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Abstract .  A theory for the origin o f  the solar system, which is based on ideas o f  supersonic turbulent  
convection and indicates the possibility that  the original Laplacian hypothes is  may  by valid, is pre- 
sented. 

We suggest that  the first stage o f  the  Sun 's  format ion  consisted o f  the condensat ion o f  CNO ices 
(i.e. H~ O, NH3, C H 4 , . . . )  and later H 2 , including He as impuri ty  a toms,  at interstellar densities to 
form a cloud of  solid grains. These grains then  migrate under  gravity to their c o m m o n  centre o f  mass  
giving up almost  two orders of  magni tude  o f  angular m o m e n t u m  through resistive interaction with 
residual gases which are tied, via the ions, to the  interstellar magnetic  field. Grains rich in CNO rapidly 
domina te  the centre of  the cloud at this stage, both  giving up almost  all of  their angular m o m e n t u m  
and forming a central chemical inhomogenei ty  which may  account  for the present  low solar neutr ino 
flux (Prentice, 1976). The rest of  the grain cloud, when sufficiently compressed to sweep up the  
residual gases and go into free fall, is no t  threa tened by rotat ional  disruption until  its mean  size has  
shrunk  to about  the  orbit of  Neptune.  

When the central opacity rises sufficiently to halt  the free collapse at central densi ty near 
10-13g cm-3,  corresponding to a mean  cloud radius o f  104Re,  we find that  there is insufficient gravi- 
tational energy, for the  vaporized cloud to acquire a complete  hydrosta t ic  equilibrium, even if a 
supersonic turbulent  stress arising f rom the mot ions  o f  convective elements  becomes impor tant ,  as 
Schatzman (1967) has proposed.  Instead we suggest that  the inner 3 - 4 %  of  the cloud mass collapses 
freely all the way to stellar size to release sufficient energy to stabilize the  rest of  the infalling cloud, 
Our model  o f  the  early solar nebula thus consists o f  a small dense quasi-stellar core surrounded by a 
vast t enuous  bu t  opaque turbulent  convective envelope. 

Following an earlier paper (Prentice, 1973) we show how the supersonic turbulent  stress (ptvt 2) = 
flpGM(r)/r, where fl is called the  turbulence parameter,  p is the gas densi ty andM(r )  the mass  interior 
to radius r causes the envelope to become very centrally condensed (i.e. drastically lowers its momen t -  
of-inertia coefficient f )  and leads to a very steep densi ty inversion at its photosurface,  as well as 
causing the  interior to rotate like a solid body.  As the nebula  contracts  conserving its angular 
m o m e n t u m  the ratio | of  centrifugal force to gravitational force at the  equator  steadily increases. In 
order to maintain pressure equil ibrium at its photosurface ,  material  is ext ruded outwards  f rom the 
deep interior o f  the  envelope to form a dense belt o f  non- turbulen t  gases at the  equator  which are 
free o f  turbulent  viscosity. If the turbulence is sufficiently strong, we find that  when | ~ 1 at 
equatorial  radius R e = Ro, corresponding to the  orbit of  Neptune,  the addit ion o f  any further mass to 
the  equator  causes the  envelope to d iscont inuously  withdraw to a new radius R e < R o , leaving behind 
the circular belt of  gas at the Kepler orbit R 0. The pro tosun cont inues  to contract  inwards, again 
rotationally stabilizing itself by extruding fresh material  to the equator ,  and eventually abandoning a 
second gaseous ring at radius R t, and so on. If the  collapse occurs homologous ly  the sequence o f  
orbital radii R n of  the system of  gaseous Laplacian rings satisfy the geometric progression 

Rn/Rn+l = [t + m / M r ] 2  = constant ,  n = 0 , 1 , 2  . . . . .  

analogous to the  Titius-Bode Law of  planetary distances, where rn denotes  the mass  o f  the disposed 
ring and M the remaining mass o f  the  envelope. Choosing a ratio o f  surface to central temperature  for 
the  envelope equal to about  10 -3 and adjust ing the turbulence parameter /3 ~ 0.1 so that  Rn/Rn+ J 
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matches  the observed mean  ratio of  1.73, we typically find f =  0.01 and that  the rings of  gas each 
have about  the  same mass,  namely  1000Me of  the  solar material. Detailed calculations which take 
into account  non-homologous  behaviour resulting from the changing mass fraction o f  dissociated 
H 2 in the nebula during the collapse do not  appreciably disturb this result. This model  o f  the con- 
tracting pro tosun  enables us to account  for the observed physical s tructure and mass distr ibution 
o f  the planetary system,  as well as the chemistry.  In a later Paper II we shall examine in detail the  
condensat ion o f  the planets  from the system of  gaseous rings. 

1. Introduction 

1.1. THE LAPLACIAN HYPOTHESIS AND ITS DIFFICULTIES 

According to the hypothesis originally proposed by Laplace in 1796, the planets are 
supposed to have condensed from a concentric system of circularly orbiting gaseous rings 
which the young proto-Sun abandoned at its equator whenever the centrifugal force 

overcame the gravitational force during its primordial contraction from interstellar 
density. For full details of this hypothesis and other related theories of the solar system 
we refer the reader to the papers of ter Haar and Cameron (1963) and ter Haar (1967). 
Here, for the moment, we consider the main difficulties which confront the development 
of this simple and attractive hypothesis. 

(i) Angular Momentum Difficulty 

One of the main obstacles which face the Laplacian hypothesis is the distribution of 
angular momentum in the solar system.. It was recognized by Babinet (1861) that the 
planetary system is far too light in mass compared to the Sun in order for the latter 
to have contracted to its present size in the manner suggested by Laplace. If, for example, 
the angular momentum of the entire solar system is stored back into the Sun, the ratio of 
centrifugal force to gravitational force at the equator, if the Sun be re-expanded to the 
orbit of Neptune, barely rises to 1% of the required amount. Later Hoyle (1955) and 
other workers (Urey, 1951; Kuiper, 1951), pointed out that this objection is by no 
means as severe as Babinet's calculation implied, since the present distribution of planet- 
ary material is only a relic of what originally would have been present when the planets 
were formed, if the planets were created from solar material. 

Table I shows the relative abundances of the main types of planetary material present 
in 1000Me (Me = mass of the Earth) of material of solar composition derived from the 
recent compilation of solar abundance data of Engvold and Hauge (1974). 

To account for planets like Uranus and Neptune which are thought to consist largely 
of ices, and perhaps a rocky centre, and which have masses 15M~ and 17M~ respectively, 

we see we shall require an equivalent mass of about 1000Me of solar material at each of 
these orbits. Similarly considering the rock-like terrestrial planets and bearing mind that 
the efficiency of accumulation of condensates probably varies from one orbit to the next 
(Whipple, 1972) we also find that we require roughly comparable masses of solar material 
at each orbit, again perhaps as much as 1000M.. Thus the total amount of mass which 
the protosun shed in forming the planetary system may have been as much as 1 0 4 M ~  
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TABLE I 
Main chemical constituents of 1000 Me solar material 

343 

Type Constituent Unit of mass 

gaseous H, He 982 
ice-like C, N, O (as hydrides), Ne, Ar 13 
rocky Mg, AI, Si, Fe (as oxides) Ni, etc 5 

Total 1000 

(i.e., 3% M| or even 6%M| if another 10 or rings of gas were shed between the orbit of 

Mercury and radius R| These estimates of the mass mne b of the protoplanetary 'nebula' 
agree precisely with the independent estimates of Whipple (1972), Kuiper (1951)and 
most cosmochemists. 

Schatzman (1949) has written down the equations which govern the amount of 
material which a uniformly rotating cloud must shed at its equator in order to safely 
contract while maintaining a Kepler velocity ~ e  at its equator of radius Re. The 
residual mass M and angular momentum L after the star has shrunk from equatorial 
radius Ro to Re are given by 

M = Mo[RelRo] r/(2-30, L = Lo[Re/Roll/(2-sr) (1) 

where f = I/MR~ is the moment-of-inertia coefficient and I the moment of inertia. Thus 

taking mne b = 0.06M| R o = 104R| we see that for the contracting proto-Sun to produce 
a planetary system as light as the one observed we require that 

f _  2mnebMs / in R|176176 "" 0.01. (2) 

Such a small value of f (for a uniform sphere f = 0.4) implies that the internal mass 
distribution of the proto-Sun must have been such that most of its mass resided near the 
centre. That is, it must have been very centrally condensed. This conclusion appears to 

have been reached by most cosmogonists (e.g., Jeans, 1928; p. 397). Unfortunately, our 
knowledge of stellar interiors does not admit structures with such a low f, at least for 
those possessing convective interiors. This has been a main obstacle to the development 
of a modern Laplacian hypothesis. In addition it is not at all clear whether the contract- 
ing proto-Sun can maintain a uniform angular velocity throughout its interior as required 

by Equation (2) for the efficient transfer of angular momentum from its interior. If, as 
the work of Hayashi (1961) demonstrated, the interior of the gravitationally contracting 
proto-Sun is fully convective and, as is often loosely assumed, the convective motions 
eliminate all large-scale differential motions (Roxburgh, 1966) then we are faced with 
the bug bear that f is about an order of magnitude larger than the required amount, 
being 0.135 for a fully rotating polytrope of  index n = 1.5 (James, 1964). 
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(ii) Energy Difficulty 

An even more serious difficulty which faces the development of the Laplacian hypothesis 
is the so-called energy problem first discussed by Cameron (1962). Cameron observed, 
following the work of Hayashi (1961), that during the interval 104R| to 102R| corre- 
sponding to the range of the planetary system, there is insufficient gravitational energy in 
the proto-solar cloud to complete the various internal atomic and molecular transitions 
(dissociation, ionization, etc.) to the levels required for a consistent hydrostatic or 
thermodynamic equilibrium. This conclusion persists even if one takes into account 
supersonic turbulent stress arising from the motions of convective elements (Schatzman, 
1967, 1971). The free collapse of the proto-Sun from the interstellar density thus cannot 
be arrested during this interval and so there will be insufficient time for the cloud to 
eliminate differential rotations in its interior and hence dispose of its excess angular 
momentum at its equator in the manner proposed by Laplace. This difficulty appears 
all the more acute if we recall that the resulting orbital eccentricity e of any material 
shed from the equator of a fully rotating cloud which is contracting with inward radial 

velocity Vr is e = V r / ~ e .  The near circularity of the planetary orbits thus implies 
that vr ~ x/-G-M-~e and hence that if what Laplace said occurred, then the proto-Sun 

must have really existed in a near state of hydrostatic equilibrium for R e ~< 104R| 
What physical processes, therefore, were responsible for energetically stabilizing the 

proto-Sun first near the orbit of Neptune? 

(iii) The Discreteness Difficulty and the Titius-Bode Law of Planetary Distances 

A further difficulty which faces the Laplacian hypothesis is to explain why the rotating 

proto-solar cloud should seek to dispose of its excess primordial angular momentum in 
a discontinuous manner through the discrete detachment of a system of gaseous rings. 

Surely one would expect the shedding process to occur more or less continuously, as 
Equation (1) implies, to form a uniformly distributed disc-like nebula in the equatorial 

plane. The answer to this problem would then perhaps supply an explanation to the 
so-called Titius-Bode law of planetary distances which, in modern terms, (see ter Haar and 
Cameron, 1963; ter Haar, 1967; and Nieto, 1972) states that the sequence of successive 

orbital radii Rn, counting inwards from Neptune (n = 0), satisfy an approximately geo- 

metric relationship of the form 

R n / R n +  1 ~--- constant = 1.73. (3) 

Similar scaling-law relationships hold for the distances of the regular satellites of the 
major planets from their parent bodies which suggests that the same cosmogonic 
processes were responsible for the formation of both planetary and satellite systems. 

As we shall show later in this paper, if the proto-Sun does dispose of its angular 
momentum in discrete amounts each of mass m at the sequence of orbital radii R n 
(n = 0, 1,2 . . . .  ) then it follows from the law of conservation of angular momentum 
that, provided f ~  1, we have the relations 
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-gI n ~ constant = M, say (4) 

R n / R n +  1 = {1 + m / M f }  2 (5) 

where M n is the residual protosolar mass left over after the disposal of the nth ring. 
Evidently, therefore, equating Equations (3), (5) we see that the Titius-Bode law implies 
that the masses of the gaseous rings were all about the same, each about 1000Me of 
solar material, setting fl = 0.01. Quite astoundingly, this prediction of roughly comparable 
masses, together with a condensation temperature T n which varies as T n oc R ~  l ' coincides 
precisely with the empirical evidence obtained from the distribution of planetary 
material. Thus even at this broad level of analysis we see how a Laplacian hypothesis 
is capable of successfully accounting for both the basic physical and chemical features 
of the solar system. 

(iv) C o n d e n s a t i o n  a n d  A c c u m u I a t i o n  D i f f i c u l t y  

A final set of difficulties which face the adoption of the Laplacian hypothesis is to 

explain how the single planetary objects which we see today managed to condense and 
accumulate from the gaseous rings. Certainly it is reasonable to expect that as the rings 
'cooled down' the various condensates appropriate to the temperature at each orbital 
radius would precipitate to form circularly orbiting streams of rocks and ice, which we 
may call planetesimals. Indeed the work of ter Haar (1948, 1950), Hoyle and 

Wickramasinghe (1968), Lewis (1974) and Grossman and Larimer (1974) has con- 
vincingly demonstrated how the chemistry of the planetary system can be explained in 
terms of a variation with distance Rn of the black-body temperature Tn ~ 1 due to 
the Sun at the time o f  condensation of each planet. In the inner regions of the solar 
system where R ~< 102R| and T ~> 1000 K we would expect to find terrestrial-like planets 
consisting mostly of iron, magnesium and aluminium silicates (see Table I). In the outer 
regions where, say, r > 10JR| and T <~ 150K ices rapidly form so that we would expect 
planetary compositions similar to those of Uranus and Neptune. Presumably Jupiter 
and Saturn first formed this way but then were successful in capturing large amounts 
of H and He (ter Haar, 1948; Hoyle,1960). 

Granted then that the chemistry of the solar system is compatible with the Laplacian 
picture, the problem is to explain how the orbiting streams of planetesimals managed 

to aggregate together to form single planetary objects at each orbital radius R n. The work 
of Maxwell (1855) on the stability of Saturn's rings cast doubts upon the possibility of 

such an accumulation occurring. We should also bear in mind the theorem of PoincarO 
(1911) that the rings of gas themselves have the tendency to scatter into space under 
the disruptive influence of their own rotation, if they rotate with uniform angular 

velocity. The formation of the different types of satellites should also be considered 
alongside the aggregation problem. 

1.2. OUTLINE OF PAPERS AND IDEAS 

In this paper and the following one we present an account of the physical processes which 
we feel were responsible for the origin of the solar system and which, we believe, gives 
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grounds for accepting the validity of the original Laplacian hypothesis. Because the Sun's 
formation was probably typical of that which occurred for other stars of solar mass in 
our neighbourhood of the Galaxy, in the next section of this paper we discuss the general 
difficulties of star formation, especially the obstacles which confront the commonly-held 
notion that stars are formed form the gravitational collapse of interstellar clouds of 
gas and dust. Instead of the g~ cloud hypothesis we follow Reddish and Wickramasinghe 
(1969; see also Prentice and ter Haar, 1971) and investigate what would happen, if the 
first stage of the Sun's formation took place in a portion of a very dark region of a large 
interstellar cloud of total mass ~ 104M. and densityl0-2~ (i.e., nri --~ 104atom 
cm -3) where the temperature may have fallen sufficiently low (< 5 K) for the conden- 

sation of  H2 and the other gases, including He, onto existing particles of dust to form a 
cloud of solid grains, each of mean radius about 10 -4 cm. 

We examine in detail the migration of these grains towards their common centre of 
mass taking into account the dynamical friction between the grains and the residual 
uncondensed atoms and molecules of the cloud, which are mostly neutrally ionized. 

Prentice and ter Haar (1971) have shown that these neutral atoms are prevented from 
co-collapsing with the grain cloud because of the frictional coupling between them 
and the ionic component of  the gas which is rigidly anchored to the galactic magnetic 
field. In this way the grain cloud is capable of giving up almost two orders of magnitude 
of angular momentum so that the resulting protostellar object does not become rotation- 
ally unstable until its radius has shrunk to about the orbit of Neptune. Long before this 
radius is reached, however, the grain cloud sweeps up the residual gases of the cloud and 
goes into free fall. We also consider the differential segregation of grain material with 
respect to chemical composition as a result of the variation of the drag coefficient 

7 cx 1/ps  a with intrinsic grain density Ps for grains of constant radius a or mass. Prentice 
(1976) has suggested that an enhancement of the relative concentration of grains rich in 
C, N and 0 towards the centre of the cloud at this stage may have important bearings 
both on the solar neutrino problem and the geological evolution of the Earth. 

In Section 3 we study the physical changes which take place in the gravitationally 
collapsing proto-solar cloud when the central density rises to about 10-13gcm -3, corre- 

sponding to a surface radius -~ 104R| for a uniform cloud of solar mass, and the cloud 
becomes opaque and begins to heat up through compression. Dissociation of H2 and 

subsequent ionization of H and He prevent a halt in the free collapse of the cloud at this 
stage, however (Cameron, 1962). Following a suggestion of Schatzman (1967) we con- 
sider the possibility that the cloud may be energetically stabilized through the develop- 
ment of a large supersonic turbulent stress, using the theory of supersonic turbulent 
convection developed by Prentice (1973). As this mechanism proves insufficient we then 
consider the possibility, following Larson (1969), that the free collapse may be halted if 
a small fraction of its central mass collapses all the way through to normal stellar size to 
form a dense compact core thus liberating an additional supply of gravitational energy. Cal- 
culations are performed using simple polytropic structures but taking into account the 
variation of the polytropic index with changing mass fraction of dissociated H in the cloud. 
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Our model of the initial proto-solar cloud thus consists of a small central luminous 
metal-rich core of mass "-0.03Me and density -~ 10-3g cm -3 surrounded by a tenuous 
but opaque supersonically-turbulent energetically-stabilized rotating convective envelope 
of radius -~ 104Rsand mass "" 1 Me and normal composition. In Section 4 we consider 
in detail the influence of the supersonic turbulent stress, arising from the motions of 
buoyant convective elements, on the physical structure of the rotating proto-solar 

envelope. Following an earlier paper (Prentice, 1973) we show how the stress drastically 
lowers the moment-of-inertia coefficient f as required by the Laplacian hypothesis, and 
leads to the formation of a dense outer shell of non-turbulent gas beyond the photo- 
surface where the heat developed by the cloud during its gravitational contraction can 
ultimately be freely radiated away under conditions of nearly uniform temperature. 

We also demonstrate how the supersonic convective motions create a large turbuIent 
viscosity which eliminates all differential rotation inside the envelope. Below the photo- 

surface the material therefore rotates like a rigid body but beyond this surface, where 
the turbulent viscosity is zero, the gas conserves its angular momentum rather than 

angular velocity. We compute the positions of the outer equipotential surfaces of the 
cloud and show that as the rotation parameter | = coe2R3e/GM increases towards unity, 

where we, Re are the equatorial angular velocity and radius, the outer shell of non- 
turbulent gas assumes an essentially ring-like structure at the equator with most of 

its mass residing outside the equatorial photocylinder s = Re, where s is the cylindrical 
polar radius. 

In Section 5 we study the rotational evolution of the proto-solar envelope as it con- 

tracts towards the radius Ro where the centrifugal force at the equator first balances 
the gravitational force (i.e., | = 1) and the outermost shell of non-turbulent gas evolves 
into a ring-like structure at the equator. In Section 6 we consider in detail the processes 
which occur near the equator as the proto-Sun continues to contract inwards from the 
radius R0, its internal distribution of pressure with density being maintained by the 
convection. We find that for a sufficiently large degree of turbulent stress, measured by 
the turbulence parameter/3 (Prentice, 1973), the amount of non-turbulent gas which can 
be stored at the equator is so large that when the star contracts beyond the radius Ro, the 
extrusion of further material to the equator under conditions of uniform rotation causes 
the outer convective layers of the critically rotating envolope to discontinuously with- 
draw to a new equatorial radius Re < Ro where | < 1, thus rotationally stabilizing the 
envelope. The polar radius remains unchanged. The non-turbulent gases beyond the 
photocylinder are unable to co-rotate with the convective interior as they have no viscous 
coupling. We thus show that this material is discontinuously abandoned by the contract- 
ing envelope and that it subsequently distributes itself evenly about the circular Keplerian 

orbit s = Ro to form a complete toms, or Lapacian ring, of orbiting gas, in which the 
pressure gradient is balanced by the centrifugal force and the gravitational field of the 
Sun. 

We show how the proto-solar envelope, rotationally stabilized by the shedding of a 
discrete gaseous ring at radius R0, continues to contract inwards eventually becoming 



348 A.J .  R. PRENTICE 

rotationally unstable again at a new radius R 1, satisfying Equation (5), where a second 
gaseous ring is in turn shed. The whole process repeats itself again and again until the 

collapse is halted when the cloud acquires normal stellar size. 
In Section 7 we compute the variation of the various physical characteristics (m, f, 

etc.) of the fully rotating envelope as a function of the degree of turbulence and central- 

to-photosurface temperature ratio at various stages of  the contraction, paying special 

attention to non-homologous effects arising from the changing mass fraction of dissoci- 
ated H in the cloud, but ignoring the influence of the small central embryonic core. We 

compute the rate of contraction of the envelope paying special attention to the final 
stages of the Kelvin-Helmholtz contraction, when photosurface conditions cause the 

surface temperature of  the cloud to level off to about 4500 K, thus drastically reducing 
the rate of collapse, and causing the supersonic turbulence to die down. 

In Paper II we shall study the condensation of the planets from the rings of gas. There 

we compute the chemical species expected at each orbit and consider the physical pro- 

cesses which lead to the accumulation and aggregation of the planetesimals into single 

protoplanetary objects. We examine the subsequent gravitational contraction of these 

objects to form compact planetary cores. We also consider the influence of the young 
Sun's radiation on the physical evolution and dispersal of the uncondensed gases, mostly 
H and He, of each Laplacian ring, and investigate the possible capture and gravitational 

contraction of the residual gases onto the planetary cores of mass rnc ~ 10M~ of the 
outer planets to form regular satellite systems in precisely similar manner to the con- 

traction of the proto-solar envelope. The spins of the terrestrial planets, the formation 

of the asteroids, comets, irregular satellite and ring systems, and other anomalies of the 

solar system will also be considered. 

2. Early Stages of the Sun's Formation and the Grain Cloud Hypothesis 

2.1. THE DIFFICULTIES OF STAR FORMATION 

It is generally believed that stars are formed through the gravitational collapse of inter- 

stellar clouds of gas and dust. It is also known (Mestel, 1965a, 1965b; Spitzer, 1968; 

Prentice and ter Haar, 1971) that it is very difficult to reconcile this hypothesis with the 

observed distribution of angular momentum and magnetic and thermal energy of the 
interstellar material. Consider, for example, the physical state of a portion of solar mass 
of a large interstellar cloud of mass ~> 10aM| and of average hydrogen atom number 
density nn = 20cm -3. Assuming a helium/hydrogen atom number ratio nHe/nH = 0.1 

and a metal abundance Z = 0.02 gives the cloud a mean mass density Pi = 4.8 • 
10-Zag cm-a. The radius R i of a roughly spherical portion of solar mass is 0.7 pc. Because 
the angular velocity of the Galaxy in the neighbourhood of the Sun is 8 x 1 0  -16 s -1 and 
the local galactic shear -- 0.6 (Schmidt, 1965), yielding a net local angular velocity co i = 
3 x l O - 1 6 s  -1 , the angular momentum of the typical portion is 
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Li = ~Mc.~Ri2coi = 1.1 • 10S4gcm2s - ' .  (6) 

Next consider the angular momentum of a star of  solar mass and size which is rotating 

so rapidly that the centrifugal force at the equator equals the gravitational force, so that 

| ==- CO2R3/GM = 1, (7) 

where | is called the rotation parameter,  and co denotes the angular velocity which is 

assumed to be uniform and R e is the equatorial radius. If  the star is centrally condensed 
it assumes a lenticular shape when | = 1 with Re = 3Rp, where the polar radius Rp is 

hardly influenced by rotation (Jeans, 1928; Monaghan and Roxburgh, 1965). Setting 

Rp = R| the maximum angular momentum of  the star is thus seen to be 

Lmax = M ,  fx/GM| = 1.0 x 10S~ (8) 

where for a fully rotating Sun the moment-of-inertia coefficient i s  f = f e 3 ( R p / R e )  2 

0.03 since f| = 0.062 (Allen, 1962). Thus we see than in order for a typical interstellar 
cloudlet of  solar mass to collapse to normal stellar size it will be necessary for it to 

dispose of  four orders of  magnitude and angular momentum.  

Consider now the magnetic and thermal energy difficulties. For a typical interstellar 

cloud in the neighbourhood of the Sun, the magnetic field is B i = 3 x 10-6G and the 

temperature about T = 100 K (Spitzer, 1968; p. 170). The magnetic and thermal energy 

of  a cloud of  solar mass and radius R i = 0.7 pc are 

1 
BiR  i = 1.5 x 1043erg, (9) U m a g  _ 2 3 

6/.to 

3~@T 
Uldn = - --M| = 2.5 x 10a3erg, (10) 

2 

whilst the rotational energy �89 i = 2 x 1038 erg is insignificant. 

In contrast, the self-gravitational energy of the cloud is 

3 GM~ 
~'2~:av - -  5 R i - 7 x 104~ (11) 

In order that the cloud undergo gravitational collapse to form a star it is necessary that 

~2g~v exceed the sum of  Umag and Ukin. Clearly such an event is impossible unless the 
mass of  the cloud exceed about 103M| Thus the popular notion that stars are formed 

from the collapse of  portions of  interstellar gas clouds is one which must represent a 
gross oversimplification of  the actual physical processes whereby a star is born. 

2.2. T H E  G R A I N - C L O U D  H Y P O T H E S I S  

To overcome the energetic difficulties outlined above, Reddish and Wickramasinghe 
(1968) proposed that stars are formed through the gravitational collapse of  solid H2 

grain clouds. In a sufficiently dense region of  a very large interstellar gas cloud of mass 
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M~> 103M| which has undergone free gravitational collapse to a density where, say, 
nri = 104 cm-3 and the radius and angular velocity of a fragment of solar mass are 

Ro = 0.1pc, COo = wi(R i /Ro)  2 = 1.5 x 10-14s -1, (12) 

the optical depth to the centre of the cloud may be sufficiently great to prevent the 

penetration of heat from nearby stars. Rapid cooling of the central region of the cloud 
may then occur through re-radiation in the infrared of the thermal energy of atoms and 
molecules impinging on the surfaces of the dust particles. If the temperature can be 
lowered to 3 K the hydrogen gas can condense out completely onto the dust particles 

to form grains of solid H2. Copious condensation of solid mantles of H2, including 
helium as impurity atoms, may also occur for T ~< 5 K but probably not for temperatures 
larger than 10K (HoUenbach and Salpeter, 1971). Between 10K and 20K, the gases of 
CO, CO2, NCO, N2 and other 'ice-like' substances condense out readily (Duley, 1974) 
whilst H20 condenses out at about 100K. In any event, the resulting cloud of solid 

grains has neither the thermal or magnetic energy of its former gaseous counterpart and 

so may freely undergo self-gravitational collapse. 

2.3. AN EXTENDED HYPOTHESIS 

Prentice and ter Haar (1971) have pointed out that the angular momentum difficulty 
associated with star formation can also be partly resolved within the grain cloud hypoth- 
esis if one takes into account the dynamical friction between the solid grains and the 
residual uncondensed gases of the cloud. If cosmic rays can penetrate to the centre of 
the cloud to maintain the equilibrium ionization level in the gas and hence prevent 
detachment of the magnetic field from the rest of the cloud of mass 103M| the ionized 

component of the fragment of 1 M| remains rigidly coupled to the big cloud. As long as 
the frictional coupling between the neutral and ionic components of the gas exceeds 

that between the grains and the neutral component, the grains slip through the gas 
towards their common centre of mass, like beads down the spokes of a wheel, main- 
taining a uniform angular velocity COo. For a uniform cloud having ion number density 
nio n and initial grain number density ngr(0) this spoke-like collapse continues until 
the fractional radius S(t)  = r(t)/r(O) of the grain cloud has shrunk to the value 

S1 = [ngr(O)lra2/nionOion] 1/3, (13) 

where aio n stands for the collision cross-section between neutral atoms and ions, due 
mostly to helium collisions, and d the mean grain radius. As soon as S(t)  falls below 
$1 the grain cloud becomes so compressed that it begins to sweep up the residual neutral 

gases and goes into free fall. Inserting typical values (d = 1.5 x 10 -4 cm, ng(O) /na  = 
10 -12 , etc.) we find that $1 "- 0.14. Since the angular momentum of a grain scales as 
l c~ S2(t) it follows that almost two orders of magnitude of angular momentum can be 
lost in this manner. The angular momentum of our fragment of solar mass at the end 
of the grain braking era is thus about 
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L f  = S 1 2 L i  ~-- 10S~gcm2s -1. (14) 

The radius of the grain cloud at this stage is about 0.01 pc and the angular velocity 
2 x 10-1as-1. 

The equation of motion of the grain cloud during the period of braking may be 
written as 

k 2 
S'(t) = - - ~ -  [~ + (1 -- t))S 3] 4- (7)(1 -- ~)S(t), (15) 

where ~ denotes the initial mass fraction of grains in the cloud of total initial density 

Po and 

= 4 cp0/3, = 3po "i rl 
(Psa) \2rrla] ' (16) 

where (3') is the mean coefficient of  dynamical friction, (p,a} the mean value of Psa, Ps the 

density of a grain and T,/~ the temperature and mean molecular weight of the uncondens- 
ing gases. During conditions of terminal braking (S-+ 0, (7)/k ~-- 300 >> l) Equation (15) 
has the solution 

S( t )  = [exp (--3k2t/(y>) -- if] I/3/(1 -- e)  1/3, (17) 

from which it follows that the 'collapse time' of the cloud is given by 

- ~ - l n  [4J + & 3 ( 1  - 4 0 1 - 1  = 2 x lOyr, (18) te - 3k 2 

if we insert again typical values ~ = 0.5, T =  5K, /a = 2.353, O, = 0.11 gcm -3, Po = 
2.3 x 10-Z~ -3. As soon as the cloud reaches the fractional radius S, the collapse 

proceeds much more rapidly on a free-fall time scale Sal/=/k ~ 2 x 104 yr ~ te, so that 

t e essentially defines the total collapse time. 

2.4. NON-UNIFORM ASPECTS OF THE GRAIN-CLOUD COLLAPSE 

In the simplified analysis of  the dynamical properties of the collapsing grain cloud given 

above it was assumed that the grains were all identical, both in size and composition. 

This meant that grains at a given distance r(t) from the centre of the cloud fall at the 

same rate and that the collapse of  the cloud proceeded homologously, so that the relative 

spacing between all grains is also preserved. If, however, there exist chemical inhomo- 

geneities in the distribution of grain material so that some grains are formed denser than 
others, or sooner than others as in the case of  grains containing large amounts of C, N, O, 

then segregation of the grain material will occur. This leads not only to enhancement of 
the relative abundance of the dense metal-rich species C, N, O towards the centre of the 
cloud but also permits the faster moving grains to give up practically all of their angular 
momentum by the time the rest of  the cloud goes into free fall at radius S~. We consider 

both of  these non-uniform aspects in detail below. 
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O) Segregation of  Grain Material According to Chemical Composition 

Let us consider in detail the parameters which define the descent of a single grain of  

density Ps and radius a which falls from rest at time to and distance r(to) from the 
centre of  a uniform gas cloud of density Po. The solution for its distance at time t follows 

from Equation (17) setting ff = 0 and replacing (3')by 3': namely, 

k psa ] (19) r(t)/r(to) = e-k=(t- t o)/v = exp 7--z,(t -- to) 
(osa)]" 

It follows from Equation (19) that grains which have a large value of p,a and hence a low 

friction coefficient 3' = 1/&a sink to the centre of the gaseous cloud sooner than the 
ones with a small psa value. This is because the former grains experience a smaller drag 
per unit mass passing through the gas. For grains of constant radius this, of course, means 

that it is the dense ones which sink the faster. Indeed, since the density of solid H2 is 
only 0.089g cm -3 compared to the value of 1 to 2gcm -3 for 'ice-like' or metal-rich 

grains consisting primarily of CO, CO2, N2, N20, H20, etc (Duley, 1974), these latter 

grains will sink to the centre of the cloud much more quickly than solid H~ grains of the 

same radius. The same result is true when one considers grains of a given mass since in this 
case psa ~ ps =/3 which again favours the denser grains. 

We therefore propose that even if the cloud of grains is initially everywhere chemically 

homogeneous on the average, segregation of grain material will occur according to the 

distribution of chemical composition amongst individual grains. Thus as the grains fall, 
the concentration of metals will progressively increase towards the centre of the cloud, 

and decrease at the outside, leading to a final composition profile which is spatially 
inhomogeneous. In addition since the 'ice-like' grains containing the metals C, N and O 

condense out sooner than the H2 grains~ further enrichment of these materials towards 

the centre of  the cloud is expected becau'ge these grains commence their journey sooner. 

We should of course stress that the above argument does not prove that the centre 

of the final collapsed object will consist only of heavy elements or, conversely, that 

the surface consists purely of hydrogen. Firstly, it is probably only a small proportion 

of the grains which consist purely of  one species or the other whilst the majority of 

grains contain mixtures of both. Secondly, we have assumed that the grains each have 
either the same radius or mass. A pure H2 grain can reduce its friction coefficient 3' c~ 
1/psa and travel as fast as a very dense grain if its radius is say 10 to 20 times larger 
than the mean value d, though this seems exceptional. Hence, strictly speaking, the 

segregation process which we have discussed occurs according to the distribution of 3' 
rather than grain density, though as we have suggested the one usually implies the 
other. Thirdly, we have yet to consider the later stages of proto-stellar evolution when 

convective mixing may replenish the envelope of the protostar with material from the 

outer mantle of the core thus rendering the envelope with the observed solar com- 
position. 
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(ii) Enhanced Angular Momentum Braking o f  the Central Grains 

The second feature which we may deduce from Equation (19) is that by the time the 

predominantly solid H2 grains have condensed out, at time t = to say, and collapsed to 
radius S~ ~0 .1  at time to + re, given by Equation (18), the early forming and fast 
moving grains which consist predominantly of C, N, O ices which condensed at time 
t = 0, say, will have already collapsed to a distance $2 which may be very much smaller 
than $1. Indeed we have 

[k  2 
$2 = exp -- (-~(to + to) (psa)J ~- 0.01, (20) 

taking to = to, pea ~ lO(osa) as typical values. For a grain of average composition (X = 
0.7, Y = 0.28, Z = 0.02) we have (Pc) ~- 0.11. 

From Equation (20) it follows that not only will the concentration of metal-rich 
and very fast moving grains be enhanced at the centre of the cloud, as we saw before, 
but in addition these fast grains will also give up virtually all of their initial angular 
momentum per unit mass l i. Indeed, since these grains fall with uniform angular velocity 
COo, given by Equation (12) we have 12 = liS22 ~ 10-41i . Hence these grains will give up 
4 orders of magnitude of their angular momentum and so by Section 2.1 may later be 
able to safely collapse to stellar size without threat of rotational disruption. Since metal- 
rich grains make up at most 2% of the fractional mass of the cloud, if they consist solely 
of  CNO, whilst exceptionally large solid H~ grains may perhaps make up a further few 
per cent we see that perhaps as much as 5% of the original grain cloud mass is able to 
give up most of its angular momentum in this way. For the remainder of the cloud, 
which on the average is able to collapse only to radius $1 ~ 0.1 before sweeping up the 
gases of the cloud, only two orders of magnitude of angular momentum can be lost. 
The final angular momentum of the cloud is still therefore much the same as before, 
viz . ,L r =LiS~ ~- 1 x 10 s2 gcm 2 s -~. 

3. Stabilization of the Collapsing Proto-Stellar Cloud 

3.1. INTRODUCTION 

When all grain braking has ceased the grain cloud and imprisoned neutral gases commence 
to fall freely. The calculations of Penston (1966), Bodenheimer and Sweigart (1968), 
Disney et al. (1969), and I_arson (1969) suggest that the collapse from this point should 
occur nearly isothermally but extremely non-homologously. The density profile of the 

cloud progressively increases inwards becoming sharply peaked towards the centre. When 
the central density of the cloud approaches 10-13gcm-a corresponding to a radius of 

2 • 104R~ for a uniform cloud of solar mass, the material at the centre becomes 
opaque to the transmission of infrared radiation. The central regions then begin to heat 
up as the gravitational energy released in the collapse becomes unable to escape freely. 
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The heat generated in the centre in this way is more than ample to melt all of  the ice-like 
grains in the remainder of the cloud. 

The temperature and density at the centre continue to increase nearly adiabatically 
until the collapse of the central region is halted. During adiabatic contraction the pressure 
pcx p'r increases as Rc 3~, where 7 here is the ratio of specific heats and Rc the radius of 
the central region. Since the gas pressure (pJ2T/~)c required for hydrostatic equilibrium 

changes only as R -4 we see that the collapse is halted as long as 3' 2> 4/3. As soon as the 
central temperature rises to 2000K, however, dissociation of the molecular hydrogen 

sets in followed by ionization of atomic hydrogen and helium, causing 7 to fall below 
4/3. l_arson finds that a small fraction of ~ 1% of the cloud mass falls all the way through 
to stellar size long before the remainder of the cloud has collapsed to ~ 104R| 

The possibility that supersonic turbulence may stabilize the collapse of the infalling 
cloud has been suggested by Schatzman (1967). If the turbulent pressure is sufficiently 
great it is in principle possible for the effective 7 of the cloud to be kept above 4/3, so 
that the whole cloud may exist in a Kelvin-Helmholtz hydrostatic equilibrium during 
the contraction of radius from 104R| to 102R| A reconsideration of this matter by 
Schatzman (1971) shows, however, that when one equates the convective heat transfer 
rate with the energy release rate during gravitational contraction, the convective velocities 
never become large enough to create a turbulence strong enough to stabilize the cloud. 

Schatzman's 1971 calculation is based on the conventional mixing-length theory of 
convection. Recently, Prentice (1976) has questioned the validity of one of the basic 
premises of this theory, namely the premise that the convective elements always therm- 
alize themselves inside the convective layer. If in a strongly convective unstable zone the 
mixing-length k is comparable with the thickness of the zone then it is possible for an 
eddy originating at some point in the unstable zone and moving nearly adiabatically to 
overshoot into the surrounding radiatively stable layers to a point where the entropy of 
the eddy and the average surroundings are the same, and thence to decelerate to rest 
beyond this point under the action of negative buoyancy before returning, again nearly 
adiabatically, to its starting point in the form of a stable return flow, without having 
mixed with the surroundings. That is, in the case of a strongly convectively unstable 
star, where the mean temperature gradient is strongly superadiabatic, we cannot preclude 
the possibility that there may exist a reservoir of nearly adiabatic mechanical motions. 
The convective heat flux in this instance depends on the temperature difference between 
the eddy and its stable return flow and this can be made quite small, as in the con- 
ventional mixingqength theory, as long as the motions are nearly adiabatic, even though 
the driving buoyancy force which depends on the temperature difference between the 
eddy and the average stationary surroundings may be quite large. Viscous and supersonic 
shock-wave losses which might affect the adiabaticity of the convective motions are 
rendered unimportant if the eddies are long and needle-like (Prentice, 1973). In addition, 
the assumption of negligible thermal mixing is valid in this model since the radiative 
adjustment time of the convective element is many times longer than the buoyant rise 
time. 
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In the case of  a fully convective star, the upper overshoot zone lies above the photo- 

surface. Since there is no lower overshoot zone, however, we cannot construct a reservoir 

of downward originating convective elements in such a star. The motions of  the nega- 

tively buoyant elements are, therefore, quenched at the centre and probably can be neg- 

lected. That is, most of the turbulent stress in the star is due to the positively buoyant 

rising elements. 

Prentice (1973) has shown that the radial turbulent stress Pt arising from the buoy- 

ancy driven eddy motions is given by 

Pt = flpGM(r)/r, fl = ~ftk[1 -- ~[, (21) 

where/3 is called the turbulence parameter, assumed to be a constant throughout the star, 

M(r) is the mass interior to radius r, f t  is the mean mass fraction of moving eddy material, 

k = X/r the ratio of the mean eddy acceleration-length X to local radius r, and I1 - ~1 = 
(IAT[//) is the mean temperature excess factor. In the normal mixing length theory of 

convection each of k, f t ,  I~ - 11 is much less than unity so tha t /34  0.1. Nonetheless, if 
the convection is very strong, such as we suggest exists in the pre-Main Sequence phase 

of gravitational contraction, and overshooting of convective motions takes place, then it 

is possible as we have described above for/3 to become important. Typically we expect 

k ~ 1, f t  ~ 0.5, [1 -- ~] ~ 0,2 and hence fl ~ 0.1. In addition, if the return flow motions 

contribute substantially to the total turbulent stress, Equation (21) for/3 is somewhat 

altered and/3 may become larger than unity (Prentice, 1976). 

In this section therefore we shall reconsider in detail the possibility that supersonic 

turbulent convection may stabilize the collapse of the infalling protostellar cloud. We 

also include the influence of rotation and consider what additional influence the for- 

mation of a small central luminous core, along the lines pursued by [,arson (1969), may 

have in halting the collapse of  the cloud. 

3.2.  THE INFLUENCE OF SUPERSONIC TURBULENT CONVECTON - NO CENTRAL CORE 

The free collapse of  the infalling protostellar cloud is halted as soon as sufficient energy 

is supplied to dissociate and ionize the hydrogen and helium gas to the levels required 

for both thermodynamic and hydrostatic equilibrium. The total initial energy of the 

grain cloud, E= say, is essentially zero. If we neglect for the moment the possible for- 

mation at the centre of the cloud of a small luminous core of  stellar size, the total energy 

E(Re)  of a uniformly rotating turbulent cloud of equatorial radius R e existing in hydr 0- 

static equilibrium is given by 

E ( R e )  = --~2grav + Uth + Uturb + Urot + g ,  (22) 

where 

it 
is the self-gravitational potential energy of the cloud, C. being a concentration factor 
which we describe below, and 
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1 1 
(24) 

are the thermal and turbulent kinetic energies of the gas and 

[/rot = �89 (25) 

as the rotational energy where 0 = w2R~/GM is the equatorial rotation parameter. In 
deriving Equations (24) we used the equation for hydrostatic support 

dptot/dr = -- pGM(r)/r 2, (26) 

where 

Pro, = p~T/# + flpGM(r)/r (27) 

is the total radial stress at radius r. In Equation (24) ~ is the mean number of degrees of 
freedom per atom. This varies from 3 in the central regions of the cloud, which are 
completely dissociated and ionized, to a value v2 = 2n2 in the outer cool layers which 
are undissociated, where n2 is defined below (Equation (36)). The final term in Equation 
(22) is the total dissociation-ionization energy (in c.g.s, units) given by 

ge= 5.0 x 1011 f {(14.3XH + 30.1XH+)X 

+ (11.8XHe+ + 37.9XHe++)Y}odar, (28) 

where x~=, xm  xH*, xHe, Xue§ and Xue+§ are the fractional concentrations of the 
elements H, He in their various states of dissociation and ionization satisfying the totality 

conditions 

X H ~ + x H + X w  = 1, x ~ i ~ + x n g + x n ,  ~ = 1, (29) 

and X, Y are the total fractional abundances of H and He. The quantities xu  . . . .  depend 
on the local temperature and density and may be computed from the normal Saha 
equation (Allen, 1962, p. 34), using a simplified system of algebraic equations, while the 
molecular weight/~ is given by 

/.t -1 = 41-{[2XH2 +4XH+SXt l+]X+ [XHe+2Xtte++3Xtte++]Y}. (30) 

The factor Cn(fl, | in Equation (23) may be called a concentration coefficient since it 
depends on how centrally condensed the protostellar cloud is. It depends both on the 
turbulence parameter fl and the rotation parameter O as well as other implicit structural 
quantities such as the polytropic index n. In general, for a strongly centrally condensed 
structure which is uniformly rotating we have the approximate relation 

Cn(fl, O) = (1+ | 0). (31) 

This relation tells us that rotation enchances the apparent store of potential energy in a 
cloud of given equatorial radius Re. This is because in a centrally condensed cloud only 
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Fig. 1. The dimensionless gravitational potential energy measure, or central condensation coeffi- 
cient, C n = gtgrav/(GM2/R) of non-rotating turbulent polytropic structure of mass M and radius R, 

plotted against the turbulent parameter/3 for various polytropic indices n. 

the outer layers are significantly disturbed by rotation, the equatorial radius exceeding 

the polar radius by the factor R e / R  p = 1 + (9/2, whilst the central regions barely notice 

the centrifugal force. Rotation therefore has a stabilizing influence on a structure of  given 

equatorial radius. 

Figure 1 shows the variation of  C,(~, 0) vs. /~ for adiabatic polytropic structures of  

uniform index n = 1.5 and 2.5 respectively, where the density p as a function o f  tempera- 

ture T in adiabatic regions of  vzrying molectda~ weight g satisfies the relation 

p ~- ( r /u )  n. (32) 

Since the ratio o f  turbulent stress to gas pressure Pt = (31aGM/J2Fr becomes infinite when 
T ~  0 it is necessary to suppose, as in the case o f  a real star, that the surface of  the star 

is defined by a non-zero photospheric temperature Tph. We thus define 

0pa = (Tpa/Tc)/(#pa/lac),  (33) 
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where Te, lie are the central temperature and molecular weight and we have typically 

set 0ph = 10 -3 in the calculations presented in Figure 1. 

We observe that as the turbulence parameter /3 increases so does the concentration 

coefficient Cn, which means that the store of  gravitational energy in a structure of  

given radius is increased by the turbulence. This behaviour is due to the fact that the 

turbulence is greatest in the outer less dense layers of  the structure and causes these outer 

layers to be pushed outwards proportionately much more than the inner dense layers 

where the turbulent stress is small. Thus turbulence stress causes the star to become more 

centrally condensed. As ~ -+ 0, Cn approaches the well-known limit 

Cn(O, 0) "~ 3/(5 -- n), (34) 

appropriate to non-turbulent polytropic structures satisfying the zero surface temperature 

condition 0ph = 0 (Cox and Giuli, 1968, p. 711). We see that turbulence can typically 

enchance Cn by a factor o f  5 or so, whilst for a fully rotating star, rotation adds a further 

factor of  3/2. 

Returning now to the question o f  hydrostatic equilibrium of the protostellar cloud, 

the free collapse from interstellar density can be halted as soon as E(Re) < Eo~ = O. 
The inequality applies here since some energy is radiated away from the surface during 

the collapse. Using Equation (22) we thus see that for stabilization we require that 

g" /(~g~av- ~ Ui) <~. !. (35) 

Figure 2 shows a plot of  g"/(~2grav -- ZqUi) against equatorial radius R e for various 
degrees of  turbulence/3 for the case 0ph = 10 -s , 19 = 1, and elemental abundance X = 0.7, 

Y = 0.3. It is supposed that the whole cloud exists in convective equilibrium and consists of  

two distinct polytropic layers. In the inner layer where the hydrogen is fully dissociated the 

polytropic index is nl = 3/2. In the outer layer, which extends to the surface, the hydro- 

gen is largely molecular and the polytropic index n2 is given by the equation (cf. Cox and 

Giuli, 1968) 

n2 = 3/2 + 2x/(1 + x )  (36) 

Thus if the outer layer consists solely of  hydrogen, so X = 1, then n2 = 2.5 as expected. 

Additional variations of  n occur as a result of  the spatial gradients in the levels of  

ionization and dissociation. If, however, the transition from one excitation state to the 

next occurs over a distance which is small compared to the physical radius of  the star, 

then this source of  variation should not have any significant influence on the overall 

structure of  the star. For the sake of  simplicity we shall assume that these transitions 

occur abruptly and concentrate our attention on the change in n due to the dissociation, 

which we have described above, for which n does not return to the same value, namely 

3/2, once the dissociation zone has been crossed. The position of  this zone in the star 

is computed from the condition that concentrations xI-i, XH~ of the species H, H2 co- 
incide at the interface of  the nl, nz polytropic layers. 
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Fig. 2. Ratio of total dissociation and ionization energy ~ of a fully rotating turbulent protosolar 
envelope to available excess gravitational potential energy {~'2gra v -  ~2iUi~ plotted as a function of 
equatorial radius R e for different cases of the turbulence parameter ~3 where ZiU i is the sum of the 
thermal, turbulent and kinetic energies, 

We observe from Figure 2 that supersonic turbulence helps to stabilize the infalting 

cloud. As /3 is increased the proportion of  the residual potential energy ~2~a v -- EiUi 

which is needed to dissociate and ionize the gases of  the cloud to the levels required 

for complete thermodynamic equilibrium is reduced. Schatzman (1967) has suggested 

that supersonic turbulence may completely stabilize the protostellar cloud in the region 

of  the present planetary system. Unfortunately, for a complete halt in the collapse we 

require g'/(~2g~av - 2iUi)  ~< 1 and we note from the diagram that this condition is no- 
where met during the-collapse from 104R| to 102R| except for most extreme instances 

where 12 f> 0.2. For such large values of  13 the physical characteristics of  the cloud assume 
absurdly extreme values. More to the point, we find later on that the values of  t3 which 

are required to account for the physical properties of  the planetary system, such as the 

Titius-Bode law and the distribution o f  planetary masses, are typically of  order of  only 

0.1. 

We therefore are led to conclude that supersonic turbulent convection is probably 
unable completely to stabilize the cloud during the collapse from a radius of  ~ 104R| 

though the modification to the mixing-length theory of  convection which we mentioned 

in Section 3.1 above certainly greatly helps towards the achievement of  this end. 
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Fig. 3. Total energy E(R e) of the fully rotating turbulent protosolar envelope when existing in 
the state of complete hydrostatic and thermodynamic equilibrium at equatorial radius Re,  in units 
of R| where Eoo = 0 is the energy at infinite radius. To achieve a consistent equilibrium first at 
radius 104Re we see that a small fraction m e = 3 -4%M| of the central region of the envelope need 
collapse to stellar size liberating sufficient energy Gm~./2r e = E(R e) - - E ~  to stabilize the rest of the 

envelope. 

3.3. FORMATION OF A SMALL CENTRAL LUMINOUS CORE 

In Figure 3 we have plot ted the addit ional amount  of  energy E ( R e ) -  E =  which is 

required to achieve hydrosta t ic  equilibrium throughout  the fully rotating turbulent  

proto-stellar clouds discussed above in Figure 2, for various values o f  the turbulence 

parameter/3 and as function o f  the equatorial  radius .R e . We see that  in the absence o f  any 

addit ional source of  energy, no complete thermodynamic  equilibrium can be attained 

until  the radius has typical ly shrunk to the value ~ 300 R| corresponding to the present 

orbit  of  Venus, for the case /3 = 0.1. The cloud is therefore dynamical ly unstable in 

the interval 10aRe to 300R| and will proceed to collapse freely. Nevertheless, since 

the free fall time r f f  at any point  in the cloud varies as 7-fT = 1 / x / ~ ( r ) ,  where iS(r) is 

the mean mass density interior to radius r, it follows that the central regions o f  the 

cloud will reach the centre sooner than the outer ones since ~(r) is a centrally peaked 

function whether one considers a cloud in free fall (Larson, 1969) or a cloud existing 

in supersonic convective equilibrium (Prentice, 1973). 

We therefore propose that  a small fraction of  mass m c of  the central region o f  the 

cloud collapses dynamically all the way through to stellar size, to a radius r c say, where 
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the hydrostatic temperature exceeds both the dissociation and ionization temperatures, 

and where the gravitational energy released is sufficient to stabilize the rest of the infall- 

ing cloud. The energy released through the formation of such a small central core is 

1 Grn~ 
- 1.9x 10481me12Rs erg. (37) 

2 r e \Ms] re 

If all of this energy is absorbed by the remainder of the infalling cloud, the amount of 
material which must collect at the centre to achieve a complete stabilization is seen to be 

rn~ = 1.26 x 10 -24 [E(Re) --Eoo] ,/2, (38) 
M, 

if we set r e = 3 R . .  

We have shown the required mass me/M.  along the ordinate on the right hand side of 
Figure 3. We see that for all values of/3 typically in the range 0 to 0.15, we initially re- 
quire a central core mass fraction -2-4%M| to accumulate at the centre to stabilize 
the infalling cloud when it first becomes sufficiently opaque to absorb the emitted 
radiation near a radius of ~ 104R,. Thus the inner few per cent of the cloud mass never 
achieve any equilibrium until they reach normal stellar size and so remain detached from 
the rest of the protostellar cloud during the latter's pre-Main-Sequence contraction. Any 

metal-rich central inhomogeneity which was formed at the end of the grain braking era, 
described in Section 2.4, may therefore survive the turbulent era of planetary formation, 
when the rest of the low density (10-~3gcm-3) cloud is uniformly mixed up by the 
supersonic convection. Therefore, when the protosolar cloud finally moves onto the 
zero-age Main Sequence it probably consists of a small metal-rich central core, of mass 

as much as 0.04M,,  surrounded by a homogeneous envelope of normal composition. 
Prentice (1976) has recently drawn attention to the importance of this result in being 
able to account for the observed present low solar neutrino flux, as well as various other 

astronomical and geophysical anomalies. 

3.4.  THE INFLUENCE OF ROTATION 

We should point out that the centrifugal force will not prevent the formation of the small 

central stabilizing core from taking place since we found earlier, in Section 2.4, that 

the inner 5% or so of the grain cloud have virtually zero angular momentum at the end 
of the grain-braking era. In addition, as soon as the infalling cloud has been stabilized, 
turbulent viscosity (see Section 4) tends to eliminate any differential rotation which 

may have developed in the cloud during its free collapse. This means that if the proto- 
stellar cloud becomes destabilized again, further material from the central regions of the 
cloud is able to safely collapse to stellar radius, to stabilize the structure again, without 
the threat of rotational disruption. To appreciate this point let us note that the rotation 
parameter @(x) of a point in the equatorial plane at fractional radius x and fractional 
mass point q(x) from the centre inside a uniformly rotating cloud having equatorial 
rotation parameter | is given by the equation 
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| = | (39) 

For a very centrally condensed cloud, at least 10% of the mass typically resides within 
10% of the equatorial radius so that | ~< 10-3| This means that even for a fully 

rotating cloud (O(1) = 1) the inner 10% of the mass is able safely to reduce its radius 

by more than a factor of  1000 before centrifugal forces become important. Thus, once 
the cloud has become initially stabilized near a radius of ~ 104R,, further growth of 

the central core of  radius re ~ 3 R| will not be prevented by rotational forces. 

3.5. RATE OF COLLAPSE OF THE PROTO-STELLAP.. CLOUD 

We may suppose that as soon as the cloud has become stabilized at a radius near - 104R| 

it proceeds inwards over a Kelvin-Helmholtz time-scale. However, as the cloud contracts 

we see from Figure 3 that it immediately becomes destabilized again as further energy 

is required to complete the dissociation and ionization processes to the level required for 

complete equilibrium. The central regions of the cloud proceed to collapse inwards again 

releasing more energy as they fall onto the central embryonic core and thereby restabiliz- 

ing the cloud. This quasistatic state persists until the maximum of the E(Re)--Eoo 
function has been passed, near radius ~ 1000R| The cloud therefore exists in a state 

of  quasistatic equilibrium during the interval when it collapses from ~ 104R| to ~ 103Ro, 

with the rate of collapse at the surface being governed by the rate of  accumulation of 

material at the centre. Once the maximum point of  E(Re) has been passed the collapse 

proceeds at the normal Kelvin-Helmholtz rate. If  we let v e denote the inward radial 
velocity at the equator then we have 

[ G ~ r h e H ( - - d E ] ]  ~dE(Re)  
V e = E r a  d re \ dRe]J dR e ' 

Lra d = 2.827resRe2T 4 , (40) 

where the factor 2.82n refers to the surface area of a fully rotating centrally condensed 

structure of  unit equatorial radius, Lra d is the surface luminosity and II(x) is the Heaviside 
function. 

If the material which accumulates at the centre falls freely from radius rl in the cloud 

where the density is P1 and r c <~rl "~Re, then we have rhe = 4 n p l r 1 2 b ~ e / r l  where 
b is a number of  order unity. The ratio of  v e to the free fall speed vtf = x/-GM/Re at the 

equator then becomes, for the region dE/dRe < O, on neglect of  Lrad, 

Ve "~ (met3/2GM2/R~[~1-b{rl]3/2Re], (41) 

where p is the mean density of the cloud. Inserting typical values GMe/RZ e ~ dE/dRe, 
Pl//~ ~ 102-103, b ~ 0 . l - l ,  rl ~ re ~ (10-4-10-3)Re we obtain 

v~ _ O mc ~ 0.0t-0.03,  (42) 
vrl 
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taking mc/M| = 0.03-0.1. Thus, roughly speaking, during the period of  quasistatic 

equilibrium, the rate of  collapse at the surface of  the cloud lies somewhere between 

1/100th and 1/10th o f  the free fall rate. Once the cloud has become fully stabilized 

near a radius of  ~ 103R| the collapse proceeds much more slowly as we have indicated 
in the Table II using representative surface temperatures and taking E(Re) ~-- -- GM2/Re. 

The local collapse time r c = Re~re is indicated in the table as well as the mode of  equi- 
librium. 

We see that the collapse from 104R| to 103R| is very rapid in comparison to the 

collapse from 103R| to 10R| which takes some 2 x 10Syr to complete. A more detailed 

computation o f  the collapse rate appears in Section 7. 

TABLE II 
Contraction rate of the proto-solar envelope 

Re(Ro) 10 102 103 103 3 • 10 a 104 

T e (K) 4000 1000 150 150 50 20 
Ve/Vff 8 • 10 -9 1 X 10 -6 2 X 10 -2 0.01 0.01 0.01 
w c (yr) 2 X l0 s 5 X 104 1 X l0 s 150 800 5000 
mode K-H K-H K-H QS QS QS 

4. Physical Structure of  the Turbulent Rotating Proto-Sun 

4.1. INTRODUCTION 

In this section we shall examine the physical structure of  the turbulent rotating protosun 

after it has become energetically stabilized near a radius of  ~ 104R| We shall not  be 

concerned so much with the details of  the structure at the centre, where tile presence 

of  a compact central core of  stellar radius induces a fairly complex hydrodynamic inflow 

during the period of  core growth, but rather with the details o f  the density and pressure 

profiles near the surface o f  the cloud where, apart from rotation and convective tur- 

bulence, the material exists in quasi-static equilibrium. We consider the relative import- 

ance of  rotation, turbulent stress, and magnetic forces on the static configuration of  the 

protosolar cloud, or protosun, but shall not  at the moment study the evolutionary 

aspects of  the contraction process where the conservation of  total angular momentum 

induces profound changes near the surface of  the cloud as it collapses through the 

dimensions of  the present planetary system. 

4.2. THE IMPORTANCE OF MAGNETIC FORCES 

We saw in Section 2 that the ratio of  magnetic to gravitational energies in the original 

extended interstellar cloud of  radius 0.7 pc was (Umag/Qerav)i = (107r/9bto)B[~R~/GM 2 

200. We also saw how as a result o f  grain cloud formation at radius ~ 0.1 pc the main 

part of  the gas was able effectively to isolate itself from the magnetic field by existing in 
solid form. In this way magnetic flux freezing is avoided until the cloud becomes so 
compressed that it begins to sweep up the ionic component of  the residual gas cloud. 
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Prentice and ter Haar (1971) showed that such an event should not occur until the 
fractional radius of the grain cloud has shrunk to the value Sto n ~ 10 -3. The final ratio 
of magnetic to gravitational energy in the cloud at that stage is then 

(Umag/f2grav) f = S~on(Umag/~2~av) i ~ 2 • 10 -1~ (43) 

which is neglibible. Since both the magnetic and gravitational energies increase at the 
same rate (co I /R) during the subsequent collapse, it follows that the magnetic energy 
always remains unimportant relative to the gravitational energy and so may be safely 
ignored. More importantly it means, contrary to the starting point of some other workers 

(Hoyle, 1960; Alfv6n and Arrhenius, 1973), that magnetic forces probably had very little 
influence on the structure and dynamical evolution of the proto-solar nebula during the 
fairly rapid contraction phase from radius 104R| to 2R| Of course, we have shown that 
magnetic forces do play a vital role during the very early stages of the Sun's formation, 
in the regime of interstellar densities. It is also possible that they play an important role 
during the long slow I'mal phase of the Sun's pre-Main Sequence contraction, from radius 
2R| down to R| when the interaction of the solar wind with a strong primordial mag- 
netic field is required to rid the proto-Sun of the last vestige of its rapid rotation (Weber 
and Davis, 1967). During the brief period of planetary formation, however, which takes 
only some 3 • 10Syr to complete (see Section 7), we feel that magnetic forces can be 
safely ignored. 

It is interesting to note that the magnetic field which we compute for the early sun of 
solar radius R| is B| ~ 3 x 103 G. This value is consistent with the maximum field strength 
of 3.5 x 104G observed for very strongly magnetic stars. It also coincides rather closely 
with the magnetic field needed to account for the remnant magnetization of some lunar 
samples (Freeman, 1978). 

4.3. TURBULENT STRESS AND TURBULENT VISCOSITY - NO ROTATION 

As soon as the cloud has become sufficiently opaque to acquire a quasistatic convective 

equilibrium we suppose that the gravitational energy [GM(r)/r 2 ] v, released per sec at 
each mass point during the subsequent contraction is sufficient to drive a supersonic 

turbulence. When the convective elements or eddies are long and needle-like they experi- 
ence very little drag passing through the gas and the turbulence stress Pt and total stress 

Ptot arising from these motions is given by Equations (21)and (27). The temperature 
and density for an adiabatic convective equilibrium are related by Equation (32), where 
n = 1 / ( 7 - 1 ) .  

(i) The Moment-off-Inertia Coefficient f 

Prentice (197J) has shown, as mentioned earlier, that the main influence of the turbulent 
stress is to cause the cloud to become much more centrally condensed. This is because 
the turbulent stress exerts its greatest influence on the tenuous cool outer layers of the 
structure, pushing them greatly outwards and thereby lowering the so-called moment-of- 
inertia coefficient f defined by 
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I = MR,2f, (44) 

where I is the moment of inertia about the rotational axis and Re the equatorial radius. 

For a non-rotating polytrope of index n = 1.5,f is  typically reduced from 0.205 to 0.045 

as/3 passes from 0 to 0.15. For a polytrope of index 2.5 the reduction is from 0.112 to 
0.007 as /3 goes from 0 to 0.15. These values depend fairly weakly on the chosen value 
of the photospheric temperature ratio 0ph, defined by Equation (33), as well as/3 for 

/3 >~ 0.1. Typically 0ph = 10 -3. As/3 increases from 0 so does the ratio of  turbulent stress 

to gas pressure just beneath the photosphere. For all/3 ~> 0.01, this ratio rises very quickly 

to a plateau level given by 

3pGM 
Pph - 100, (45) 

~TphRe  

taking n = 1.5, 0ph = 1 0  -3. 

(ii) Photospheric Density Inversion 

A second main influence of turbulent stress on the structure of  the cloud is the formation 

of a very steep density inversion at the visible surface or photosphere. If the turbulent 

convection dies down above the photosphere over an overshoot height which is at most a 

few pressure scale heights Hph, given by 

 rphR  
Hph -- pGM - /3Re/Ppn ~- 10-3Re, (46) 

then overall pressure equilibrium demands that the density Pe at the base of the non- 

turbulent atmosphere just above this point exceed the density Pph just beneath the 
photosphere by the factor 

Pe/Pph = 1 +Pvn ~ 100. (47) 

In view of the fact that Hph ~ R e  we see that the density inversion occurs almost dis- 

continuously with respect to the cloud radius variable Re. 

Beyond the photosurface where the radiation from the interior of the cloud is at 

last able freely to radiate away, the temperature is nearly a constant but the density 
decreases rapidly according to the equation 

p(r) r~ n e Pe exp [ - - ( r - -Re) /Hph] ,  T(r) ~-- Tph. (48) 

The outermost layer of the young convective structure thus consists of a very dense 

but very thin shell of essentially non-turbulent gas. The mass of this non-turbulent 
outer shell is 

rnsh = 47rpeR2eHph. (49) 
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(iii) Turbulent  Viscosity 

The rising and falling supersonic convective motions create at each point in the cloud 
a turbulent viscosity given by 

~turb = ~PtVtX = ~kf~/2131%[CM(r)r]l/2.  (50) 

This viscosity eliminates differential motions and rotations in the cloud over a time-scale 

T t u r  b = pr2fiTt = (3/kf]/2/3~/2)[r3/GM(r)]l/2, (51) 

which is one of the same order as the local free-fall time rfr = [r3/GM(r)] 1/2. Physically 
therefore this means that as long as the rate of collapse of the cloud occurs at a slower 
rate than the free-fall rate, then the supersonic turbulence is able to remove any dif- 
ferential motions generated in the interior by the collapse. In short this means that the 
cloud is able to preserve its density profile and, in the case of a rotating cloud, to main- 
tain uniform angular velocity throughout the interior. 

To appreciate this point more precisely let us note that during quasi-static collapse of 

a fully rotating star each unit mass near the equator experiences an inertial azimuthal 
torque �89 ~/2, where v~ is the radial inflow velocity at the equator. This torque 
tends to set up a differential azimuthal velocity field v4) ~x (GM/r)  v2 which is eliminated 

by the viscous torque per unit mass Vt~bVc)/Pr, if we use Equation (21), provided 

J ~  k 0.1-0.3, (52) vr/vfr <~ 13 I1 - ~1 

where vfr = (GM/r)  1/2 is the free-fall velocity, taking typical values for /3, k ~ 1, and 

I1  - ~ I. Now comparing Equations (42) and (52) we see that the requirement for uniform 
convective equilibrium in the rotating cloud will almost certainly be satisfied by the cloud 
during the collapse from radius 104R| to 103R| and will be more than adequately 

satisfied below this point when Vr ~ VKH and vi~H/vrr ,~ 1. 
Thus we may conclude that during the collapse of the proto-solar cloud through the 

dimensions of the planetary system, the supersonic turbulent stress maintains uniform 
rotation and an equilibrium density-profile throughout the convective structure. In this 
case the rotational state of the cloud is meaningfully defined by the single equatorial 
rotation parameter 

= co~RJGM, (53) O = O ~  2 a 

where We is the angular velocity at the equator. 

4.4.  INFLUENCE OF THE ROTATION ON THE INTERNAL STRUCTURE OF THE 
PROTO-SOLAR CLOUD 

It is well-known (cf. Jeans, 1928; p. 245) that as the rotation parameter 19 passes from 
0 to 1 the various equipotential surfaces in the cloud become distorted from sphericity 
and bulge outwards at the equator. If, however, the cloud is strongly centrally condensed, 
meaning that the moment-of-inertia coefficient f ~  1, then only the outermost layers are 
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significantly disturbed by the rotation and the so-called atmospheric approximation 

may be employed to compute the equilibrium structure of the outer layers. According 

to this approximation, the mass M(r) interior to any radius r in the outer layers satisfies 
the equation 

M(r) ~ - M  = constant, 

and the equation of hydrostatic support may be written as 

1 z ) -  G M I R ~ f - - o - S ~ I  (54) pep(s, Re J' 

where s, z are cylindrical polar coerdinates referred to the axis of  rotation and p = p(s, z) 
the total pressm'e, whilst r = x/s ~ + z 2 . If  the equipotential surfaces of  the various 

physical quantities p, p, T/t~ everywhere coincide, then the solution of equation (54) may 
be formally written as 

p = p('J,'), p = p(~),  rl~ = F(q'), (55) 

where the equipotential function ~ = qz(s, z) is given by 

l [s2'~-4 1)] 
V + ~ " 

The photosurface is defined by the equation 

q~(s, z) = O. (57) 

The above equations al!ow us to compute the equipotential surfaces of the rotating 

cloud in terms of those of the spherical non-rotating cloud (| = 0). Since the polar 
radius Rp of a very centrally condensed cloud is hardly affected by rotation (Mona~an 

and Roxburgh, 1965) it follows from Equation (56) that, as | is increased, the equatorial 
radius R~ increases according as 

Re(| = Re(O) [1 + | (58) 

whilst the moment-of-intertia coefficeint f( |  declines according to the law 

f (O)  ~ f(O)[R~(O)/Re(| 2 = f(0)/[1 + 0/2] 2 (59) 

Thus as O is increased from 0 to 1, the equatorial radius increases by 50% whilst the f i s  
reduced by a factor 4/9. For the case of the turbulent polytropes of index n = 1.5, 

rotation reduces f f r o m  0..045 to 0.020 for the typical case/3 = 0.15, 0ph = 10 -3. Since 

for the non-rotating non-turbulent cloud ~3 = 0, | = 0 we have f = 0.205 we see how the 

combination of supersonic turbulence and rotation can drastically reduce f by more than 
one order of  magnitude. Choosing a larger polytropic index n = 2.5 (corresponding to an 

undissociated H2 cloud) causes f to fall to about 0.003 for the same value of 0ph and 
/3 = 0.15 (Prentice, 1973), It is reasonable therefore to suppose that the moment-of-inertia 
coefficient of  the young proto-sotar cloud probably lay in the range 
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0.003 ~< f(1) ~< 0.02 (60). 

with 0.01 as a typical mean value. 

4.5. THE EXISTENCE OF A DENSE EQUATORIAL RING 

Above the photosurface of  the cloud the material is essentially non-turbulent and there- 

fore free of turbulent viscosity. We therefore certainly cannot assume that the outermost 

layers of the cloud necessarily co-rotate with the same angular velocity co e as the con- 

vective material beneath the photosurface. This is especially the case when material 

is transferred from the interior of the cloud during the period of quasi-static gravitational 

contraction, when the time scale is much too short for other dissipative processes such 

as small scale isotropic fluid turbulence to become important. Instead we assume that 

each new element emerging from inside the cloud will preserve its angular momentum 

cos 2 per unit mass once it crosses the photosurface. Thus for material which moves 

parallel to the axis of  rotation of the cloud we have co = toe but for material which 

streams away from the cloud in the equatorial plane, co declines as 1/s ~. 
Assuming then that all of the material which makes up the non-turbulent outer layers 

of the cloud originates from the convective interior in this manner, a good approximation 

to the angular velocity distribution above the photosurface is given by 

Icoe s ~ Re; (6t)  

~(S, Z) = c%(Re/s) 2, if s > Re. 

The different zones of  the angular velocity distribution are shown in Figure 4. We note 

that w is constant on cylindrical surfaces. We should also mention that the distribution 

is only to be regarded as an approximate one since the angular velocity co e of the con- 

vective interior changes slightly both when material is transferred from the deep interior 

under conditions of uniform rotation and since Re itself changes with changing | Never- 
theless since these changes mean that the inverse square power index ha Equation (61) 

is changed only to, say, -- 1.9 or - 1.95 we shall not concern ourselves with this minor 

correction at the present stage (see Section 5). 
Next, if we assume, as seems reasonable, that the temperature above the photosurface 

is sensibly uniform and equal to the value Tph at the photosurface itself, so that 

T(s, z) "" Tph, qs(s, z) < 0, (62) 

the equation of hydrostatic support in the non-turbulent outer shell becomes 

~ T p h  Vp GM 
~P = ----r2 rA + co2s~ ' P = p_9~r'ph/U. (63) 

The solution of this equation for the density distribution then reads 

p(s, z) = Pe exp (a(1)~I,), �9 < 0, (64) 

where 
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Fig. 4. Semi-polar cross-section of the turbulent rotating protosun showing the domain of the 
angular velocity distribution co(s, z) of the gas described in terms of cylindrical polar co-ordinates 
(s, z), referred to the axis of rotation of the proto-Sun. The angular velocity at the equator is co e. 
The temperature outside the photosurface q,(s, z) = 0 is assumed to be a constant, namely Tph , which 

is the value at the photosurface. 

and 

r [[1 - ( R e / s ) 2 ] ,  if  s > Re, 

a(| = pGM/~T,R , ( |  a(0)  = Pph,~, (66) 

where the photosurface stress ratio Pph is given by  Equation (45) and Pe, as before, is the 

density of  non-turbulent gas at the base of  the photosurface. It is a simple matter  to show 

that Equation (65) simplifies to Equation (48) for the density profile o f  the non-rotating 

cloud when | --> 0, whilst all the other physical quantities Tph, Pph, .  �9 - have the same 

values as for the non-rotating cloud o f  the same polar radius Rp.  

Figure 5 shows a meridional profile o f  some o f  the equipotential  surfaces of  the cloud 

for various degrees of  rotat ion O which arise during the cloud's contract ion from dimen- 

sionless polar radius Rp/Rpo = 1.6 to 1, as  we consider in Section 5. A s  Rp/Rpo passes 

from 1.6 to 1, | increases from ~ 0.5 to 1. In each case the photosurface is defined by  

the curve q~ = 0. We note,  as Jeans (1928, p. 245) has also observed, that this surface 
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Fig. 5. Meridional cross-section of  the equipotential  surfaces q~(s, z) of the outer layers of  the 
protosolar envelope at various stages of the contraction, measured by the polar radius Rp, as the 
configuration approaches and passes through the first critical rotational point  Rp = Rpo where the 
equatorial rotation parameter | = w~R~/GM~ 1. The photosurface (,t, = 0) is indicated by the 

heavy line. A ring of  gas is formed and left behind at cylindrical radius s -- 1 (R e = Ro). 

assumes a lenticular shape with a sharp edge at the equator as | -+ 1. The curves desig- 

nated with ,Iz = -- 0.002, - 0.005 define the corresponding equipotential surfaces of  the 

non-turbulent outer shell. We note with interest that as the rotation parameter is in- 

creased amongst this sequence of  profiles that the originally spherical shell appears to 

evolve into an essentially ring-like structure at the equator. This phenomenon has re- 

mained unnoticed by earlier workers since it has always been loosely assumed that the 

non-turbulent atmosphere lying above the photosurface co-rotates with the interior of  

the cloud. Although this latter state of  affairs may occur if the atmosphere persists with 

the cloud over a very long period of  time, sufficient for a small-scale isotropic fluid 

turbulence to eliminate any differential motions, we certainly cannot assume this to be 
the case during the short period of  gravitational contraction of  the proto-stellar mass. 
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That is, the equatorial belt of  gases owes its existence to the angular momentum distri- 

bution given by Equation (61) which expresses conservation of  local angular momentum 

amongst material which originates freely from the cloud's interior. 

(i) Mass o f  the Equatorial Ring 

Expanding Equation (65) to second order in the local coordinates 6 = s - -Re  and z about 

the equatorial position 6 = 0, z = 0 we obtain for the density profile of  the non-turbulent 
gases near the equator of  the fully rotating cloud, the equation 

(exp [--lc~(1)(6z + z2)/R2], s >~ Re; (67) 
p(s, Z) 

Pe[exp [+ lcffl)(362 ~2 2 
- o  )/G],  s < Re 

The total mass of  gas lying outside the equatorial cylinder s = Re is thus seen to be 

re( l )  = raring = 2~2peR~(1)/a(1) = 817rmsh/32, (68) 

where rash, given by Equation (49), is the total mass of  the non-turbulent spherical shell 

of  the non-rotating star of  the same polar radius Rp and turbulence parameter {3 as that 

of  the rotating model. 
The mass of  the portion of tlre non-turbulent atmosphere which lies inside the 

equatorial cylinder is given approximately by 

in a(1) 
mey 1 "" 7rX//~ rnring. (69) 

In the typical situation for a turbulent polytrope of  index n = 1.5 with 0ph = 10 -3, 
t3 = 0.1, O = 1 we have c~(1) = 2Pph/f3 ~ 667, using Equations (45), (66), and so rncy 1 --~ 

1.2rnring. That means that almost half  of  the total non-turbulent atmosphere of  the 
fully rotating cloud resides in the equatorial belt or ring outside the cylinder s = R e. 
From Equation (68) we see that the mass of  the ring itself exceeds that of  the whole 

outer shell of  the non-rotating model by a factor of  nearly 8. 
We conclude that not only does rotation cause the originally spherical shell of  the 

non-rotating cloud to evolve into an essentially ring-like structure whose mass resides 

mostly beyond the equator, but the total mass of  non-turbulent material which can be 

supported above the photosurface is also greatly enhanced. 

5. Rotational Evolution of the Proto-Sun Towards the Point of  Rotational Instability 

5 . l .  REQUIREMENT FOR A LAPLACIAN HYPOTHESIS 

We are now in a position to study the rotational evolution of  the proto-Sun as it slowly 

collapses towards the point o f  rotational instability at radius Ro given by 

~;r ~- [Mf(1) + re(l)] Cx/FM, qo, (70) 

where L r is the total initial angular momentum left over at the end of  the grain braking 
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era, M and f(1) are the total mass and moment-of-inertia coefficient of the fully rotating 
cloud interior to the equatorial cylinder s = Re = Ro and m(1) the mass of material 
exterior to that radius. Taking L r = 1 x 10S2gcm2s-1, from Equation (14), f =  0.01, 
m(1)/Mf(1) = 0.3 as typical values (see Section 6) we find that 

Ro ~ 16000R~ (71) 

i.e., the residual angular momentum left over at the end of the grain braking era is suf- 
ficient to cause the stabilized proto-stellar cloud first to become rotationally unstable 
at the periphery of the present planetary system. This meets a basic requirement for 
the validity of the Laplacian hypothesis. 

5.2. EQUATIONS GOVERNING THE EXCHANGE OF ANGULAR MOMENTUM 

As the proto-Sun collapses towards the radius Ro, conserving both total mass and total 
angular momentum, various changes take place as the rotational parameter | rioes to- 
wards unity. Firstly, the originally nearly spherical convective envelope bulges outwards 
at the equator to assume a lenticular shape as described in Section 4. Secondly, the 
amount of material m(| which can be supported outside the equatorial cylinder s = Re 
steadily increases to the maximum value re(l) given by Equation (68). Expanding 
Equations (64), (65) to second order in the equatorial co-ordinates 6 = s - Re, z and the 
parameter 1 -- | the density profile of the belt of non-turbulent equatorial gases is given 
by 

p(8,z) = poexp --c~(| 1 - - |  e 2Re 2~e] )  

From this equation it now follows, if we use Equations (58), (66), (68), that 

m ( |  ( 2 r e ( l )  3 ~ )  4exp [~2 (~O)(1 _|  {1 - -e r f  [ t ~ ) 1 / 2 ( 1 - -  | "(73) 

Since the mass of the equatorial belt of the fully rotating cloud exceeds that of the 
whole spherical shell of the non-rotating model by a factor of about 8, as mentioned at 
the end of Section 4.5, most of the material which goes into building the ring as the 
cloud contracts is new material which is freshly transferred across the photosurface from 
the convective interior. As the convective envelope extrudes this fresh material under 
conditions of uniform rotation, maintained throughout its interior by the supersonic 
turbulence, the angular velocity changes according to the equation 

[M(O)f(O) + m(| coeRZe = Lf, (74) 

whilst the total mass Mf of the system satisfies 

M(| + rn(| = Mr, (75) 

where M(| is the mass interior to the equatorial cylinder s = Re. In the case of a very 
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centrally condensed cloud, which is our regime of physical interest, we have (say) 

f( |  < 1, re(O) < M(| ~-- M(1) = M, (76) 

whilst f( |  changes according to Equation (59). In deriving Equation (74), the angular 
momentum of the equatorial ring of non-turbulent gases was computed using Equation 
(61). This equation corresponds to the conservation of local angular momentum for the 
non-turbulent gas which streams away from equatorial cylinder. The angular momentum 

per unit mass at the equator is h e = coeR~. In fact, since he changes slightly as the proto- 
Sun is braked through the extrusion process, Equation (61) is only an approximation, 
as mentioned in Section 4.5, but as we shall show below in Section 5.4 only a very small 

error is induced through this simplification. 
Lastly, since the equatorial radius Re depends on the rotation parameter (9 through 

the definition 

6) 2 3 = weRe/GM , (77) 

it is convenient to choose the polar radius Rp as the independent variable governing the 
size of the configuration since this evolves independently of the processes which take 
place at the equator. Now eliminating we and R e from Equation (74), we obtain by using 
Equations (58) and (70) the single equation 

: t{ / \Rp ] \2 + | f(O)/f(1) ~- -em(O)/m(1)) (78) 

where we define 

e = m(1)/Mf(1), (79) 

and Rpo = ~Ro is the polar radius when the proto-Sun becomes fully rotating at equa- 
torial radius Ro. Substituting Equations (59) and (73), Equation (78) may be solved 

numerically to find (9 in terms of Rp for given values of e and c~(1). 

5.3. NUMERICAL COMPUTATIONS 

The results of the numerical computations for the typical cases e = 21/4 -- 1 and r = 
300, 1000 are shown in Figure 6. There we find (9 and m(| plotted against the 

polar radius Rp in units of the value Rpo at which | --* , .  The dotted line in Figure 6 
corresponds to the path which would be taken by a freely collapsing cloud which under- 
goes no structural changes as the degree of rotation increases. For such a collapse we have 

toe oc 1/R~ and thus |  The solution |  is in fact the first-order 
iterative solution of Equation (78) obtained by setting | = 1 throughout the right-hand 
side of this equation. We note that for large polar radii | precedes the value Rpo/Rp cor- 
responding to the 'rigidly' collapsing cloud but that as R r -+ Rpo, (9 exceeds this value. 
This non-uniform behaviour is due to the changing equatorial structure of the proto-Sun. 

For Rp >i 1.5Rpo, | is small, m(| is small and the proto-Sun is nearly spherical 
(see Figure 5). During this interval it collapses nearly uniformly. Eventually as Rp becomes 
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Fig. 6. Variation of the equatorial rotation parameter | as a function of polar radius Rp during 
the contraction. After each critical equatorial radius Rj (j = 0, 1,2, 3 . . . .  ) has been passed, where 
| ~ 1, the proto-solar envelope rotationally stabilizes itself by extruding fresh material of mass 
rot(| to the equator. Two separate cases corresponding to the parameter ~(1), given by Equation 

(66), are considered. 

smaller, (9 increases faster than a 1/Rp law because of  the growth in the equatorial radius 

Re relative to Rp by the factor (1 + 0/2) .  Beyond that stage when it approaches the limit 

1.5Rp the rate of  growth of  (9 is rapidly curtailed as the bulk o f  the mass m(| of the 

equatorial ring increases dramatically as (9 ~ 1, thereby rotationally braking the proto- 

Sun. 

5.4. MEAN ANGULAR MOMENTUM OF THE EQUATORIAL RING 

Figure 7 shows a plot of  the angular momentum per unit mass h e = caeRae at the equator 

of  the proto-Sun in units of  the value h0 = woRg = GVrGM~o at radius Ro, again for the 

cases e = 21/4 - 1 and c~(1) = 300, 1000. We observe that initially h e < h o  when the 

cloud is nearly spherical. It then increases sharply as the equatorial region of  the star 

becomes extended outwards by centrifugal force and lastly drops back to h| again at 

radius R| as the star becomes braked through the formation of  the equatorial ring. 

It is interesting to compute the mean orbital angular momentum per unit mass (h e ) of  

the material comprising the equatorial ring when the proto-Sun has contracted to the 

radius Ro. Throughout the analysis leading to Equation (78) we assumed that the angular 

velocity distribution in the ring is given by Equation (61) for which (he)= ho. In fact, 

since the mass re( l)  of  the final ring is made up of  material continuously extruded during 

the collapse we obtain for the case e = 2 a/4 -- 1 

mO)~. l1.01ho if c~(1) = 300, 
(h) = ~ h( |174 (80) 

o (1.03ho if c~(1)= 1000. 
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Fig. 7. Equatorial angular momentum per unit mass at various stages during the contraction. The 
sequence of values hj at the critical points Rj in Figure 6, where | = 1, steadily decline as the 
shrinking envelope gives up its angular momentum through the extrusion and shedding of material 

at the equator. 

This means that the final mean angular momentum per unit mass of  the ring exceeds 

that  at the equator o f  the fully rotating convective envelope by  at most  a few per cent. 

This-means that as an improved approximation we should choose in place of  Equation 

(61) a slightly less steep power law dependence for co e on s of  the form 

~ ( s , z )  = ~e[Re /S]  2-~ S >>- Re.  (81) 

To compute o we insert Equation (81) in Equation (63) and integrate to obtain the 

density profile of  the non-turbulent equatorial  ring in the neighbourhood o f  the equator 

of  the fully rotating cloud - viz., 

2 2 /  p(6, z) = fie exp { -  �89 - 2c062 + z ]/Re~. (82) 

Next,  it follows that 

<h> = ho/.,/1 - 20,  (83) 

and, hence, comparing this with Equation (80) we see that 

cr = 0.03 ~ 2. (84) 

Thus the approximat ion e = 0 is in fact a very good one since to next order we should 

replace the term (Re~s) 2 in Equation (61) by (Re~s) a'97 which is essentially the same. 

We therefore feel that the level of  accuracy achieved through the initial assumption o = 0 

is sufficiently great to just ify no further i terat ion for the solution | 
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Lastly, we should mention that the physical significance of the angular velocity 
distribution given by Equation (81) is that the equipotential surfaces of the ring are 
distended outwards in the equatorial plane changing from being perfectly circular in 
meridional cross-section for a = 0 to being slightly elliptic with semi-axes 1 + a, 1, 

respectively. In addition, since the mean angular momentum per unit mass exceeds the 
value at the equatorial radius R0, where the angular velocity equals the Kepler velocity 
x/G~/R 3, if any gas should subsequently condense out as a solid and return to the 
radius Ro it would inherit a positive (prograde) spin angular momentum equal to some 
3% of the orbital angular momentum there. 

6. Formation of the System of Gaseous Laplacian Rings 

6.1. INTRODUCTION 

Consider now the changes which take place near the equator of the proto-Sun after the 
fully rotating state has been attained at radius Ro. Because the proto-Sun is very strongly 
centrally condensed the central dense regions of the cloud barely feel the influence of 
rotation even when the centrifugal force at the equator balances the gravitational force. 
Consequently these regions will continue to contract inwards during the quasi-static 
collapse irrespective of the events which take place at the equator. If, however, the 
gravitational energy released throughout the cloud is sufficient to maintain a supersonic 
convective turbulence, then from thermodynamic considerations it follows that the run 
of density with temperature in the sub-photosurface regions of the cloud is preserved 
relative to those in the deep interior. PhysicaUy, however, no net outward transfer of 

heat from cloud can occur unless the temperature everywhere decreases outwards. If 
this condition is to be met it follows from the equation of hydrostatic support that we 

require 

O(Re) < 1, Re < R0, (85) 

as otherwise a temperature inversion would develop near the equator. Thus for a true 
convective equilibrium to exist it is necessary that the subphoto-regions of the cloud 
remain rotationally stable at all stages during the contraction. 

In the next subsection we shall examine whether or not it is possible for the convective 
envelope to remain rotationally stable i.e. to satisfy Equation (85) during the contraction 
below polar radius Rpo. Certainly it does not seem possible for the gases of the non- 
turbulent ring of material lying beyond the equatorial cylinder s = R e to remain rotation- 
ally stable once the cloud has contracted beyond the radius Ro, since if they should 
co-collapse with the cloud conserving their own angular momentum we should have at 
the equator 

Or ing (Re )  = Ro/Re > 1, if Re < Ro. (86) 

For the material of the convective envelope, interior to the equatorial cylinder, the 
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situation may not necessarily be the same since by transferring new material of  mass m t 

outwards from the deep interior of the cloud the envelope can be rotationally braked, 

the angular velocity being reduced by the factor (Ro/Re)2/(1 + mt/Mf) .  Thus, provided 
mt is sufficiently great, we see that it may be actually possible for the proto-Sun to 

become rotationally stabilized again during the contraction below critical radius Ro, 
so that Equation (85) is always satisfied. 

6.2. THE DISTRIBUTIONS OF PRESSURE AND DENSITY AND ANGULAR VELOCITY 

ABOVE THE PHOTOSURFACE 

The sequence of events which accompany the collapse of the proto-Sun are illustrated in 

Figures 8 and 5. During the contraction of the convective envelope to a smaller equatorial 

radius Re,  a vacuum would be created in the space vacated by the equatorial cylinder 

s = R e if no material were to be transferred into that interval. If, however, the envelope is 

to maintain pressure equilibrium at its photosurface and the ring of non-turbulent gas 
lying beyond the cylinder s = Ro is to maintain pressure equilibrium on the surface 

s = R0 then material from both sides will pour inwards to Fill the cylindrical annulus 

Re <~s <~Ro. Thus as the convective envelope undergoes quasi-static collapse, new 
material from its deep interior will flow outwards across the equatorial cylinder s = Re 
and old material from the non-turbulent ring beyond radius R0 will flow towards this 

radius until pressure equilibrium is established at each cylindrical radius. Let us denote 

by R t the radius of the cylindrical surface of co-existence between the gases from the 

envelope and the ring. We may compute R t as follows. 

(i) The Co-existence Cylinder s = R t 

For the fresh non-turbulent material which flows outwards across the equatorial cylinder 

s = Re, the angular velocity distribution is given by Equation (6 I), as justified in Section 

5.4. Integrating the equation of hydrostatic support, viz Equation (63), the equilibrium 

density distribution becomes 

p(s ,z)  = P e ( R p ) e x p { a ( |  e -  

R e <~ s <~ R t. 

o _  js2 i ' 1 +~-(1 
(871 

where Pe(Np) is the density of non-turbulent gas at the equator. As long as the collapse 

of the polar regions of the proto-Sun occur homologously then 

pe(Rp) = pe(Rpo)(Rpo/Rp)  3 , (88) 

and, similarly, for the temperature distribution above the photosurface we have assumed 

that 

T(s , z )  " * ~ ~  T e ( R p ) =  Te(Rpo)(Rpo/Rp) ,  (89) 

whilst a(@) is given, as before, by Equation (66). 
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Fig. 8. Distribution of  total pressure p with cylindrical polar radius s in the vicinity of  the equator 
in the equatorial plane at various stages of  the contraction of  the envelope through the first critical 
point  R e = R o. In order to maintain pressure equilibrium at the photosurface, the convective envelope 
extrudes fresh material into the cylindrical void R e < s < R t, where the co-existence cylinder s = R t is 
given by Equation (92). In extruding this fresh material of  mass m t from the deep interior o f  the 
cloud under conditions of  uniform rotation, maintained by the supersonic turbulent convection, the 
envelope is rotationally stabilized provided rn t is sufficiently large, that is (see Equation (113) and 

Figure 9), if the turbulence is sufficiently strong. 

Consider next the material of  the gaseous ring lying beyond the cylinder s = Ro. 

As the proto-Sun contracts, this material expands freely into the interval R t ~ s ~<R0 
conserving its angular momentum. The angular velocity distribution of this material is, 
therefore, given by 

co(s, z) = (GM/R3o)'/2(Ro/s) 2. (90) 

For the sake of simplicity we assume a constant temperature distribution throughout the 
non-turbulent material, the same as Equation (89). In fact, as we shall later point out, 
the black-body temperature in the gas declines according to the law T ~  Te(Re/s) 1/2 as 
one moves away from the proto-Sun in the equatorial plane. But as the effective thickness 
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of the ring turns out to be very much smaller than the radius Ro, this modification in 
the temperature profile produces a variation which is negligible in comparison to the 

other changes going on at the equator, and so will be ignored. 
Now integrating the equation of hydrostatic support we obtain for the density profile 

beyond the cylinder s = Rt 

pr(s,z) s=~Rt po(Ro)exp{o~(| o 2s 21R~) 1]} , (91) 

where po(Ro) is the density on the circular axis s = Ro, z = 0. On this axis the angular 
velocity equals the local Kepler value (GM/Rg) 1/2 and the density is a maximum, as 

shown in Figure 8. Initially po(Ro) = Pe(Rp o) but as the proto-Sun recedes and the old 
gaseous ring left behind at radius Ro distributes itself uniformly about the Keplerian 
axis s = Ro, we have po(Ro) ~ �89 its total mass remaining constant as given by 

Equation (68). 
Now equating p(s, z) and Or(s, z) and noting that for ~(| 1 it is sufficient to 

equate the exponents of equations (87), (91) we find that the radius of the co-existence 
cylinder is 

1 - QRe/Ro ]1,2 
Re = Ro Roo2--O----R~-0] (92) 

At this radius the outward pressure of the fresh material extruded from the convective 
envelope balances the inward radial stress of the material of the gaseous ring centred on 

radius Ro. For | close to 1 we see that Re lies approximately mid-way between R e and 
Ro. The density at the interface is thus approximately 

Pt ~ P0(Ro) exp [-- ~ ( O ) ( R o l R e  - 1)21. (93) 

Since this is negligible in comparison with the central ring density p0(R0) for 

IRe - R o l  >~ 2Ro [2/~(| 1/2 ~ 0.1R0, (94) 

we see that the gaseous ring essentially detaches itself from the proto-Sun once the 
equatorial radius of the latter has shrunk to about 0.9 R0. 

It is worth noting that although the total gas pressure p = o~2T/la is continuous across 
the co-existence cylinder s = Rt, the angular velocity distribution is not so. At the inter- 

face, the angular speed of the material just interior to this point is [| 1/2 (Re/R 02 < 

(GM/R~) 1/2 if | < 1, whilst just exterior to this radius it is (GM/Rg)I/2(Ro/Rt~> 
(GM/R~) 1/2. The two species of gas on either side of the cylinder may, therefore, tend to 
mix together, thus altering the distribution of angular velocity and density at this point. 
Nonetheless, if Equation (94) is satisfied so that Pt is negligible, then we do not expect 
mixing to be important, especially if the rate of collapse of the proto-Sun is fast com- 
pared to the viscous time scale of the small-scale fluid turbulence which is generated by 
the discontinuity of angular velocity. We shall return to this point-in Paper ti. 
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6 .3 .  R O T A T I O N A L  EVOLUTION OF THE PROTO-SUN 

We are now in a position to write down the equations which govern the rotational evo- 
lution of the proto-Sun as the polar radius shrinks below the critical value Rpo. Using the 
same approximations as described in Section 5 under Equation (76) the equation for 
conservation of total angular momentum of material interior to the cylinder s = R t is of 
the form 

[gf(O) -I- rot(O)] coeR2e = Lo - M f ( l ~ ,  (95) 

where L0 is the initial angular momentum interior to the equatorial cylinder s = Ro 
and mt the mass of freshly extruded gas when the protosun has shrunk to polar radius 
Rp. Expanding Equation (87) to second order in the local equatorial co-ordinates 8 = 
s --Re, z we obtain 

m(l)( 3 t expI  l 
x {ere [ ~ ) ) 1 / 2  (~et | )1 _ ere [ ( ~ ) , / 2  (l __ G)]) ' (96) 

where re(l), as in Equation (73), is the total mass of the old gaseous ring, detached at 
radius Ro. Eliminating we, Re with Equations (58), (77), (95) we arrive at the single 
equation 

o ( R . )  = te. l tT;--6) 
where e is defined by Equation (79). 

(i) Numerical Computations 

/ f ( |  emt(O)/m(1)} 2 
t 77i-) (97) 

The numerical solution of Equations (96), (97) for | and mt are shown in Figure 6 
to the left of the ordinate line Rpo again for the typical cases e = 2 TM - -  1, ~ ( 1 )  = 3 0 0 ,  

1000. The dashed line shows mt in units of re(l). 
Several interesting features of the solutions are worth discussing. Firstly we observe 

that | and hence the other physical characteristics Re and f(| of the protosun behave 
discontinuously immediately the structure contracts inwards from the fully rotating 
configuration at polar radius Rpo. Since the equatorial radius of the convective envelope 
is given by R e = Rp(1 + 0/2) it follows from Figure 6 that there exist no equilibrium 
configurations having radius R e between about 0.9Ro and Ro. Instead, as the polar 
radius shrinks by an infinitesimal fraction below Rpo, the equatorial radius appears to 
withdraw discontinuously onto a new solution branch corresponding to a state of 
rotational stability. The physical reason for this discontinuous behaviour resides in the 
critical structure of the fully rotating convective envelope. The angular momentum Lo 
of this envelope is reduced by a small amount AL = Lo6/f(1) whenever a correspond- 
ingly small small amount of mass 
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z~n = 6M, 8 < 1, (98) 

is transferred outwards to the equator. Such a change induces a very much larger change 

AO = --X/6~-/-f/f(1)in O using Equations (59), (79), (97) and hence a change 

2~e  = -- (~5 / f (1 ) ) ln  Ro (99) 

in the equatorial radius. Next it follows from Equations (92), (96) that for pressure 
equilibrium to be established at the photosurface Am must satisfy the additional relation 

,Sin cx (R t - -Re)R~pe(Rpo) cx 61riM. (100) 

Comparing Equations (98), (99) we see that analytically it is not possible to construct a 
consistent continuous solution for 0 in the neighbourhood of Rvo with the property 
| 1 as R v -->Rpo from below; that is, | moves discontinuously to a new solution 
branch as soon as the proto-Sun contracts past the critically rotating radius. 

(ii) Detachment o f  the Gaseous Laplacian Ring 

As the equatorial regions of the convective envelope withdraw catastrophically* from 
the radius Ro, the ring of gaseous material lying beyond the cylinder s = Ro rushes 
in after them distributing itself symmetrically about the Keplerian axis s = Ro, z = 0 
with angular velocity distribution given by Equation (90) and density distribution given 
from Equation (91) by 

fir(5, z) ~ po(Ro)exp [--�89 ], (101) 

where ~2 = (s--R0) 2 + z :. When the envelope reattains a consistent pressure equilib- 

rium at its photosurface at radius Re ~ 0.9Ro it follows from Equation (94) that the 

density at the interface Rt  is Pt ~ po(Ro). Therefore the proto-Sun literally detaches 
itself from non-turbulent material lying beyond the equatorial cylinder as soon as the 
radius Ro is reached. This material is left behind at radius Ro as an isolated secondary 
structure supported through a balance between centrifugal force and the gravitational 
field of the proto-Sun. This ring of gas abandoned by the collapsing proto-Sun in its 
equatorial plane may be called a Laplacian ring. 

(iii) A Return to the State o f  Rotational Instability at Radius R 1 

The second main feature which we observe in Figure 6 is that the rotation parameter 
rises to unity again when the proto-Sun shrinks to the new critical radius R1 = Ro/VC2. 

This behaviour follows from Equations (96), (97). The proto-Sun is initially strongly 
rotationally stabilized through the transfer of new material of mass m t to the equator, 
causing the angular velocity to decline according to the law 

(~)e = (-J0 f ( 1 ) / [ f ( O )  + mt(O)/M]. ( 1 0 2 )  

* That  is, dynamical ly ,  on  a free-fall time-scale, rather  than  quasi-statically as prior  to radius R o . 
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Eventually as Re gets smaller the reduction in We achieved by the factor f(1)/[f(| + 
mt(| is overtaken by the growth of the factor (Ro/Re) 2 until a radius RI is reached, 
given by 

Ro/R~ = [1 + m(1)/Mf(1)] 2 = (1 + e) 2, (103) 

where 

and 

co=,(R~) = GM/R~, O(R~) = 1, (104) 

mr(1 ) ~-- m(1), (105) 

provided that 

( ~ ) 1 / 2  [~RR~--I } --e(~2(-~)-l)) '/= > 1. (106) 

Although e depends on the turbulence parameter/3, polytropic index n and photosurface 
temperature ratio 0ph and has yet to be computed, it is a simple matter to show that the 
inequality in Equation (106) is easily satisfied for the case e = 21/4 -- 1. For this value of 

e we have Ro/R1 = V~.  
Thus, as Re shrinks to R~, the convective envelope finds itself returning to the critical 

state again whilst the cylindrical shell of newly extruded material in the interval Re <- 

s <~ R t assumes a ring-like structure which is essentially identical to the ring of material 
which previously existed beyond the cylinder s = R0, except that its density profile 
terminates at the co-existence cylinder s = Rt,  where 

R t = N/R~,.~ = R1(1 q-e). (107) 

(iv) A Repeated Process 

Once the envelope becomes fully rotating again at radius R1 and continues to contract 
inwards the whole process of ring detacbmaent followed by growth of a new ring repeats 
itself and again at the sequence of critical points R2, R3, R4 etc as shown in Figure 6. 
That is, the turbulent convective proto-Sun disposes of its excess angular momentum 
through the formation of a system of gaseous Laplacian rings. 

6.4. THE TIT[US-BODE LAW 

As long as the collapse of the polar regions of the envelope take place nearly homo- 
logously so that f(1) and m(1)/M remain constant, then the ratio of the orbital radii 
Rj of the successively disposed gageous Laplacian gaseous rings is simply 

Rj _ (1 + m(1)t2 = 
R j+ 1 Mr(l)]  constant, (108) 

with j = 0, 1,2, 3, 4 . . . ;  that is, the set of orbital radii Rj form a geometric sequence 
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Fig. 9. Plot of ring-spacing factor Rj/Rj+, = {1 + m(1)/Mf(1)}: as a function of the turbulence 
parameter 3. Unless 3 > 0.05 the rings become so closely spaced that the analysis leading to Equation 
(103) ceases to be valid and the star is unable to rotationally stabilize itself through equatorial mass 

shedding, even if it shed material continuously. 

which is similar to the Titius-Bode law for the distribution of  planetary distances and 

those of  the satellite systems of  the major planets. According to our theory the value 

of  the Titius-Bode constant depends on both the degree of  turbulence/3 as well as Oph 

and the polytropic index n and is given by 

peOph (109) F -~ (Ri/Ri+ 1) = (1 + e )  2, e -- rr O + 1 /a (O))~f (0 ) ,  

where, using the notation of  Section 4, pc/t5 and f(O) are the ratio of  central to mean 

density and moment-of-inertia coefficient of  the non-rotating structure of  the same 

polar radius as that of  the fully rotating proto-Sun. 

We have plotted lP vs. t3 in Figure 9 for the typical cases 0ph = 10 -a and n = 1.5, 

2.5. We observe with interest that in order to account for the observed spacing of  the 

planetary distances, where Pobs = 1.73, eobs--~ 0.3, we require a turbulence parameter 

/3 o f  order 0.1. This value is a typical one for the theory of  supersonic convective turbu- 

lence which we have so far developed. 

(i) A Necessary Condition for the Shedding of  a System of Laplacian Rings 

It is also interesting to note from Figure 9 that as the degree of  turbulence declines, 

the spacing between the rings becomes smaller and in fact becomes essentially zero 
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(~ 10 -3) in the non-turbulent limit 13 = 0. In fact it is not possible for a weakly turbulent 
protosun to rid itself of its excess angular momentum in the manner we have proposed 
unless the condition specified in Equation (106) is satisfied. To appreciate this point we 
consider the first-order continuous solutions for m t and O in the neighbourhood of the 

radius Ro obtained by setting | = 1 throughout the right hand side of Equations (92), 
(96), (97). We obtain 

m~i)(Re)/m(1) = erf ,/2 fro-- 1 \--~-~n-n ] (Ro --Re) + . . .  

(110) 

OtO(Re) = 1 -- [e(2a(1)/Tr) ' n  -- 11 (Ro --Re) + . . .  (111) 

Inspecting Equation (111) we see that the proto-Sun is rotationally stabilized through 
the outward extrusion of  material to the equator only if 

e(2ot(1)/Tr) in >~ 1; (112) 

or, equivalently, if we use Equation (109), if 

(2/3)13/2 ~ f(0) 
~ -  ~ o.os (113) /3 I> 2x/T~-(o) oc 0ph 

for the typical case n = 1.5, 0ph = 10 -3. Equation (112) is essentially identical to the 
earlier derived Equation (106). 

Equation (113) tells us that unless the turbulence is sufficiently strong, the amount 
of angular momentum shed at the equator through the formation of a system of 

Laplacian rings is insufficient to keep the convective envelope rotationally stable during 
the contraction. The mass of the equatorial rings depends on the ratio of turbulent stress 
to gas pressure ratio at the photosurface , as we note from Equations (47) and (68). For 

the weakly turbulent star, m(1) is too small to allow the convective envelope to safely 
contract. The outer layers of a weakly turbulent cloud therefore probably become 
successively stripped away during its collapse as the point where (9 = 1 steadily works its 
way towards the centre of  the object. This phenomenon has been studied both by Hoyle 
(1960) and Cameron (1962). The physical but unobserved outcome of such a collapse 
is a vast disc-like nebula possessing no central condensation, or the Sun. 

We conclude that supersonic turbulent convection is not only essential to the efficient 
disposal of angular momentum through the process of equatorial mass shedding, but is 
also crucial to our understanding of why the proto-Sun shed its excess angular 
momentum through the formation of a discrete system of Laplacian rings. 

6.5. THE PROGRESSIONS OF RESIDUAL MASS AND ANGULAR MOMENTUM 

The residual angular momentum of the proto-Sun after the disposal of the jth gaseous 
ring at orbital radius Rj scales according to the geometric progression 
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L s : Lo 1 : LO~R~] ' (114) 

where Lo is given by Equation (95). Thus we see that during its collapse from radius 
about 104R~ to Re, the proto-Sun is able to lose two orders of magnitude of angular 
momentum through the process of shedding rings of gas at its equator. At the same time 
the mass Mj left over after the disposal of the jth ring scales as 

(l m(l)YMo ] , ,{R'lf(1)/2 Mj = Mo --~ Mo ~,~--~[ " (115) 

Again with Ri/Ro = 10 -4, f(1) = 0.01 we find the proto-Sun only loses about 5% of 
its original mass during the entire collapse. That is, the mass hardly changes during the 
contraction compared to the loss in angular momentum. The physical reason for this 
event lies, of course, in the immense degree of central condensation, or very low moment- 
of-inertia coefficient, achieved through the supersonic turbulent convection. 

According to our theory the proto-Sun arrives at stellar size still spinning very rapidly 

with a period of the order of a few hours. In fact, as we shall point out in the next 
section, the rate of collapse of the proto-Sun drastically declines during the final stages 
from a radius of about 30R| down. This may allow time for other angular momentum 
braking processes, such as the interaction of a solar wind with any small-scale magnetic 
fields generated by small-scale turbulence below the photosurface to rid the proto-Sun 

of its last vestige of angular momentum. 

6.6~ A COMPUTATIONAL SUMMARY 

The equations which govern the distribution of density and angular velocity in the 

concentric system of gaseous rings abandoned by the contracting proto-Sun at the 
sequence of orbital radii Ro, R1 . . . . .  Rn are as follows. For the nth gaseous ring of 

mass re(l)  and assumed constant temperature Tn we have 

On(S, z) = po(Rn) exp ( ~ n )  (116) 

~n(s, z) = GV'~ / s  2, (117) 
where 

po(Rn) ~ %m(1)/47rR~ (118) 
is the density on the circular Keplerian orbit s = Rn, and 

c~ = t~GM/2T~R~, (119) 

% [ - 2 - - ? -  - [(s - R n )  2 +z2]/ZR n. 02O) 

The location of the surfaces separating the nth and (n + 1)th rings follows from the 
equation On(S, z)=p~§ z) and depends on the choice of the temperature distri- 
bution T,~. We assume a black body distribution 
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Fig. 10. Meridional cross-section of  the  contracting proto-Sun and its sys tem o f  gaseous rings at 
various stages during the  contract ion.  The  shaded regions correspond to all mass  points  interior to 
the  equipotent ia l  surfaces a(1)'~' = a n ~  n = -  2, given by Equat ions  (64), (65), (119),  (120) and 
(123),  taking 4(1)  = 1000. T hus  in the  vicinity o f  each gaseous ring at radius R n the  shaded region 
corresponds to the  points  for which p > po(Rn)  exp (-- 2) where po(Rn)  is the  densi ty on the  circular 

axis o f  the  ring, which decreases outwards  with R n in accord with Equat ion  (118).  
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(121) T ~ Te[Re/R ,]  '/2, (121) 

corresponding to a nearly transparent nebula surrounding a proto-Sun of temperature T e 

and equatorial radius R e. In that case, the surface where the nth and (n + 1)th gaseous 
rings merge is nearly coincident with a cylinder of radius Rt ,  given by 

R t .  = X / ~  t\Rn+l----- / + \ R e /  - -1 ~ X/~nRn§ (122) 

In Figure i0 we have computed the meridional, or polar, cross-section of the proto-Sun 
and its attendant system of disposed gaseous rings at various stages of the gravitational 

contraction. The shaded zones correspond to regions where for each ring the density 
exceeds e -2po(R , ) ,  where po(R,,) is the density on the mean orbit s = Rn, on which 
it is a local maximum, and for the protosun where the density exceeds e-2pe(Re),  where 
Pc(Re) is the density at the equator as in Equations (64), (65) and (87). Mathematically, 
therefore, the shaded areas correspond to the interior of the equipotential surfaces 
a(1)~P(s, z) = -- 2, a,'#n(s,  z) = - 2, n = O, 1 ,2,  3 , . . . ,  ,since from Equations (58), 

(66) and (119) we note that 

% =  a(1) ( 2 ~ )  ~ , (123) 

where | is the rotation parameter of the proto-Sun which varies during the collapse in 
accord with Figure 6. For the purposes of the calculation we have chosen the case a(1) = 

1000. 
We observe in Figure 10 that the outer gaseous rings command a greater volume than 

the inner ones. This is a characteristic feature of the homologous nature of the con- 
traction. For rings of constant mass m(1) the density scales outwards with Rn according 
to Equation (119) owing to the fact that the ratio of the volume of a detached ring to 
that of the proto-Sun at the moment of detachment is preserved during the contraction. 
The inner gaseous rings are, therefore, much denser than the outer ones. The effective 
minor radius ~n of each ring shown in Figure 10 is given from Equations (116) and (121) 
by 

~,, = 2R,/X/an -- 2Rn (Rn/Re)  i/4, (124) 

noting that the proto-solar temperature Te varies during homologous contraction as R~ -1. 
Initially, at the moment of detachment, when R e = R  n we have ~n m0.06Rn,  taking 
a(1)--  1000. Thereafter as the proto-Sun grows hotter during the contraction and the 
temperature Tn at each fixed point R .  increases as T.  cx R e  1/2, the rings of gas warm up 
and undergo thermal expansion. This effect is more pronounced in the outermost rings, 
as we note in the diagram. Typically, taking R e = 50R| R .  = 5000Rs we find ~ . / R .  = 

0.20. Since the observed mean orbital distance between adjacent rings Rn --Rn§ 1 = 

0.73R.§ always exceeds the sum of the minor radii ~. + ~n§ we see that system of 
rings maintains its discrete structure during the proto-Sun's contraction. Ultimately, for 
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Re ~< 2 0 R . ,  the homologous character of the collapse disappears and the rings commence 
to shrink in thickness again as the proto-Sun moves towards the Main Sequence and the 

temperature throughout the solar system declines, as we shall discuss in more detail in 
the next section. 

The above analysis, of course, supposes that each ring maintains the angular velocity 

distribution given by Equation (117). In fact, as we shall discuss in Paper II, it is possible 

that the dense inner rings of the solar nebula may become thermally convective when the 
proto-Sun enters its most luminous phase at radius R e ~ 20 R . ,  causing co n to be rendered 
uniform and the rings to physically disintegrate. In any event, we feel that Figure 10 
shows how during the contraction through the dimensions of the planetary system, the 
protosun sheds a well-defined system of circularly orbiting gaseous Laplacian rings, 
lying in its equatorial plane. 

7. Influence of Internal Thermodynamic Changes on the Physical Characteristics 
and Rate of Collapse of the Proto-Sun 

7.1. INTRODUCTION 

In Section 5.4 we discovered that if the contraction of the proto-Sun occurs homo- 
logously during the interval from 104R~ to 102R~ then the orbital radii of the successively 
disposed gaseous rings satisfy a geometric relationship similar to the Titius-Bode law. 
Now although it seems physically reasonable that the contraction should take place 
uniformly if the various physical parameters /3, 0ph . . . .  of the cloud remain constant, 
this conclusion is far from obvious when one considers the various thermodynamic 
changes (dissociation of Hz, ionization of H, He) which inevitably take place during the 
course of the collapse and which drastically alter the internal distribution of temperature 
and density inside the cloud. In this section therefore we shall investigate the influence 

of these atomic and molecular changes on the homologous nature of the contraction. 
We also consider the final stages of the pre-Main-Sequence collapse for radii R e < 20 R| 
where photospheric conditions force us to abandon the constraints that 0pn as well as 

perhaps t3 remain constant. The detailed calculations of Ezer and Cameron (1965) and 
Hoyle and Wickramasinghe (1968) suggest that the surface temperature of the proto-Sun 
in the final stages of contraction levels off to about 4500 K rather than continuing to 
increase according to the law Te cc Rff I as in a homologous contraction. 

7.2. COMPUTATIONAL PROCEDURE 

Proceeding as in Section 3.2 we suppose that for any given equatorial radius R e the 
proto-Sun may be divided into an inner region of fractional mass ql and polytropic 

index na = 3/2, in which the H is all fully dissociated, surrounded by an outer region 
in which the H is fully molecular, for which the polytropic index is given by Equation 
(36). For any given qa ,/3, 0ph the equatorial radius R e of the configuration is uniquely 
determined from the condition that the concentrations of H and H2 are equal at the 
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interface q l .  Initially we suppose that 3, 0ph are constant so that departures from uni- 

form contraction occur solely through the variations of q l .  As the cloud becomes smaller, 
however, and heats up, ql steadily increases and approaches unity at a radius Re,,  

20R~ where the surface temperature is T, ~ 3500K. Beyond this point it is not possible 
to suppose that 0ph remains constant during the subsequent contraction to radius R e = 

1.5 R| (for a fully rotating sun Re = 1.5 Rv) since this would lead to a final photosurface 
temperature of  order ~ 10SK. Instead as soon as ql ~1  we adopt a photosurface tem- 
perature law of the form 

log (Rdl.S 
Tph(Re) Re-<__Re, 4500( / ' , /4500) '  K ,y  = l~gg(R~.,/i~5-~Q)I ' (125) 

which matches on to the more detailed calculations of Ezer and Cameron (1965) as 

Re ~ 1.5 R s .  In addition, since the levelling off of Tph(Re) drastically lengthens the 
time-scale 

r~:H ~-- C. CM2/Rae r~h (126) 

for the disposal of  the excess gravitational energy as R e gets smaller, it is reasonable to 

suppose that the supersonic turbulence starts to die down in this final stage of the con- 

traction, To present this feature explicitly we suppose that/3 declines in a manner such 

that the proto-Sun moves on to the zero-age Main Sequence preserving its central density 
profde so that the moment-of-inertia coefficient remains constant: namely, 

f = f ,  -~ f ( R e , , )  ~-- 0.02. (127) 

For a non-rotating proto-Sun this implies a final f o f  ~ 0.05 which is closely represen- 
tative of  the value expected for the Sun (Allen, 1962). 

7.3. INFLUENCE OF THE DISSOCIATION OF H~ ON THE PHYSICAL CHARACTERISTICS 

OF THE PROTO-SUN 

Figures 11 and 12 show the influence of the dissociated core mass fraction q 1 on various 
physical characteristics of the fully rotating (| = 1) cloud for the case 0ph = 10 -3 and 

X = 0.7, Y = 0.3. The quantities plotted are the ratio of central to mean density Pc/D, 

the ratio Pph of turbulent stress to gas pressure at the photosurface, the gravitational 

potential energy concentration factor C~(3, 1) defined by Equations (23), (31) and the 

central temperature Tc expressed in units of IaeGM/~Re = 2.291 lac(R| x 107 K, 

where/a c is the central molecular weight. Figure 12 shows the mass re(l) of the equatorial 
gaseous ring in units of the mass M of the turbulent envelope, the moment-of-inertia 

coefficient f(1) of the envelope and the Titius-Bode function [1 + m(1)/Mf(1)] z 

We observe from the behaviour of Pc~D, Cn and T e as functions of ql that as the 
dissociated core mass spreads outwards the cloud becomes less centrally condensed. 

This is due to the lowering of the effective polytropic index n of the cloud which passes 
from 2.324 for ql = 0 to 1.5 for qa = 1. The greater the fraction of H2 the larger the 
mean number of  degrees of  freedom ~ and hence the larger ;~ = ~/2. 
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Fig. 11. Physical characteristics of fully rotating turbulent polytropic protosolar models consisting 
of an inner dissociated core mass of mass fraction ql and polytropic index n = 1.5 surrounded by an 

outer layer of index n given by Equation (36) in which the H is mostly molecular. 

Consider next  Figure 12. We note with interest that  the mass m(1) of  the equatorial  

ring and the Titius-Bode function [1 + m(1)/3(f(1)]  2 remain practically constant over 

almost the entire range o f  the parameter  q l .  This means that  despite the vast changes 

which take place in the thermodynamic  state of  the cloud during its contract ion,  the 

masses o f  the disposed gaseous rings are all much the same and their orbital  radii Rn 

satisfy a roughly geomet r ic  relationship. That is, a Titius-Bode law still emerges even 

when the variations induced by  the dissociation o f  H2 are included, which is certainly 

a remarkable result. Physically this result follows from the fact that  the mass r e ( l )  = 

2n2R4ptot(Re)/GM and f(1)  depend only on the total  pressure Ptot(Re) at the equator  

and the internal run of  density with radius. Since for a strongly turbulent  star the gas 

pressure p.9?T/# is negligible compared to the turbulent  stress [3pGM(r)/r over almost all 
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Fig. 12. Equatorial ring mass re(l), envelope moment-of-inertia coefficient f(1), and ring-spacing 
variable {1 + m(1)/Mf(1)} ~ of two-layered turbulent polytropic structures, as in Figure 11, 

of the radius r, so that Ptot ~flpGM(r)/r it follows from the hydrostatic support 

equation, namely VPto t -- -pGM(r ) r / r  3 ignoring rotation, that the behaviour of p(r) 
and Ptot(r) is largely independent of  the behaviour of polytropic index n and temperature 

T/p, and hence of the location of ql .  That is, re(l)  and f ( l )  are approximately inde- 

pendent of q~. 

The variation of the physical characteristics with respect to changes in/3 are in accord 

with our descriptions given earlier in Sections 3 and 4. To produce a planetary (or 
satellite) system with a Titius-Bode constant (Rn/Rn+ 1 ) =  1.3 --2.1 we see we typically 
require the turbulence parameter/3 to lie in the range 0.11 to 0.13, selecting 0ph = 10 -3. 
Otherwise setting /3 =0 .12  we require a variation of photospheric temperature ratio 

0ph in the interval 0.0005 ~< 0ph ~< 0.002. 
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7.4. VARIATIONS WITH RESPECT TO THE EQUATORIAL RADIUS R e ;  THE TIT1US-BODE 

FUNCTION 

Consider now Figures 13, 14 and 15 which show the variation of  the Titius-Bode variable 

[1 + m ( 1 ) / M f ( 1 ) ]  2 and surface temperature T e with equatorial  radius Re and the vari- 

ation of  R e with t ime elapsed during the contract ion from radius 104R| We see from 

Figure 13 that  during the collapse through the dimensions o f  the present planetary 

system, from about 104Ro to 102Rs,  the Titius-Bode variable remains sensibly con- 

stant. In the typical  case/3 = 0.12, 0ph = 10 -3, for example, [1 + m ( 1 ) / M f ( 1 ) ]  2 increases 

slowly from about  1.5 at Re = 104R| to 1.9 at 102R, .  In the same interval the moment- 

of-inertia coefficient / ' (1) increases from about  0.007 to 0.017, rising to a maximum 

value f .  = 0.022 at Re ~- 20R| 

The observed distr ibution of  orbital radii ratios R , , / R n +  1 fluctuates randomly from 

about 1.38 in the case of  Earth/Venus to 2.01 for Uranus/Saturn. We have plot ted these 

observed ratios on Figure 13 at each posit ion Rn+ 1. Since (Rn/Rn+ 1) = 1.73 + 0.22 we 

see that  the observed distr ibution of  planetary distances can be safely accommodated in 
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Fig. 13. The Titius-Bode variable {1 + m(1)/Mf(1)}  ~ plotted against equatorial radius R e for 
different cases of turbulence parameter ~3 and assuming constant photosurface temperature ratio 
0ph = 10 -3 (Equation (33)). For R e <. Re, * "" 20R| where the whole envelope becomes dissociated 
and ql ~ 1, it is necessary to relax the assumption 0ph = constant since the surface temperature 
would otherwise become unrealistically high (see Figure 14). Instead we adopt the temperature 
distribution given by Equation (125) which matches onto the calculations of Ezer and Cameron 
(1965) and also suppose that the envelope contracts conserving its moment-of-inertia coefficient 

f(1) = f ( R e , , )  ~-- 0.02 as R e ~ 1.5 Ro so that the turbulence dies down. 
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terms of a model with a turbulence parameter 3 fluctuating by 10% in the interval 0.11- 

0.13 with 0ph = 10 -3 or, setting/3 = 0.12, with 0ph fluctuating within a factor of two of 

the mean 10 -3. {The curve for /3 = 0.12, 0ph = 0.002, for example, coincides with the 

curve/3 = 0.13, 0ph = 0.001.} In either case we may safely conclude that the proto-Sun 

probably did contract more or less homologously in the interval 104R| to 102R| 

having typical mean characteristics 

<f(1)> --~ 0.01, (m(1)/M)~--O.O03. (128) 

7.5 .  SURFACE TEMPERATURE 

The variation of surface temperature Te with Re also points to the nearly homologous 
character of the contraction in the interval 104R| to 102R| During uniform contraction 

we have Te c~ l / R e  which corresponds to a straight line of slope -- 1 in the log Te - 

log R e diagram. In fact the actual slope of the lines in Figure 14 are slightly less steep 

than -- 1, meaning that at larger radii the cloud is slightly warmer than expected on a 

homologous basis. Physically this relative temperature excess at larger equatorial radii 
is due to the increased proportion of molecular H2 in the cloud which raises the mean 

molecular weight everywhere and hence T(cc/a). This variation in Te due to changing/J 

becomes particularly noticeable again as R e approaches --~ 2 0 R .  where, as the dissociated 
core moves outwards to the surface of the cloud, the molecular weight in the outermost 

layers is drastically lowered, thus choking the growth of Te. 

The point Re,. ~--20R| where q-* 1 is indicated by a small bar on each fine. Below 
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Fig. 14. Surface temperature of the proto-Sun as a function of  equatorial radius R e for different 
cases of turbulence parameter 13, again as described in Figure 13. 
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this point the photosurface temperature follows the specification given by Equation 
(125). This final phase of the contraction is extremely non-homologous, at least as far 
as the outer layers of the proto-Sun are concerned, with 0ph dropping from 10 -3 to 
about 10 -~. In addition, since the central regions of the turbulent envelope are assumed 
to contract more or less uniformly so that f(1) remains constant and equal to the value 

f .  at Re,. ,  we find that the turbulence parameter ~ falls by a factor of two or so. The 
mass m(1) of non-turbulent material which can be supported beyond the equatorial 
cylinder thus declines drastically during the final stage of contraction, causing the gaseous 
rings disposed at that stage to become progressively more closely spaced together as we 
note in Figure 13. This is because the contracting envelope is forced to dispose of its 
excess angular momentum in proportionately smaller and smaller amounts. Since the 

effective minor radius of each ring, from Equations (124), is ~n ~ 2 Re/X/'~(f) ~- 0.06 Re, 
it follows from Figure 13 that once the proto-Sun has contracted to about 3Ro the 
subsequently disposed rings become so closely merged that they essentially form a 
continuous gaseous disc. 

7.6. THE RATE OF COLLAPSE 

The time t(Re) taken to complete each stage of the contraction, commencing at radius 
104Rs, and given by 

tO 4 R| 

fiRe) = J dRe/v~, (129) 
Re 
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Fig. 15. Equatorial radius of  the proto-Sun as a function of  time elapsed during the contraction 
from radius 104R| showing the fairly rapid quasi-static phase from radius 104R| to ~ 10aR| fol- 

lowed by the slow Kelvin-Helmholtz contraction to the zero-age Main Sequence. 
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where v e is given by Equations (40) and (42), is plotted in Fig. 15. The first stage of the 
collapse from 104RG to ~ 103R| corresponds to the period of quasi-static equilibrium 
where the envelope is energetically stabilized through the formation and growth of the 

small compact embryonic stellar core at the centre of the diffuse cloud. The initial mass 
of this core is about 0.04M. rising to about 0.08M| as the maximum of the total energy 

function E(Re)  , given by Equation (22) is approached. We set ve /vr l  = 0.01 in this 

interval in accord with Equation (42), where v f r  = ( G M / R e )  1/2 the local 'free-fall' speed. 

This stage of the collapse is, therefore, fairly rapid; taking only about 3 x l03 yr to be 

completed. 

Below about 103R~ the contraction of the envelope proceeds much more slowly 
on a Kelvin-Helmholtz time scale ~KH ~ CnGM2/R3T4e which for a homologous con- 

traction behaves like ~- KH ~ R e ,  since Te ~ 1~Re. Thus the contraction at first proceeds 

slowly but then quickens as the rate of growth of luminosity due to rising surface tem- 

perature overtakes the decrease, due to shrinking surface area. The collapse through the 

dimensions of the planetary system to about R e ~ 20R~ takes about 3 x 10Syr to 

complete. 
As soon as the cloud contracts past the turning point R e *  ~ 20R| indicated by 

the bars on each line in Figures 14 and 15, the collapse rate begins to slow down 

markedly. The levelling-off of  the surface temperature to 4500 K during this final stage 

of the contraction causes the surface luminosity Z e  ~ R~7~e rapidly to decline from a 

maximum of 35 ~-~| at R e , .  to 1 Y| at Re ~ 2 R| This decrease in ~cYe is accompanied 
by an increase in the excess gravitational potential energy to be got rid of so that "rKH 

lengthens drastically. In all, we see from Figure 15 that it takes about 2 x 107yr for the 

polar radius R p  of the fully rotating proto-Sun to contract to its present size R| 

8. Conclusions 

We have shown how a typical interstellar cloud fragment of  solar mass can safely contract 

to the size of the planetary system if it is supposed that the various gases of the cloud 

first condense out as solid grains. Now although it is reasonable to suppose that the CNO 

component will readily condense out at the temperatures of order 10K currently 

expected in cool dark regions of large dense interstellar clouds, we are not sure yet 

(Reddish, 1975) whether T will fall sufficiently to allow the condensation of H2 grains. 
This stage of the formation process must, therefore, be regarded as being uncertain, 

though the settling of CNO grains towards the centre of the gas cloud should still occur, 

nonetheless, thus leading to the desired chemical inhomogeneity considered by Prentice 

(1976). 
Secondly, we have shown how it is possible energetically to stabilize the collapsing 

solar nebula at a radius ~ 104Rs if a small fraction of the central mass falls freely all 
the way to stellar size forming a small quasi-stellar core of mass ~ 3-4%M~. This core 

consists primarily of the CNO grains which segregated to the centre of the cloud in the 
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grain migration era, and so the central chemical inhomogeneity is preserved from being 
mixed with the turbulent envelope. 

Next we have shown how the existence of supersonic convective motions inside the 
vast energetically stabilized proto-solar envelope allow us to explain why the planetary 
system is so light in mass compared to the Sun and why the contracting nebula of mass 
M~--M~ and moment-of-inertia coefficient f(1)~--0.01 disposed of its excess angular 
momentum through the shedding of a discrete system of gaseous Laplacian rings of 
nearly constant mass m(1) ~-- 1000Me, and whose orbital radii R~ satisty a Titius-Bode 

law relation Rn/Rn§ = [1 + m(1)/Mf(1)] z ~ constant. The same result also holds for 
the gravitational contraction of the primitive gaseous envelopes of Jupiter, Saturn and 
Uram's, and the formation of the regular satellite systems of these planets (Prentice, 

1977). 
We have presented simplified polytropic calculations which suggested that the con- 

traction of the protosolar envelope through the dimensions of the planetary system 
occurred almost homologously, despite the changing mass fraction of H2 in the cloud. 
We ignored the presence of the small central compact embryonic core in computing the 
hydrostatic structure of the envelope but feel that further calculations to include this 
aspect are in order, especially the construction of a protosolar model to include possible 
hydrodynamical effects during the period of core growth. 

Finally, according to our theory the proto-Sun should have contracted to its present 
size still spinning quite rapidly with a period of only a few hours. Clearly, therefore, it 
is necessary to invoke some additional angular momentum braking process such as the 
interaction of an electrically active solar wind with a strong magnetic field since the 
Sun's formation to account for the present slow rotation. This consideration does not 

threaten the validity of the Laplacian hypothesis, however, since the dynamical phase of 
ring formation which we have described is a very brief and electrically neutral event in 

the Sun's history taking only some 3 x 10 s yr to complete, which is very short compared 

to the final slow contraction ("~ 2 x 107yr) onto the Main Sequence which, in turn, is 
extremely short compared to the age of the Sun, some 5 x 109yr. There is thus enough 
time left after the planetary formation process has been completed for the Sun to get 

rid of its final excess of angular momentum. 
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