is defined. Similarly, if the list of func- 
tions is (+ ×) instead of (× +), then the useless relation (w+d)>  (w+d) will be defined 
before (w×d) > (wxd). 

Since LIVE's current strategy for searching new terms is brute force, the order of con- 
structs affects LIVE's performance dramatically. For example, LIVE can discover torque 
when the function and relation lists are (×, +, x y, - ,  max, min) and ( > ,  =, < ,  _<, 
_>), respectively. However, it failed to do so when the first list is changed to (max, min, 

x y, - ,  +, ×). In this case, LIVE is overwhelmed by too many useless terms, such as 
max(weight, distance) and weight distance, and it runs out of resources. Obviously, a better 
search strategy for new terms is essential. 

10. Strengths and weaknesses 

There are three principal strengths in this learning framework. First, it defines the prob- 
lem of learning from the environment as constructing a model of the environment in the 
context of problem solving. The definition makes a distinction between a learner's innate 
actions and the consequences of actions with respect to the environment. An approximate 
model of the environment is extracted from an immense "raw" space determined by the 
learner's innate physical abilities and prior knowledge. This extraction process is guided 
by the information gathered during interactions with the environment. 

Second, the framework provides an integrated way to coordinate various activities, such 
as perception, action, exploration, experimentation, problem solving, learning, discovery, 
and new term construction. To my knowledge, LIVE is the first implemented system that 
incorporates so many activities. By viewing discovery as a form of learning from the en- 
vironment, this integration provides some insights on what activities may be involved in 
discovery processes and how they interact with each other. 

Third, the framework identifies the key to integration to be the notion of prediction se- 
quences and learning by complementary discrimination. Prediction sequences provide a 
unified view of planning, exploration, and experimentation. They link these activities to 
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learning and discovery via prediction failures. Learning by complementary discrimination 
provides a very adaptive way for generalizing, or abstracting, a model from the environ- 
ment and can be extended readily to new term construction. 

The framework is still in its early developmental stage. It must overcome several 
weaknesses and limitations in order to become a general solution for learning from the 
environment. For example, the framework cannot deal with uncertainty of actions. A single 
"noisy" prediction failure will cause the model to be revised completely. It cannot react 
in real time: all its actions are deliberate and may take much time to decide. 

The incremental enlargement heuristic is not a general way to fred the correct difference 
between two states. It relies on the "hints" that are implied by the parameters of action. 
When actions do not have these parameters, the learner needs to determine how objects 
in the environment are related to actions. This is a question I have not addressed. 

Perhaps the most severe limitation of LIVE is that the brute force search method for 
discovering new terms is too naive and relies on two strong biases. One is that the set of 
useful mental relations and functions must be given beforehand. The other is that the cur- 
rent way of discovering action-dependent terms is limited to consider only the features and 
the objects that are related to the current condition and action. For example, in defining 
genes of pea, LIVE must assume that children's color is determined only by their ancestors' 
color, while in the real world, features in one state may be determined by different features 
in its previous states. 
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Notes 

1. The operator t.J is a set union with undos. For example, if ei = { TM b} and Pi+l = {b} then Pi [3 Pi+l : 

{b} because b undoes -nb. 
2. Objects in relations are replaced by variables if they are bound. 
3. All the plates are of the same size, and they are larger than the balls. But for simplicity these relations are 

not included in the description. 
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