Skip to main content
Log in

Morphological evolution and ecological diversification of the forest-dwelling poppies (Papaveraceae: Chelidonioideae) as deduced from a molecular phylogeny of the ITS region

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Sequences of the ITS region of nrDNA were analyzed for the seven genera of Papaveraceae subf. Chelidonioideae s.str. Three major clades can be recognized. These are 1.Chelidonium/Hylomecon/Stylophorum, 2.Eomecon/Sanguinaria, and 3.Bocconia/Macleaya. The monophyly of genera in the first of these three clades is doubtful, and clades two and three are sister to each other. Use of the ITS phylogeny of the subfamily to trace its morphological and ecological evolution shows that morphological change is concentrated in theBocconia/Macleaya clade, and probably related to the evolution of wind-pollination from insect-pollination in these two genera after habitat shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnheim N. (1983) Concerted evolution in multigene families. In: Nei M., Koehn R. (eds.) Evolution of genes and proteins. Sinauer, Sunderland, pp. 38–61.

    Google Scholar 

  • Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E. (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomolgous chromosomes in man and apes. Proc. Natl. Acad. Sci. USA 77: 7323–7327.

    PubMed  Google Scholar 

  • Baldwin B. G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phyl. Evol. 1: 3–16.

    Google Scholar 

  • Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247–277.

    Google Scholar 

  • Bandelt H.-J., Dress A. W. M. (1992) Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phyl. Evol. 1: 242–252.

    Google Scholar 

  • Bersillon G. (1955) Recherches sur les papavéracées; contribution à létude du developpement des dicotylédones herbacées. Ann. Sci. Nat. Bot. XI. 16: 225–448.

    Google Scholar 

  • Blackmore S., Stafford P., Persson V. (1995) Palynology and systematics of Ranunculiflorae. Plant Syst. Evol., Suppl. 9: 71–82.

    Google Scholar 

  • Blattner F. R., Kadereit J. W. (1995) Three intercontinental disjunctions in Papaveraceae subfamily Chelidonioideae: evidence from chloroplast DNA. Plant Syst. Evol., Suppl. 9: 147–157.

    Google Scholar 

  • Böhle U.-R., Hilger H. H., Martin W. F. (1996) Island colonization and evolution of insular woody habit inEchium L. (Boraginaceae). Proc. Natl. Acad. Sci. USA 93: 11740–11745.

    PubMed  Google Scholar 

  • Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstructions. Evolution 42: 795–803.

    Google Scholar 

  • Brückner C. (1982) Zur Kenntnis der Fruchtmorphologie der Papaveraceae Juss. s. str. und der Hypecoaceae (Prantl and Kündig) Nak. Feddes Repert. 93: 153–212.

    Google Scholar 

  • Brückner C. (1983) Zur Morphologie der Samenschale in den Papaveraceae Juss. s. str. und Hypecoaceae (Prantl and Kündig) Nak. Feddes Repert. 94: 361–405.

    Google Scholar 

  • Buckler IV E. S., Ippolito A., Holtsford T. P. (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145: 821–832.

    PubMed  Google Scholar 

  • Carlquist S. (1974) Island biology. Columbia Univ. Press, New York.

    Google Scholar 

  • Crawford D. J., Stuessy T. F., Cosner M. B., Haines D. W., Silva O., M., Baeza M. (1992) Evolution of the genusDendroseris (Asteraceae: Lactuceae) on the Juan Fernandez Islands: evidence from chloroplast and ribosomal DNA. Syst. Bot. 17: 676–682.

    Google Scholar 

  • Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.

    Google Scholar 

  • Dover G. (1982) Molecular drive: a cohesive mode of species evolution. Nature 229: 111–117.

    Google Scholar 

  • Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Ernst W. R. (1962a) A comparative morphology of the Papaveraceae. Ph.D. Thesis, Stanford University.

  • Ernst W. R. (1962b) The genera of Papaveraceae and Fumariaceae in the southeastern United States. J. Arnold Arbor. 63: 315–343.

    Google Scholar 

  • Farris J. S. (1989) The retention index and the rescaled consistency index. Cladistics 5: 417–419.

    Google Scholar 

  • Fedde F. (1909) Papaveraceae — Hypecoideae et Papaveraceae — Papaveroideae. In: Engler A. (ed.) Das Pflanzenreich, IV, 104. Engelmann, Leipzig, pp. 1–430.

    Google Scholar 

  • Fedde F. (1936) Papaveraceae. In: Engler A., Harms H. (eds.) Die natürlichen Pflanzenfamilien, 17b, 2nd edn. Engelmann, Leipzig, pp. 5–145.

    Google Scholar 

  • Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376.

    PubMed  Google Scholar 

  • Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein J. (1993) PHYLIP (Phylogeny Inference Package) version 3.57c. Dept. of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Feng R.-Z., Lian W.-Y., Fu G.-X., Xiao P.-G. (1985) Chemotaxonomy and resource utilization of the tribe Chelidonieae (Papaveraceae). Acta Phytotax. Sinica 23: 36–42.

    Google Scholar 

  • Fitch W. M. (1971) Toward defining the course of evolution: minimal change for specific tree topology. Syst. Zool. 20: 406–416.

    Google Scholar 

  • Givnish T. J. (1988) Adaptation to sun vs. shade: a whole plant perspective. Australian J. Plant Phys. 15: 63–92.

    Google Scholar 

  • Givnish T. J., Sytsma K. J., Smith J. F., Hahn W. J. (1995) Molecular evolution, adaptive radiation, and geographic speciation inCyanea (Campanulaceae, Lobelioideae). In: Wagner W. L., Funk V. A. (eds.) Hawaiian biogeography. Evolution on a hot spot archipelago. Smithonian Institution Press, Washington, pp. 288–337.

    Google Scholar 

  • Gleissberg S., Kadereit J. W. (1999) Evolution of leaf morphogenesis: evidence from developmental and phylogenetic data in Papaveraceae. Int. J. Plant Sci. 160: 787–794.

    Google Scholar 

  • Günther K.-F. (1975) Beiträge zur Morphologie und Verbreitung der Papaveraceae. 1. Teil: Infloreszenzmorphologie der Papaveraceae; Wuchsform der Chelidonieae. Flora 164: 185–234.

    Google Scholar 

  • Hershkovitz M. A., Lewis L. A. (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol. Biol. Evol. 13: 1276–1295.

    PubMed  Google Scholar 

  • Hershkovitz M. A., Zimmer E. A. (1996) Conservation patterns in angiosperm rDNA ITS2 sequences. Nucl. Acids Res. 24: 2857–2867.

    PubMed  Google Scholar 

  • Hillis D. M., Huelsenbeck J. P. (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J. Heredity 83: 189–195.

    Google Scholar 

  • Hoot S. B., Kadereit J. W., Blattner F. R., Jork K. B., Schwarzbach A. E., Crane P. R. (1997) Data congruence and phylogeny of the Papaveraceae s.1. based on four data sets:atpB andrbcL sequences,trnK restriction sites, and morphological characters. Syst. Bot. 22: 573–590.

    Google Scholar 

  • Huson D. H. (1998) SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73.

    PubMed  Google Scholar 

  • Hutchinson J. (1920)Bocconia andMacleaya. Kew Bull. 1920: 275–282.

    Google Scholar 

  • Jin L., Nei M. (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 7: 82–102.

    PubMed  Google Scholar 

  • Kadereit J. W. (1993) Papaveraceae. In: Kubitzki K. (ed.) The families and genera of vascular plants, vol. 2. Springer, Heidelberg, pp. 494–506.

    Google Scholar 

  • Kadereit J. W., Blattner F. R., Jork K. B., Schwarzbach A. (1994) Phylogenetic analysis of the Papaveraceae s.1. (incl. Fumariaceae, Hypecoaceae, andPteridophyllum) based on morphological characters. Bot. Jahrb. Syst. 116: 361–390.

    Google Scholar 

  • Kadereit J. W., Blattner F. R., Jork K. B., Schwarzbach A. (1995) The phylogeny of Papaveraceae sensu lato: morphological, geographical and ecological implications. Plant Syst. Evol., Suppl. 9: 133–145.

    Google Scholar 

  • Karrer A. B. (1991) Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. Ph.D. Thesis, University of Zürich.

  • Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    PubMed  Google Scholar 

  • Kishino H., Hasegawa M. (1989) Evaluation of the maximum likelihood estimate of evolutionary tree topologies from DNA sequence data, and the branching order in Hominidea. J. Mol. Evol. 29: 170–179.

    PubMed  Google Scholar 

  • Kluge A. G., Farris J. S. (1969) Quantitative phyletics and the evolution of the anurans. Syst. Zool. 18: 1–32.

    Google Scholar 

  • Knox E., Downie S. R., Palmer J. D. (1993) Chloroplast DNA rearrangements and the evolution of giant lobelias from herbaceaous ancestors. Mol. Biol. Evol. 10: 414–430.

    Google Scholar 

  • Lehmann N. L., Sattler R. (1993) Homeosis in floral development ofSanguinaria canadensis andS. canadensis “Multiplex” (Papaveraceae). Amer. J. Bot. 80: 1323–1335.

    Google Scholar 

  • Liston A., Robinson W. A., Oliphant J. M. (1996) Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering plants. Syst. Bot. 21: 109–120.

    Google Scholar 

  • Liu J.-S., Schardl C. L. (1994) A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Mol. Biol. 26: 775–778.

    PubMed  Google Scholar 

  • Loconte H., Campbell L. M., Stevenson D. W. (1995) Ordinal and familial relationships of ranunculid genera. Plant Syst. Evol., Suppl. 9: 99–118.

    Google Scholar 

  • Maddison W. P., Maddison D. R. (1992) MacClade: interactive analysis of phylogeny and character evolution, version 3.05. Sinauer, Sunderland.

    Google Scholar 

  • Mai J. C., Coleman A. W. (1997) The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44: 258–271.

    PubMed  Google Scholar 

  • Musters W., Boon K., van der Sande C. A. F. M., van Heerikhuizan H., Planta R. J. (1990) Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J. 9: 3989–3996.

    PubMed  Google Scholar 

  • Proctor M., Yeo P., Lack A. (1996) The natural history of pollination. Timber Press, Portland.

    Google Scholar 

  • Rachele L. D. (1974) The pollen morphology of the Papaveraceae of the northeastern United States and Canada. Bull. Torrey Bot. Club 101: 152–159.

    Google Scholar 

  • Ramstad E. (1953) Über das Vorkommen und die Verbreitung von Chelidonsäure in einigen Pflanzenfamilien. Pharm. Acta Helvet. 28: 45–57.

    PubMed  Google Scholar 

  • Ritland C. E., Ritland K., Straus N. A. (1993) Variation in the ribosomal transcribed spacers (ITS1 and ITS2) among eight taxa of theMimulus guttatus species complex. Mol. Biol. Evol. 10: 1273–1288.

    PubMed  Google Scholar 

  • Roelofs D., van Velzen J., Kuperus P., Bachmann K. (1997) Molecular evidence for an extinct parent of the tetraploid speciesMicroseris acuminata andM. campestris (Asteraceae: Lactuceae). Mol. Ecol. 6: 641–649.

    PubMed  Google Scholar 

  • Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. J. Mol. Evol. 4: 406–425.

    Google Scholar 

  • Sang T., Crawford D. J., Kim S.-C., Stuessy T. F. (1994) Radiation of the endemic genusDendroseris (Asteraceae) on the Juan Fernandez Islands: evidence from sequences of the ITS regions of nuclear ribosomal DNA. Amer. J. Bot. 81: 1494–1501.

    Google Scholar 

  • Sang T., Crawford D. J., Stuessy T. F. (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA. 92: 6813–6817.

    PubMed  Google Scholar 

  • Savonová I. N. (1994) The karyotypical analysis of the generaDicranostigma, Hylomecon, Macleaya, Sanguinaria, Stylophorum (Chelidonioideae, Papaveraceae). Bot. Žurn. 79: 70–76.

    Google Scholar 

  • Slavík J., Hanuš V., Slavíková L. (1991) Alkaloids fromStylophorum lasiocarpum (Oliv.) Fedde. Collect. Czech. Chem. Commun. 56: 1116–1122.

    Google Scholar 

  • Suh Y., Thien L. B., Reeve H. E., Zimmer E. A. (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Amer. J. Bot. 80: 1042–1055.

    Google Scholar 

  • Swofford D. L. (1993) PAUP: Phylogenetic Analysis Using Parsimony, version 3.1.1. Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Tatusov R. L., Koonin E. V., Lipman D. J. (1997) A genomic perspective on protein families. Science 278: 631–637.

    PubMed  Google Scholar 

  • Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    PubMed  Google Scholar 

  • Van der Sande C. A. F. M., Kwa M., van Nues R. W., van Heerikhuizan H., Raué H. A., Planta R. J. (1992) Functional analysis of internal transcibed spacer 2 ofSaccharomyces cerevisiae ribosomal DNA. J. Mol. Evol. 223: 899–910.

    Google Scholar 

  • Van Houten W. J. H., Scarlett N., Bachmann K. (1993) Nuclear DNA markers of the Australian tetraploidMicroseris scapigera and its North American diploid relatives. Theor. Appl. Genet. 87: 498–505.

    Google Scholar 

  • Van Nues R. W., Rientjes J. M. J., van der Sande C. A. F. M., Zerp S. F., Sluiter C., Venema J., Planta R. J., Raué H. A. (1994) Separate structural elements within internal trancribed spacer 1 ofSaccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucl. Acids Res. 22: 912–919.

    PubMed  Google Scholar 

  • Van Nues R. W., Rientjes J. M. J., Morré S. A., Mollee E., Planta R. J., Venema J., Raué H. A. (1995) Evolutionarily conserved structural elements are critical for processing of internal trancribed spacer 2 fromSaccharomyces cerevisiae precursor ribosomal RNA. J. Mol. Biol. 250: 24–36.

    PubMed  Google Scholar 

  • Vent W. (1973) Beiträge zur Kenntnis der Sippenstruktur der GattungenBocconia L. undMacleaya R.Br. (Papaveraceae). Acta Bot. Acad. Scient. Hungar. 19: 385–391.

    Google Scholar 

  • Wendel J. F., Schnabel A., Seelanan T. (1995a) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92: 280–284.

    PubMed  Google Scholar 

  • Wendel J. F., Schnabel A., Seelanan T. (1995b) An unusual ribosomal DNA sequence fromGossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phyl. Evol. 4: 298–313.

    Google Scholar 

  • White T. J., Bruns T., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D., Sninsky J., White T. (eds.) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322.

    Google Scholar 

  • Wolfe A. D., Elisens W. J. (1995) Evidence of chloroplast capture and pollen-mediated gene flow inPenstemon sect.Peltanthera (Scrophulariaceae). Syst. Bot. 20: 395–412.

    Google Scholar 

  • Ying T.-S., Zhang Y.-L., Boufford D. E. (1993) The endemic genera of seed plants of China. Science Press, Beijing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blattner, F.R., Kadereit, J.W. Morphological evolution and ecological diversification of the forest-dwelling poppies (Papaveraceae: Chelidonioideae) as deduced from a molecular phylogeny of the ITS region. Pl Syst Evol 219, 181–197 (1999). https://doi.org/10.1007/BF00985578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985578

Key words

Navigation