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Abstract. The theory discussed in the present paper is a solar nebula-type theory which assumes the 
initial existence of a big disk-shaped gas cloud in rotational motion around the Sun. At the outer 
edge of the gas cloud there is a steady loss of angular momentum, which is mainly caused by the 
diffusion induced by turbulence and shock waves. This leads to the formation of a doughnut- 
shaped gas ring at the edge of the cloud, outside of which there is plasma in a state of partial 
corotation. The gas ring is then slowly shifted towards the Sun, whereby the grains of solid matter 
within the gas cloud are also transported and collected within the gas toms. During the contraction 
process the following two situations arise: First, due to the small amount of friction, the angular 
momentum of the inner part of the ring rapidly exceeds that of the outer part. Second, the angle 
between the orbits of the inner and outer part of the gas ring increases gradually. When, during 
contraction, a certain distance is covered, the gas ring turns over, i.e. there is a sudden interchange 
of the inner and outer parts of the gas ring, where two adjacent rings of solid matter (jet streams) 
are formed. Immediately after the turn-over process the speed of contraction is at first drastically 
reduced, but then the gas ring is shifted once more towards the Sun. This process is then repeated 
periodically. The planets originate from the outer rings of solid matter, which contain much more 
matter than their adjacent inner rings. The inclination between the inner and outer rings is roughly 
5 ~ . In particular, Mercury, the Moon, Titan as well as Triton result from the innermost rings of 
matter. Having gone through the formation process, most of the planets acquire a rotating gas 
disk out of which the regular satellites are also created by the same periodic contraction process 
(hetegonic principle). This theory is the first that can explain all noteworthy facts about our 
planetary system and the satellite systems in a qualitative yet conclusive way. 

1. Introduction 

A good survey of the currently existing theories and problems in this field is given 

by the papers presented at the Nice Symposium (1972) and by Alfv6n and Arrhenius  

( =  A and A) (1973). The most  essential data on the planets and satellites can be 

found  in Allen 's  book (1973), in the book  of A and A (1975) and by Newburn  and  

Gulkis  (1973); further, in the physico-chemical investigations of Lewis (1972a, b), 

Anders  (1971) and Brecher (1972). A m o n g  the comprehensive theories there are 

only a few still under  discussion (see Nice Conference, 1972). All other theories (at 

present about  45) are at least partially disproved and most  of them explain only a 

small por t ion  of the known  data. 

At  present there still exists a considerable amoun t  of data  which have not  yet been 

explained satisfactorily. These facts are, in par t icular :  

1. T]he or ienta t ion  of the rota t ional  axes of the individual  planets. 
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2. The correct sequence of the orbital distances of planets and satellites, which is 
more precise than a geometric series. 

3. The correct sequence for the spin periods of the planets. 
4. The orbits of the planets Mercury and Pluto as well as the orbit of the asteroid 

Pallas (Whipple et al., 1972). 
5. The problem why only Venus rotates in a retrograde direction and why, among 

the larger satellites, only Triton moves around Neptune in a retrograde direc- 
tion. 

6. If one compares the three regular satellite systems (Jupiter, Saturn and Uranus) 
to each other and each to the planetary system, one sees that the average 
R~+l/R~-values of the four individual systems are different; here R, is the 
distance of the ith satellite (planet) from the central body. Why is there just 
this given order of the average R,+ 1/R,-values ? 

7. Why are the satellite systems nearly planar in contrast to the planetary system ? 
8. A rough estimate of mass ratios between the different planets and between the 

planets and their satellites should be predictable. 
9. Why do we only have the two associated large bodies, Triton and Pluto, with 

its unusual rotation period for the outermost planet, Neptune ? 
10. The precise formation of the Moon. Why does it have more high temperature 

condensates than the Earth and a relatively high mass ? What caused its intense 
cratering to take place 4.1-4.6 billion years ago ? (cf. Schmitt, 1975). 

One would not expect, within the scope of a solar nebular theory, any theory 
which can precisely compute all known data, because the radial mass distribution 
within the disk is not exactly known. In spite of this difficulty, this new theory leads to 
unexpected but reasonable results due to the following favourable factors: 

1. Only a rough initial radial dependence of the mass distribution is needed to get 
all the essential facts. 

2. There is only a single well-defined process which repeats itself again and again. 
3. This process depends mainly on the distance from the central body. 

Like A and A we also emphasize that a theory of the formation of secondary bodies 
around central bodies (hetegonic principle) is needed. Because the fundamental 
process of this theory is very complex, a simplified description is often given in this 
paper. 

2. Prerequisites for this Theory 

Only a few requirements are necessary for the formation of secondary bodies: 

1. On the outer edge of the hetegonic disk (= circumsolar gas disk or circum- 
planetary gas disk) we assume the temperature to be high enough for a diffusion 
current of H2 away from the central body. 
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. 

3. 

A diameter of the solar or planetary nebula (=  hetegonic nebula) of at least 
twice the orbital diameter of the outermost secondary body. 

The initial mass of the hetegonic nebula should be about 0.05Mc, where Mc is the 

mass of the central body. In the case of our planetary system, we further assume 

that the initial radial distribution function f (R)  = 27rR 2 f+_ ~o o(R, h) dh of mass 
within the disk had a maximum of between 4 and 7 AU, where 0 is the mass 
density. Further, we assume that originally within the circumsolar nebula the 
distribution of element abundances was the same as in the Sun (cf. Urey, 1972). 

3. Hypotheses for the Radial Density Distribution in the Solar Nebula 

The following processes are speculative, but their purpose is only to make our starting 
point plausible. At the outset there was a slowly rotating collapsing gas cloud with a 
mass of about 1.05 M| We suggest that there are (at least) three possible explanations 
to get the radial density distribution which we have proposed (see Table II). 

1. Angular momentum transfer from the newly formed proto-Sun by means of its 

high magnetic field to the plasma in its surroundings. Here we suggest, according 

to A and A (1973), that matter was still being collected from the periphery of the 
original gas cloud. It was stopped and became ionized when falling towards the 
Sun. In contrast to A and A, we assume that this phase lasted only 105-10 c years. 

So we only 'part ly '  get a band structure (cf. A and A, 1974). Thereafter the 
plasma condenses rapidly. 

2. Already during the contraction of the cloud there is a steady transport of spin 

angular momentum from its Nob to 'infinity' by Alfv6n waves, as suggested by 
Mestel (1972). 

3. There was a T Tauri phase of the proto-Sun before the planets' accumulation. 
In contrast to most other theories (see, e.g. Cameron, 1973) it is very unlikely 

that the solar nebula was swept away by the onset of the T Tauri stage as 
Handbury and Williams (1976) have shown. During the T Tauri phase the 
proto-Sun lost most of its angular momentum. 

4. Properties of a Hetegonic Gas Disk 

4.1. LAWS OF MOTION 

In a central gravitational field of a mass Mc the motion of a solid body which moves 
on a circular orbit is determined by Kepler's third law: i.e., 

OK(R) = ~/-'--~/R; ~zK(R) = R-IrK(R); CK(R) = RyE(R). (1) 

The motion of the gas is, moreover, determined by grad p. Without turbulence we get 
(cf. Equation (17)) 

vo(R) = [v~(R) + Re -~ grad p] ~/2. (2) 



108 v. DYCZMON$ 

Therefore, if there is no turbulence and grad p is small, the difference in velocity 

between a solid body and the gas can be approximated as 

Av = va(R) - v~(R) "~ 0.5o~ ~(R)~- ~ grad p.  (3) 

In addition to the central gravitational field of the central body, there is the small 
gravitational field of the hetegonic disk itself. But, for most purposes, one can neglect 

its gravitational influence. 

4.2. TURBULENCE 

One of the most interesting topics in most of the solar nebula type theories is the 
question of whether or not turbulence occurs within the gas disk. Normally, the 
magnitude of the Reynolds number (where Vv is the coefficient of viscosity and L is a 

characteristic length) 

Re = ~ l~vL (4) 

will answer this question. The critical value for this case is estimated by ter Haar 
(1972) to be in the order of 107 , which means turbulence will occur. But the Reynolds 
number cannot be a reliable criterion since it would also suggest turbulence in the 

case where v(R) ~ R (i.e. o~ = const.). But this makes no sense because the gas would 
then be moving like a rigid disk. Our criteria is: do small radial displacements cause 
an energy gain or do they not. To see this we take two gas elements with unit mass 
both in circular motion, one with radius R and angular momentum Ca(R) and the 
other with radius R + dR and angular momentum Ca(R + dR). Exchange of both 

gas elements from one orbit to the other gives the change of energy dE as 

d E =  R-l[d- ~ C~(R)](dR/R) 2. (5a) 

There is only an energy gain if dE is negative, i.e. C~(R) < 0. This means that if 
C'a(R) > 0 then the system is stable against small perturbations and turbulence does 
not occur. According to Equation (5a), we take as a measurement for the intensity of 

turbulence 

W(R) ,,, R -~ d Ca(R) ~ �9 

Because of the small gradient of gas pressure, rotation becomes nearly Keplerian. 
By means of (1) and (5b) we see that there is no turbulence, and this seems to be 
acceptable. In this theory it is not important whether or not turbulence occurs in a 

hetegonic disk, whereas relation (5b) is of great interest. 

4.3. BAROMETRIC EQUATION 

The decrease in gas density with an increase in the distance h from the central plane 
is given by the following considerations: The gravitational force of the central body 
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which acts on the gas at some distance h from the central plane and at a distance R 

from the central body is given by 

Kr = - T M c h ( R  2 + h2) -z5 .  (6) 

Because the gas consists mainly of H2 and He, it is in good approximation an ideal 
gas. If we assume a constant temperature T (cf. Section 5.6) for a fixed R-value, we 

get, with 0 = 0o * P/Po the 'barometric equation'  (in M.K.S. units), 

[ 7McQoTo 1 - ] 
~o(h) = ~(0)exp 2-~apo" / (T (1 - (1 + (h/R)2) -~ , (7a) 

where Go is the average density for Po and To, and R~ is the gas constant. A good 
approximation for Equation (7a) is given by (see also Safronov, 1972) 

o(h) = of 0) exp [ -  4.013 x 10- Zh~M~(RT)- Z(h/R)2], (7b) 

where we have used M.K.S. units and ~ is the average molecular weight. When 
turbulence occurs the scale height of the disk is, of course, much greater. 

4.4.  IMPORTANCE OF FRICTION WITHIN THE GAS DISK 

Let us consider a cube of i m 3 of the gas in a circular orbit with radius R. Two planes 
of this cube should be perpendicular to the radial vector R. For a laminar current 

the friction which acts on the inner plane A is given by (in M.K.S. units) 

F(R  - ~) = ,loAv~(R) = ~7, 1 m~(--0.So~K(R -- 0.5)). (8) 

On the outer plane we have the friction F(R  + �89 The whole force of friction which 
acts on the cube is then given by 

AK = F(R  + �89 - F (R  - �89 = 0.75%o)j~(R)/R. (9) 

The speed variation within the time t is given by 

Avv = K(t/e).  (10) 

For example, within l06 years we get, for the Earth orbit, T = 100 K, ~ z 3 • l0 -5 
kg m -3, ~/~ ~ 10 -5 kg m -1 s-Z; for the variation in velocity, Av = 1 • 10 - s m  s - l ;  

and for the orbit of Neptune, accordingly, hv ~ 3 x 10 -5 m s -1 
The small change of the orbital velocity accounts for the fact that there is neither a 

transport of angular momentum nor a shifting of the gas in the radial direction by 
means of friction. Also, if we assume that there is turbulence, which means ~7~ is greater 
(say, by x factor of  I0~), then this statement also remains valid. 

4.5.  PLASMA WITHIN THE GAS DISK 

After a short cooling phase of the newly formed hetegonic disk the temperature is 
relatively low (40-300 K). Looking at the Hartmann number (cf. ter Haar, 1972), 
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one sees that there is no plasma because the gas density is too high and the temperature 
is too low. 

5. General Survey of this Theory 

5.1.  LOSS OF ANGULAR MOMENTUM AT THE EDGE OF THE GAS DISK 

In the beginning we have a loss of angular momentum at the edge of the disk. Due to 
diffusion, H2-molecules, He and H-atoms escape. The velocity ge of a molecule in 
the gas is composed of two vectors (see Figure 2, g = 0): the velocity of the centre 
of gravity of the gas ga (cf. Equation (2)) and the velocity ~M of the molecules with 
respect to the centre of gravity. The distribution of VM with regard to the molecules is 
given by the Maxwellian velocity distribution 

w(A, u) = ~ Al"Su2 exp ( -  ~u 2) ; ~ = m / 2 k T .  (11) 

The relative number N(uo) of molecules whose velocity is larger than u0 is given by 

N(A, uo) = w(u) du = 2V~A/~ uo exp ( -  ;~Uo 2) + erfc (~/A uo). (12) 
o 

We notice that Equation (12) depends only on p = ~v/A uo. A molecule can only 
escape if (see Equation (1)) 

ve = [~a + ~U[ >1 "~/2 v~(R).  (13) 

Because there are only few molecules which have a velocity of 

Uo = vM /> V'2 vK(R) -- va z (~/2 -- 1)vK(R), (14) 

only those molecules can escape whose velocity VM is nearly parallel to vK(R) (see 
Figure 2 and Equation (13)). 

The average angular momentum of a molecule with mass rh is given by Equation 

(1): 
c(R)  = r~v~(R)R ~ ~C~(R). (15) 

The average angular momentum of an escaped molecule is greater than the average 
molecular angular momentum of the gas by a factor of approximately v/-2. So the 
loss of angular momentum per escaped molecule is given by 

AC ~ 0.4CK(R)rh. (16) 

Due to the loss of angular momentum, the outer parts of the disk were shifted towards 
the central body. This is the starting mechanism for the main process. 

5.2.  THE FORMATION OF A TOROIDAL GAS RING AT THE EDGE OF THE DISK 

The sum of forces which act on the gas in a unit volume must be zero: i.e., 

0 = Ka(R) = -~,M~QR -2 + Qvg(R)R -~ - grad p. (17) 
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F r o m  this we obtain, for  the angular  m o m e n t u m  (cf. Equat ion  (1)), 

Ca(R) = (C~(R) + o-~R a g r a d p )  ~ (18) 

The loss of  angular  m o m e n t u m  will inevitably cause R to decrease (grad p cannot  

change without  a change of R and it is - at least initially - relatively small). But the 

gas falls into a region which already contains other gas. This causes the fo rmat ion  of  
a peripheral  gas ring (see Figure 3). 

In the outer  par t  of  the gas ring, grad p < 0 and, in the inner part ,  grad p > 0. In 

the centre (R = RK = Kepler ian point ;  see Figure 3), g r a d p  = 0. We approximate  

the velocity of  the gas vc(R~ + r) near  RK by (see Figure 4; CA(R) = vA(R)R): 

VA(RK + r) = rE(RE)~(1 + ~r/R) ,~ va(RE + r). (19) 

With  this, the most  impor tan t  case in this theory, ~ = 1 - i.e. CA(Rx + r) = const. - 

is obta ined precisely. By substi tut ion of  0 9 )  into (17) we get in a first-order approxi-  
mat ion  

grad p = - ( 2 ~  - 1)y0Mc[r/(R + r)a].  (20) 

By a compar ison  with (6) we see that  we have the same force law for small r-values 

as we have for  the vertical baromet r ic  equation.  By integrating (20) we obtain the 

a radial barometr ic  equat ion (cf. Equat ions  (7a) and (7b)) with T = const. (see 

Section 5;.6) in the fo rm 

0(r) = QO) exp { - ( 2 ~  - 1) 4.01 x IO-lS~(Mc/TR)(r/R + r))2}, (21) 

where ~ = 0.5 corresponds to the limiting case vA(R) = vx(R). For  ~ = 1, for  small 

r-values we have the same pressure drop  as in the vertical direction. With (7b) and 
(21), for (r/R) < 0.1 we can write 

0(r, h) = 0(0, 0) exp { -~ r ( r /R)  2 - %(h/R)2}, (22a) 

where ~h = 4.01 x IO-I~NMc/(RT) and ~ = (2~ - 1 )~ ;  in the special case where 

z 1 we obtain,  with ~ = a/Vh~r and d = (h 2 + r2) ~ a gas torus (see Figure 1) 

Q(d) = Q(0) exp {-v(d/R)2}.  (22b) 

I f  we set the condit ion that  hal f  of  the gas torus mass is within the small radius rr, then 

rr  = V']n2fi7 ~ ~/R--T. (22c) 

5.3. GENERATION OF SHOCK WAVES IN THE GAS RING 

Dur ing  t]he shifting of the gas ring towards the central  body  the angular  m o m e n t u m  
increases on the inside and decreases on the outside as long as C'(R) > 0 according 
to (5a) and (5b). (Transpor t  of  angular  m o m e n t u m  is negligible due to Section 4.4; 
see Figure 4.) But at  that  moment ,  when C'~(R) < 0 for the outer  parts  of  the ring, we 

get turbulence according to (5a) and (5b). When,  owing to turbulence, the gas comes 

f rom the region outside the Kepler ian  point  RE (see Figure 4) towards the exterior  
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Cross-section of the gas torus (or gas ring) with mass MR. 

regions of the ring, we have a big adiabatic expansion. The distance rsw from the 
centre of the gas torus RK, where the turbulence mainly causes the shock waves, is 
determined by the condition that grad p is at its maximum, i.e. ~2p/~r2 = 0. Because 

P "~ 0 we get, with (22a), 

(rsw/RK) ~ (2*/r) -~ z 0.06. (23) 

The front of the expanding gas collides at high speed with the thin gas outside the 
ring (see Figure 5). We expect that the relative speed of this shock front is higher than 
the velocity of sound. This means there is an intensive heating and acceleration of the 

gas. The temperature Tsw generated by shock waves is approximately given by 

Tsw = (• - 1)piT1~@ + 1)p2, (24) 

where pl is the pressure and T~ the temperature of the region from which the shock 

wave originates, and P2 is the gas pressure through which the shock wave passes. The 
heated and accelerated gas is thrown out from the ring in a Kepler ellipse of  high 

eccentricity. Some molecules can escape and thus reduce angular momentum. 
Others are ionized and we expect a plasma (see Section 5.8) in a state of partial 

corotation (A and A (1973); see Figure 3). 

5.4.  ENERGY BALANCE OF THE CONTRACTING GAS RING 

Here we give a more precise analysis of the processes discussed in Sections 5.1, 5.2 
and 5.3. In Figure 2, R is the great radius of the gas torus, and M R its mass. The region 
where the gas diffuses out of the system has an average distance fa from the centre 
of the small circle of the gas torus. Further, we denote the average angle between 
~a(R + ra) and ~x(R + rd) by ~. The minimal thermal velocity ]z%[ of the diffusing-off 
molecules is - according to (13) and the cosine |aw - given by (see Figure 2) 

u~ = 2v~(R + ra) + v~(R +?a) - 2vK(R + ?a)vo(R + ra)cos/~, (25) 

where /~ is the angle between ~3a and 6~. We assume that the Maxwellian velocity 
distribution is a good approximation for the distribution of velocities of the molecules 
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Fig. 2. Diffusing-off process of the molecules in the furthest out regions of the gas ring. Polar 
view. The great radius R of the gas ring with mass MR is altered by dR if the gas mass dMR has 
left the system. The molecules of the gas mass dMR, which are diffusing off, have the thermal 
velocity vv and the total velocity v~. The region where this takes place is, on average, a distance 

R + ~a from the central body. 

at the periphery of the gas ring. Then, for the mean values ~M and v~ of the diffusing 
molecules (using Equations (11) and (12)) we get 

f) vh = ~u~o(~) = u~w()t, u) du/No(A, u0); v = 1, 2. (26) 
o 

We define, for simplicity, the mean total velocity ge (see Equation (13) and Figure 2) 
of the dill'using-off molecules as 

ge = x~/2  VK(R + ra). (27) 

According to the conservation law of angular momentum, the diffusion of the gas 
mass dM~, with the velocity gr causes a reduction of R by dR. From Equations (1) and 

(27) we obtain (see Figure 2) 

MRCK(R) = (MR -- dMR)C~(R - dR) 

+ dMR XV'2 CK(R + ra) cos  (g  + fl).  (28) 

With (1) one easily gets 

dMR = 0.5[X~/2(1 + ~a/R) cos (g +/3)  - 1]- IM~(dR/R) .  (29) 

According to the virial theorem, through the reduction of R by dR we have an energy 
gain of 

Eg = (0.57Mc/R)MR(dR/R).  (30) 

The energy loss E~ due to the diffusing process of the gas mass dMR can be obtained 
by two successive processes: 

(I) Foll!owing the Virial Theorem, the energy necessary to transfer the gas mass 
dMR from a circular orbit with a radius R and a velocity vK(R) to a circular orbit with 
a radius R + ra and a velocity v~:(R + fa). 
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(2) The energy necessary for gas diffusion to occur, i.e. that kinetic energy necessary 
to bring the mass of gas dMR to a velocity V'~. With 

v~ = r  = CX22v~(R + ra), (31) 

and (27) we obtain, for the energy loss, the expression 

E, = 0.5yM~ dMR[R -~ - (R + ?a) -~1 + 

+ 0.5 dU~(2~x ~ - 1)v~(R + en). (32) 

By substituting dMR from (29) into (32) the total energy balance Ea of the gas torus 
is given by 

[ ((X 2 - 1)/(1 + x) + 0.5 ] yMRMo dR 
E o  = - E ,  = /0"5 - + 1 l  R R 

(33) 

where x = faiR. 
Next we would like to show that Ea is positive. This is necessary for the process to 

continue. For this we have to estimate ia. We can obtain a lower limit rz for ra via the 

following: The gas thrown out by turbulence and shock waves is first able to diffuse 
out where the mean free path ;~r of the molecules is in the order of 10-aR. It should 
be noticed that, due to the shock wave processes, the temperature in the outer regions 

of the gas ring is higher than in the centre. With ~ = 1.1, ~ = 2.6 and (Mc/RT) "~ 
1.05 x 1016, and using Equations (21) and (22a), we obtain ~Tr = 132. Furthermore, 

we assume that the total mass MR of the gas ring amounts to 0.02Me. Using volume 

integration of (22b), 0(0) becomes 

0(0) = ",7(O.02Mc) /( 2~r2 RZ) . (34) 

The mean free path A s is given by 

at = 1/(V-2 ,~2n) " 10-3R, (35) 

where a is the collision diameter with an estimated value of 2.5 x 10 -1~ m and n is 

the number of molecules per cubic metre; n is determined by (21) and (34). Combining 
(21), (34) and (35) gives us the lower limit rz for the diffusing-off process 

r~/(R + r~) = [In (8.6 x lOaMdR2)/132] ~ (36) 

We obtain the smallest value of all in the solar system for the orbit of Neptune, with 
rJR = 0.65. The average (rJR)-value for the solar system is about 0.75 and for the 
satellite systems about 0.9. 

We must now consider the following. The gravitational contraction of the gas ring 
itself plays a big role for small r/R-values (see Section 6.1), yet its influence on r,/R- 
values is insignificant. However, as the turbulence is essentially in the outer region, 
the (~/R)-values are increased. Thus, we estimate that the average lower limit in the 
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solar system for diffusing off is approximately r J R  ~ 0.9. The mean value fa /R  is 

estimated to be 1.0. 

We also need the values X, /~, ~ and 3 for Equation (33). First, we calculate 

va(R + ra) = va(2R) from (25). In order to do this we make the following plausible 
assumption: that gas which is thrown out due to turbulence and shock waves and 
which contributes to the diffusing-off process has an angular momentum of 1.15 Crz(R). 

This gas moves in an elliptical orbit whereby its apogee is, on average, a distance 2R 
from the central body. This means that 

va(2R) = 1.15Cx(R)/(2R) = 0.8132vr:(2R). (37) 

We assume further that where the gas diffuses, the angle between ~ and 6K is, on 
average, 4 ~ Assuming Uo(/3 = 0) = 1.6 • V'2k-T/ma2 (see Equation (11)), and with 

(25) and (26) we obtain the following values by numerical integration: f l ( H 2 )  = 20.6 ~ 
and/3(He) = 15.2 ~ With an average relative percentage by mass between H2 and He 
of 1.1 we get (~ +/~) = 24.3~ further, we obtain with (26): (1 = 1.179 and ~2 = 
1.190. From this, and by Equations (25), (27), (31) and (37), we obtain X = 1.0988 

and ~: = 1.0113. With (33) the energy gain is then given by 

E o = O.196[TMc/R](dR/R) ,~ R -~.  (38) 

For the upper limit of the energy gain we get a factor of 0.5 instead of 0.196, which 
means the energy gain is relatively large. As a lower limit for an energy gain one gets 
x ~ 0.3. Additionally, we have a relatively small energy gain due to the gravitational 
contraction of the gas ring itself. 

5 . 5 .  M E A N  TEMPERATURES OF THE GAS R I N G  

The generated .energy due to (36) is converted to: 

(1) E1 -- thermal energy of the gas in the gas ring; 

(2) E2 = potential energy of the gas ring due to [grad Pl > 0 and librational energy 
inside the gas ring; 

(3) E3 = heat radiation of the solid matter; 

(4) E4 = thermal radiation of the gas, which mainly consists of (a) radiation of 
the shock wave heated gas and (b) radiation of the plasma. 

For high temperatures, i.e. T > 400 K, E1 and E2 are small in relation to E3 and 
E~. Thus E3 and E4, combined with (38), define the gas torus temperature for small 
R-values. According to the Stefan-Boltzmann law, the total radiated energy, S, in 
the period dt, for E3 and E4 is given by 

d S / d t  ~ A T  ~ ~ R 2 T  4, (39) 

where the torus surface A = 47r2rR ~ R L  In the period dt, the energy loss due to 
radiation is proportional to the energy gain. If we now make the plausible assumption 
that for the relative contraction velocity vc we have 

vc = d R / d t  ~ R / M ~ ,  (40) 
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then it follows from Equation (38) that 

dS/dt ~ dEa/dt ~ (yMRMc/R2)(dR/dt) ~ ~Mc/R. (41) 

Combining (39) and (41) we obtain 

T ~ R -~ for T > 400 K. (42) 

For large R-values one must note that after the cooling phase of the primeval hetegonic 
nebula, the gas in the outer region already has a temperature of about 35 K. Also, 
according to Equation (33), the gas in the gas ring warms up additionally, due to the 
main process. This means that RTis  relatively higher. Then - since for large RT-values, 

X, ~ and, above all,/J are also high - the energy gain from (33) is considerably smaller 
than from (38). This is amplified by the fact that x is relatively small, as seen by (36). 

Thus, the temperature rise for large R-values is relatively small. For the solar system 
we estimate that 

T = (0.7R + 900R -1) K;  R [AU] > 2.2. (43a) 

On the other hand, for small R-values (< 2.2 AU) we use Equation (42). However, 
according to Table II, the n-values are decreased as the R-values decrease. Further- 
more, the contraction velocity is somewhat increased due to the expected dissociation 
of H2 in the outer region of the gas ring, which has been heated by shock waves. So 
we substitute (42) with 

T = (772R -~176 K;  R [AU] < 2.2. (43b) 

Thus, noting that solid matter, due to its loss of thermal energy, always has a lower 
temperature than gas (and a much lower temperature than plasma), we find the 
condensation temperature as a function of R closely agreeing with Cameron's (1975) 
and Lewis' (1973) temperature assumption (see also Section 5.10). 

The thermal energy of the gas torus is generated by two processes: 
(1) By turbulence. Because C'~(R) < 0 there is a steady formation of thermal energy 

~ R-1 from Equation (5a). 

(2) By adiabatic compression. The energy Eac contained in one mole of gas, with 
volume Vo, in the gas torus is given by 

fj Eac = p dV = (• - 1)-lpoVo = RaT/(K - 1) ~ T, (44a) 
0 

where ~ is the ratio of Cp to Cv. Because the generated energy due to (36) is ,-~ R-1, it 
roughly holds that Eac ~ R-  1 ~ T. In the special case of a similarity transformation, 
r/R = const., it holds that T ~ R- l ,  V ~ R 3 and p ~ R-4. 

If there are adiabatic processes for a fixed R-value, the change of temperature is 
given by 

T ~ V o ~ - ~  1/~/-Foo. (44b) 
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5.6. TRANSFER OF ANGULAR MOMENTUM WITHIN THE GAS RING 

F o r  a con t rac t ing  gas torus  there are two mechanisms for  a small  t ransfer  of  angular  

m o m e n t u m  within the gas torus.  Dur ing  con t rac t ion  new gas always moves  f rom the 

gas disk into the gas toms ,  and  a small  a m o u n t  o f  gas also shifts f rom the inner  to 

the outer  par ts  of  the ring. W i t h  this (see Figures  3 and  4) we also have a slight 

t r anspor t  of  angular  momen tum.  The  second mechan i sm is caused by the shock wave 

processes in the outer  par ts  of  the gas torus  and by  turbulence :  there  is always a 

small  rad ia l  d i sp lacement  o f  the gas. F r o m  this we ob ta in  a mixing of  gas elements 

surfaces with 
_ . ~ ~ C G (  t~)= c onsL ', , 
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Fig. 3. Qualitative picture of the gas ring cut perpendicular to the equatorial plane. Rc is the 
centre of gravity of the small 'circle'. In the Keplerian point Rx we have the highest gas density 

00. The plasma outside is in a state of partial corotation. 

,qm) 

~l  Rcl R > 
P~ ~ r  

Fig. 4. Radial angular momentum distribution Co(R) of the gas within the equatorial plane of a 
non-librating gas ring. CA(Rx + r) = (RE + r)vA(Rz + r) is the approximate function of Co(R) 

in the neighbourhood of Rx (see Equation (19)). 
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Fig. 5. Format ion of shock waves induced by turbulence in the outer regions of the gas torus. 
Top view. The lower limit for the diffusing-off process is R + r~ (cf. Equat ion (36)). 

with different angular momenta, which causes a steady transport of angular momen- 
tum, generating new eddies. Outside the Keplerian point these eddies are the sources 
of new shock waves (see Figure 5). This second process can only take place if (see 

Equations (5a) and (5b)) C'(R)  < 0 - i.e. with (19) and (21), ~ > 1. For ~ >/ 1 and 
small r/R values, we obtain as a measure of the intensity of turbulence in the gas 

torus using (5a), (5b) and (19) 

W(R)  = 2(~ - 1)v~(R) ~ R -~. (45) 

Without angular momentum transfer, the difference between the angular momenta 
in the inner and outer parts of the gas torus, including ~, would continually increase. 

On the other hand, according to (45) the intensity of turbulence, as well as the angular 
momentum transfer, is proportional to (~ - 1) for ~ > 0 and = 0 for ~ ~< 1. From 
this: (1) ~ must become greater than 1; and (2) we expect that ~ increases rapidly at 
first, but then there is only an asymptotic approach to an upper limit, which is 

conjectured to be 1.25. 

5.7. STABILITY OF THE GAS TORUS 

Under 'stability', we understand first of all the stability of the middle part of the gas 
torus (region III in Figure 6) against large radial displacements. Three things are 

responsible for the stability of the gas torus: 

I. Dynamical Stabilization 

The gas torus is stabilized by the different angular velocity within the critical middle 
part of the gas torus because of ~o(R) ~ R-  ~ with ~ = ~ + 1 ~ 2. By this, all small 
local perturbations in the middle part are smoothed and balanced out. Because the 
shock waves are generated outside the middle part of the gas torus, its stability is not 
endangered. 
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Fig. 6. Regions within the librating gas ring. Rc is the centre of libration. The angle between the 
two circular orbits Oz and 02 is a. H, r(~) and a are determined by Equations (50) and (51). 

II. Energetic Stabilization 

A radial displacement of the middle part with its great mass requires a great amount 
of  energy. In order to bring the gas mass ma from a circular Keplerian motion with a 
radius R to an elliptical Keplerian motion - with eccentricity e - with the same 
angular momentum, one needs an energy AE(e). This, with help of the vis-viva 

integral (see Glasstone (1965), chap. 2.54), is exactly given by 

AE(e) = �89 2. (46) 

Radial displacements of gas masses ma << MR, such as those arising from turbulence, 
are, according to (46), always possible. However, large radial displacements of gas 
masses with mR in the order of 10-3MR, with e > 0.01, cannot occur due to the 
dynamic stabilization of region III (see Figure 6) with its large gas mass. This is 
because 'we nearly always have an equilibrium of forces, so that the energy required in 
Equation (46) is not available. Further, we note that in region III of Figure 6, 
grad p ~ 0. 

But this is not true for the farther-out regions, since (1) here the effectiveness of 

dynamic stabilization decreases rapidly outwards; and (2) 0a is relatively small and 
grad p r 0. 

III. Thermal Stabilization 

According to Equation (22b), a radial or vertical displacement of a gas element 
inside the gas torus (see Figure 1) brings about an adiabatic compression or expansion. 
From (4,4b) it follows that 

T ~ [Q(r, h)] ~-1. (47) 

This change of temperature is increased by the gravitational contraction due to the 
mass of the gas torus (see Section 6.1). Because of turbulence (see Section 5.5) such 
displacements always occur to a small extent for ~ > 1, i.e. for a contracting gas ring. 

Due to the repelling force, those gas elements which have a high specific weight 
(caused by high mean molecular weight and low temperature) are, on average, shifted 
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to the centre of the gas ring. According to (39), the energy loss due to radiation varies 
approximately as T 4 - i.e. we expect the centre (region III) to be considerably cooler 
than with Equation (47). Also in region III (see Section 5.12) we find almost all solid 
matter with a high loss of energy due to radiation. Furthermore, there is a steady 
shifting of energy from the centre of the gas torus to its outer regions due to the shock 
waves. 

Thus, as a good approximation we get T = const.; we have already made this 
assumption in Equations (7a) and (21). But this means that the exchange of two gas 
elements located at very different distances from the centre, due to the repelling force, 
is only possible with a considerable expenditure of energy. This is evident because, 
according to Equation (47), the gas element shifted towards the centre has a lower 
gas density than its surrounding gas, while for the outward shifted gas element it is 
vice versa. 

So we cannot determine the energy of this exchange process by using only Equations 
(5a) and (46). For T = const, this exchange process is considerably hindered by (47). 
By this, the thermal stabilization hampers the fact that large radial displacements 
occur between regions II and III in Figure 6. 

Since we expect no turbulence in regions V and I due to ~ < 1 (see Figures 4 and 6; 
and Equation (45)), further stabilization of the gas ring is achieved. 

5.8. PLASMA IN THE OUTER PARTS OF THE GAS RING 

In the outer region (i.e. for r /R > 0.2 of the gas ring), plasma is produced by two 
processes. One possibility is the formation of plasma due to intensive heating of the 
gas caused by shock waves. 

We assume that the central body rotates rapidly with regard to the gas ring and has 
a strong magnetic field. Then at least for small R-values the magnetic dipole field of 
the central body is sufficient to control the dynamics of a plasma. Since the total 
mass of the plasma is very small with regard to the central body's mass, then, according 
to A and A (1973), we expect the plasma to be in a state of partial corotation. As 
A and A have shown, the angular momentum Cpl of the plasma is given by the two- 
thirds law 

Cpa(R) = "V'-~/ 3 C~z( R ) N ~v/-k . (48) 

This means (ignoring grad p), that the R-value increases by a factor of 1.5 when the gas 
with an angular momentum CK(R) becomes a plasma. By this one gets a large spatial 
separation between the centre of the gas ring and the plasma. Considering this spatial 
separation and the small plasma mass in relation to Ms, we rule out any disturbance 
of the gas ring by the plasma; this is also true if plasma instabilities, such as concen- 
tration into filaments, arise. The main process for the generation of plasma is as 
follows: The gas, accelerated by turbulence and shock waves, which runs into the 
region of the magnetized plasma has a high relative velocity compared to the plasma. 
The maximum relative velocities, vr, are estimated (considering Equation (48)) to be 



FORMATION OF PLANETARY SYSTEMS BY SUCCESSIVE CONTRACTIONS OF THE SOLAR NEBULA: I 121 

of the order of vr ~ 0.5vK. By this all molecules with a mass m~ whose kinetic energy is 

larger than the ionization energy e Vion are ionized: i.e., 

mK >>- 2(eVion)/V~el ~ R .  (49) 

This is shown by Danielsson (1973) (see also references therein) and A and A (1974). 
As shown in Figure 3, we do not expect (at least for (r/R) < 0.6) a plasma in the 
equational plane because of the high number density according to (21) and (22a). 

On the one hand there is a steady generation of plasma; on the other, a steady 
condensation of plasma. This condensation produces small grains, but this is only 
one source of solid matter formation. 

The lower limit rz for the diffusing-off process determined by Equation (36), is 
somewhat increased due to the plasma. If, say, r/R > 0.7, there is plasma, we expect 

a temporary and local disturbance of partial corotation when a large quantity of gas 
with high relative velocity with regard to the plasma penetrates its region. The con- 
sequences are local instabilities of the plasma, hydromagnetic shock waves, and 
formation of filaments. But here we are only interested in the transfer of the gas 
ring's angular momentum to infinity. Due to the plasma, and especially due to the 

occurrence of filaments, we estimate fa/R ~ 1.2. Further, we note that if there is 
plasma in the far outside regions of the gas ring, the Maxwellian velocity distribution 
is only a very rough approximation. That means that if there is plasma, the transfer 
of angular momentum to infinity is somewhat more effective than according to 
Section 5.4. The total mechanism is analogous to that in the solar corona; instead of 
the solar wind we have a ' torus wind'. 

The total process proceeds as follows: There is an energy transfer from the centre 
of the gas torus to its outer regions. Dissipation of the light elements causes a loss of 
angular momentum. According to (33) this produces an energy gain. Which particular 
process occurs, depends essentially on the distance from the central body. In the 
vicinity of the Sun the mechanism for the generation of the torus wind is nearly 
identical with that for the solar wind, but for large R-values one has only the dissipa- 
tion of neutral H2 and He as shown in Section 5.4. 

5.9. BUILDING-UP PROCESS OF A LIBRATION WITHIN THE GAS TORUS 

During contraction there is another important process. The inner and outer parts of 
the ring begin to swing around the centre of gravity Ro ~ R K (see Figure 6). There is 
only one way for this building up of a libration to be able to take place. All the gas 
which has the same position within the gas torus (i.e. the same distance R from the 
central body) rotates within the same plane. The gas in the inner part and the gas in 
the outer part of the torus rotate in planes which are inclined against each other. All 
other librations within the ring are neutralized by interference caused by the dynamical 
stabilization (see Section 5.7). 

In a first-order approximation we can assume that all gas elements move in circular 
orbits. We are now only considering those gas elements whose centre of their circular 
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orbits coincides with the central body; only these gas elements pass the line r(#) (see 

Figure 6). 
�9 We take as a reference circle O1 the circular orbit with radius Rc of the gravity 

centres of  the gas torus' small circle. Further, we take a circle 02 with radius Rc + r0. 

The angle between O1 and 02 we denote by ~. As a reference point we take a gas 

element GEl on the reference circle O1 with the angular velocity coK(Rc). The distance 

r(#) (see Figure 6) between this gas element GEl and the circle 02 is then, for ~ < 10 ~ 

in a good approximation given by 

r(#) = [r2o + R~(R~ + to)sin2~ sin 2 #]0.5; # = ~orz(Rc)t. (50) 

The orbits of  all other gas elements move on circles which have the same line of 

intersection with the reference circle O1 as circle 02;  further, these circles cut the 

section r(#). For the distance between the orbiting reference point GEl and one of 

these circles we have yr(#), with y = const. 

We denote the centre of gravity along the line yr(#) with y E [0, oe] as f(#). So the 

sinusoidal libration of the gas outside Rc out of  the plane of O1 around GEl can be 

described (see Figure 6) as 

H(R~, c~, #) = [R~ + ~(0)] sin c~ sin #; # = co~(Rc)t. (51) 

The angle a in Figure 6 is determined by the cosine law: (R~ + f(0)) 2 = R~ + ?2(#) _ 

2Re?(#) cos a. The same holds, of course, for the gas inside R~ but here we have to 

substitute # by # - 180 ~ 
Let us assume that there is already a small libration. Then the loss of angular 

momentum per period C'(t) is not monotonous but is coupled to the libration (51) 

of the torus. Maximum loss of angular momentum occurs when the outer and inner 

parts of  the ring are passing the plane of O1, i.e. if # = 0 in Equations (50) and (51). 

Since r(#), according to (50), for # = 0, :r attains the minimum value, and we get an 
adiabatic expansion when the inner and outer parts of the gas ring are moving out of 

the plane of O1. The volume of any gas element ~ r(#); with (44b) it follows that 

T ~ r 1 - ~(#) ; p ,,, r - ~(#). (52) 

We denote by X = yr(#) the distance of a point on the section r(#) from circle O1. 

Due to the conservation law of angular momentum, the partial derivative of the 

angular momentum Ca(X, #) in the direction r(#) is 

Ca(X, #) = (r(O)/r(#)) �9 ~ Ca(X, 0). (53) 
OX 

In every other direction C~ is smaller. According to (45) and (53) we get, for the 

intensity of turbulence, 

W(R~, #) = 2(~ - 1)v~(R~)(r(O)/r(#)). (54) 

Summarizing, we can say that for the zero passage of this libration: (1) we have the 

highest intensity of turbulence and (2) T, p and grad p have then their highest values - 
which means that, according to (24), we have also the maximal values for P2/Pl and 
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Fig. 7, Motion of the outer part of the gas ring (more precisely, of the point 02 in Figure 6) in a 
corotating relative system between two consecutive turn-over processes. H is (see Equation (51)) 
the elongation out of the central plane, The turn-over process occurs when the critical elongation 
is reached. When the gas ring contracts again, a fixed portion of the amplitude of the turn-over 

always remains. 

T1 and Tsw ~ [r(O)/r(ua)] 2~-~. So we have the highest loss of angular momentum 
during the zero passage. 

By this the outer part  of the gas ring is moving on inclined planes towards the 

central body when it goes through its zero position; the situation for the inner part  

of the gas torus (where the amplitude is somewhat smaller) is equivalent to a mathe- 

matical pendulum whose thred is shortened when it is passing through its zero position. 

In both cases we get an increase in libration amplitude H(R~, ~, 90 ~ (see Equation 

(51)). This building-up process of the libration as a function of Rc is shown in Figure 7. 

5.10. TURN-OVER PROCESS 

As long as the angular momentum of the gas in the inner part  (region I) is smaller 
than in the outer part  (region II) of the ring - according to Equations (5) and (45), 

with ~ < 1 - an exchange, of course, would need energy (cf. Figure 6). I f  the distribu- 

tion of angular momentum is the other way around, then, in principle, this process 

could take place with a gain of energy (Equation (45), with ~ > 1). This means that 
we would have a metastable situation. But in our situation region III ,  which is in the 

middle of the gas ring and has the highest gas density, is situated between them. A 

shifting of region I I I  needs a great amount  of energy and the forces which act upon 

this region compensate each other. Therefore, this region will not change its position. 
Thus, an exchange of the inner and outer parts of the ring can take place only by a 

rotation around region I I I  (see Figure 6). But such a turn-over process requires a 
great amount of energy because it leads to a notable change in the orbits of  the gas 
within the inner and outer parts of the ring; also, the orbits of region IV have to be 
changed. Therefore, since ~ is always relatively small ( ~  1.25), one needs a building-up 
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process of a libration as described in Section 5.9 for the turn-over process to occur 

(see Figure 7). When, according to (51) and (22c), the libration has reached the 

critical height, Hc with 

Hc(R~, ~c, ~ = 90 ~ ~ R o l ~ / 7 1 ,  (55) 

the turn-over process takes place at one of the two points ~ = 90 ~ or 270 ~ in (50) and 

(51) where the displacement of the equilibrium position of the libration within the gas 

ring has its maximum. The point of turn-over is fixed in space and the turn-over 

process takes place during one orbital period of the main part  of the gas ring. During 

the turn-over process there is a considerable adiabatic expansion of the gas within the 

gas ring. 

First, let us consider the special case of  a non-librating gas torus (a = 0 in Equations 

(50) and (51)). Let ~0 and ~ denote, respectively, the coefficient in Equation (19) for 

tile radial velocity distribution before and after the turn-over process. Using the 

conservation law of angular momentum we obtain, with (22a), 

~= = 1 + u - ~/u(1 + u); u = (~0 - 1)2T~/(2~b -- 1)T~, (56) 

where T0 is the average temperature before, and T, the average temperature after 

the turn-over process. According to (44b) and (22a), by adiabatic expansion we 

obtain T~/Tb = [(2~, - 1)/(2~b - 1)] w, with w = (K - 1)/(K + 1); from this, and 

with ~b = 1.25 and K = 1.5, we get ~ = 0.844 and T,/To = 0.85. 
For the librating gas ring we can only establish an average value for the temperature 

in relation to tg, using (50) and (52). Before the turn-over process, with c~ ~ 3 ~ we get 

T0 m 0.89Tb(~9 = 0~ After the turn-over process, with a ~ 5 ~ , we get T= = 
0.85T=(# = 0~ Therefore, due to adiabatic expansion we can approximate the total 

average temperature decrease with T,/Tb .~ 0.81. 
The gas ring is already asymmetrical before the turn-over process, especially due 

to the gas disk adjacent to its inside. According to Equation (5a), only those inner gas 

regions where Ca(R) > CK(Rc) can take part  in the turn-over process, and from 

Figures 4 and 6 we see that this is true for region V. Further, we expect that the 

~-value for the outer torus regions is somewhat greater than that for the inner regions. 

Therefore, it is conjectured that R~ < R~: (see Figure 4). By this a turn-over of region 

I I I  is at least partially hindered. Moreover, as a consequence, region I I  has a greater 

libration amplitude than region I. 
During the turn-over process regions I and I I  slide over region IV, but they them- 

selves do not turn over. From this we get an angular momentum distribution as seen 
in Figure 8a, with a somewhat larger ~=-value than according to Equation (5b); we 
estimate that ~a ~ 0.9. 

According to Figure 8a, we get two librating gas rings with opposition of phase 

and a period of libration of 20rOOK(R). The centres of these rings, Rs and Rp, are defined 
by Ca(R) = CK(R), or, similarly, by grad p(R) = 0. The vectors in Figure 8a qualita- 
tively show the amplitude of oscillation for different R-values. 
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Fig. 8a. A n g u l a r  m o m e n t u m  dis t r ibu t ion  o f  the  gas immedia t e ly  after the  t u rn -ove r  process .  
Rs and  R~ are the  great  radii  o f  the  inner  and  outer  gas  rings.  The  vectors  show qual i ta t ively the  

ampl i tudes  o f  osci l lat ion for different R-values .  

By the turnover process not only the vertical (in relation to the central plane) 
oscillation energy is increased. The energy present according to Equation (5a) is also 
converted into radial oscillation energy. We estimate the inclination of the centre of 
the inner ring with radius R~ to the central plane to be, on average, 5 ~ and that of the 
outer ring with radius Rv to be 2 ~ These values, however, are dependent upon the 
r/R-values ,,~1/~/~ according to (22c) and (43) (see, moreover, Section 6.1 and 
Table II). 

5 .11 .  RECOMMENCEMENT OF THE CONTRACTION 

After turn-over the speed of contraction is drastically reduced because of [ ~ 0.9 < 1, 
due to Equation (45). From the distribution of angular momentum in Figure 8a we 
see that there is a region with [ > 1 not only in the outer gas ring but also in the 
inner gas ring, which means there is turbulence. But since ([ - 1) is very small and, 
moreover, because temperature and pressure are reduced by the turn-over process, 
the loss of angular momentum according to Sections 5.3 and 5.4 is relatively small. 

Owing to the reduced speed of contraction and the energy loss by radiation, the 
temperature in the outer parts of the outer gas ring decreases more and more. Also, the 
plasma condenses out. But this does not hold for the outer part of the inner gas ring. 
We have, namely, a very large energy reservoir consisting of the radial and vertical 
oscillation energy. On the border between the inner and outer gas rings most of this 
energy reservoir is slowly transformed into thermal energy, owing to the strong turbu- 
lence present. This happens essentially only for those two places where the planes of 
the inner and outer gas rings intersect. Only here do we have high pressure and high 
temperature; therefore the total loss of energy due to radiation is relatively small. 
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Fig. 8b. Angular  momentum distribution of the gas immediately before the recommencement of 
contraction. The inner gas ring has already partially absorbed the outer gas ring. 

Shock waves generated in these two regions move into the relatively cool and low- 
density gas (due to the inclination between the two gas rings) of the outer gas ring. 
According to Section 5.4, the energy gain due to the high X = ?a/R-value is larger 
than that according to Equation (38). 

The gas mass of the outer gas ring is slowly absorbed by the inner gas ring due to 
dissipation processes and because a large part of the low angular momentum ejected 
gas of the inner gas ring is captured by the outer gas ring. An in-between situation can 
be seen in Figure 8b. Although here the gas mass of the outer gas ring has already 
been largely absorbed by the inner gas ring, the centre of the outer gas ring has only 
been slightly displaced from R~ t o / ~ .  

Together with the reduction of the gas ring there is an increase in the total average 
~-value and in the speed of contraction. Finally, from the turn-over process there 
remains only a small but important share of the vertical libration energy (see Figure 7). 

5.12. THE FORMATION OF TWO RINGS OF MATTER 

According to Equations (1), (3) and (19) there is in the gas ring a relative velocity 
Vrel(R, r) = vK(R)(~ -- 0.5)(r/R) between the gas and the solid particles. This brings 
about a frictional fo rce r  At least for the larger grains (=  planetesimals) - for which 
we assume there to be spheres with radius G, mass mp and density Qp - this force f 
can be written as 

f ( G ,  r) = cflrr~Qg(R, r)v2rel, (57) 

where c I is in the magnitude of 0.1, and og(R, r) is the gas density from Equation (21). 
The acceleration by of the planetesimals is given by f /my.  With X = r/R, and from 
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Equations (21) and (57), we get 

by(R, rp, x) = 0.75cy(~ - 0.5)2(evrp)-lvg(R)og(R, O)X z exp (-r / ,X2) .  (58) 

Owing to this all solid matter outside R~ is continuously decelerated. This means that 
when the large radius of the gas torus has been reduced from one turn-over with R~ to 
the next turn-over with R~ + 1, all condensed matter which was within this region is also 
shifted (with a small retardation) towards the central body and remains inside the 

gas torus (see Figures 3 and 9). 
There is, however, an upper limit to the radius fp of the shifted planetesimals, but 

this only plays a role for the solar system with large R-values: for R = 30 AU, fp is 
in the region of 10 m, for R = 50 AU it is only about 0.1 m. It can be assumed that 
this is one source for trans-Pluto matter. 

Without turbulence we get, according to (58), as a consequence of b r ~ rp- 1 a 
spatial separation with respect to the size of the solid bodies: small grains are near the 
Keplerian point R~, the planetesimals are farther away. Due to turbulence in this 
region, this distribution holds only on average. Figure 3 points out the region where 
we expect to find most of the solid particles. The greater particles move on slightly 

eccentric orbits, which is mainly caused by turbulence, but which also is due to the 
circumstance that many particles are condensed out of the plasma (for which the 
two-thirds law holds - cf. (48)). Through this the larger particles are able to accumulate 
continuously, leading to the formation of planetesimals. But with the increasing mass 
of the ptanetesimals the accumulation speed decreases because, according to (58), the 
r-values get too large. 

Further, for ~ > 1 the inner and outer parts of the gas torus apply a torque on each 
other, which results in a precession of the inner and outer parts of the gas ring. The 

solid bodies partake in this precession with a retardation due to friction (see Equation 
(57)). The greater the solid bodies, the greater the inclination between their orbits 
and that of the outer parts of the gas ring. (This also decreases the accumulation speed 
of the greater planetesimals.) This is the first step in the formation of a jet stream. 

Before the turn-over process takes place, we only have one ring of solid matter. 

Fig. 9. 
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Quantitative picture of those regions out of which the matter of the planets and of their 
satellites originates. 
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Due to the adiabatic expansion caused by the turn-over process the temperature of the 
gas decreases roughly by a factor of 0.8 (see Section 5.10). Accordingly, a part of the 
gas in the inner ring (see Section 5.10) can condense. Furthermore, according to 
Equation (58) and because b I ,-~ (rplQ~l) -1, with the turn-over process small and 
lightweight grains are transported to the inner regions. This is also solely effective for 

small R-values, because 00 ~ R-3 holds in a good approximation. This is the main 
source of solid matter in the innermost (adjacent) ring of matter near the Sun 
(especially for Mercury and the Moon). A second source of solid matter comes from 
the outermost region of the gas disk adjacent to the gas torus (see region V in Figure 6 
and the hatched regions in Figure 9). The outer part of the gas torus (region II in 
Figure 6) falls into this region due to the turn-over process, and all the solid matter 
that was within this region is collected by the inner gas ring. This is more favourable 
for large R-values, since here the small radius rT of the gas torus - see Equations (22c), 
(43a), (43b), Section 6.1 and Table II - is greater in relation to R. So we get the two 

inclined adjoining rings of matter. The mass ratio of  the two rings of solid matter is 

in the order of 1 : 100. 

5.13. ACCRETION OF PLANETS FROM THE OUTER MATTER BAND 

For the component of the angular momentum of the gas ring perpendicular to the 

original gas disk C• one gets 

C• Y) = M ~ / ~ - - ~ [ ~ / R  cos ~]. (59) 

Accordingly, ~ is the average value of ]~/, where ~ is the inclination angle of the gas 
elements within the gas torus. By the turn-over process ~ increases by about 2 ~ and, 
therefore, as a result of the conservation law of angular momentum, R according to 
(59) also increases, which means that the gas of the gas ring is, on average, shifted to a 

slightly higher orbit. 
For the formation of planets there are four intermediate phases: 

I. Dust and grains (formed mainly by condensation from the initially hot hete- 
gonic nebula, but also by condensation from the plasma outside the gas torus) 
are collected within the gas torus by the contraction process; the first planetesi- 

reals were also formed by this method. 
II. This is the most essential intermediate phase. By the turn-over process the 

outer gas ring (that is, the original inner parts of the gas ring) takes on a higher 
orbit (see Figure 10). This effect is reinforced according to Equation (59). By 
this the orbital period (,-~ R 1"5) is reduced. Because the turn-over process lasts 
for one orbital period of the centre of the original gas torus, we get a gap in 
the outer gas ring (see Figure 10). This gap is present for a few orbital periods. 
Gravitational forces are now operating from the gap into the gas ring (see 
Figure 10) which accelerate the dust and the grains tangentially away from the 
gap. If the quantity of solid matter is sufficient, this leads to the formation of 
two proto-planets, which usually capture each other fairly quickly. 
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Fig. 10. 
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Formation of the two proto-p]anets in the outer gas ring immediately after the turn-over 
process. 

III. Owing to the asymmetry of the original gas ring (Re < Rx, see Figure 4) its 
middle part is shifted somewhat upwards. Hereby, with Equation (59), and due 
to friction with the gas (Equation (58)), the grains are shifted into the region 
of the planetesimals (~Rp in Figure 8a). Furthermore, turbulence, contraction 
speed and the precession of the outer gas ring are all drastically reduced. 
Therefore, not only the proto-planet but also the planetesimals grow very 
quickly. 

IV. The growing proto planet (embryo) disturbs the orbits of the planetesimals 
(and also there is a perturbation of the planetesimals between each other), 
which means a jet  stream is formed and the e-values of their orbits increase. 
By this the perigee of these orbits comes nearer to the central body. Owing to 
friction and the collection of grains, the a-values as well as the inclination 
angle of the planetesimals' orbits to the central plane decrease. For large planets 
the perigee of these planetesimals is within the gas disk inside the inner gas ring, 
and these planetesimals sweep up the grains of this region at a rapid rate. 

Because the orbital period is ~ a  1,5 we get an increasing difference between the 
angular velocity of these planetesimals and the growing planet. The accretion process 
is further promoted by the fact that the growing planet is moving within the outer 
gas ring. This means it is surrounded by a very dense and vast atmosphere. Thereby 
its mass is enlarged as well as the capture cross-section. Most of the planetesimals 
which run into this atmosphere are either vaporized or captured due to a slowing- 
down caused by great friction often reinforced by the dispersion of the planetesimals. 

As Giuli (1968a, b) has shown, the rotation of planets will be prograde if accretion 
takes place from eccentric orbits. Qualitatively, this is transferable to this theory. 
But Giuli's (1968b) quantitative results do not apply here because: (1) he has assumed 
equal grain density in different orbits; (2) he has omitted the friction between the 
planetesimals (grains) and the gas, especially in the vast dense atmosphere of the 
accreting planets; (3) he has assumed that the particles move in the same plane as the 
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planet; and (4) we also have to take into account in this theory the gravitational 
influence of the gas ring. 

We expect a slightly higher spin Csp of the planets than Giuli (1968b) has calculated, 
because we have an accretion from two jet streams with heliocentric orbital elements 
a < Ro and g ~ 0.02 and, further, an accretion mainly caused by the hot, extensive 
atmosphere (Csp ~ ~/~,  where rp is the perigee of the infalling bodies). These two 

jet streams have the same average a- and e-values and have also the same inclination 
to the growing planets' orbit (about 1.5~ but where the one jet stream has its apogee 
the other has its perigee. (As A and A (1970b) have shown, the optimal orbital data 
for the jet stream forming the Earth are: a = 0.96 AU and e = 0.03.) But for a 
quantitative analysis of the spin coming from the collection of the jet stream associated 
with the outer gas ring one needs further clarification (see also Sections 5.15 and 6.3). 

The energy one gets by the accretion process is very large. If the density Qp is constant 
for the final planet with mass Mp and radius Rp, one easily gets for its formation 

energy the expression 

E~c = 0.87rQpR~M~. (60) 

Because the gas in the outer gas ring is optically thin, a great amount of E~c is radiated 
off. Another very effective mechanism for the removal of Eac is as follows : when the 
gas pressure of the outer gas ring vanishes (due to the recommencement of the con- 

traction), we get a large decrease in the atmospheric mass of the planet, which 
considerably reduces the energy according to Equation (60). 

The accretion time for the planets and satellites is significantly shorter than in 
almost all other theories. 

5.14. DEVELOPMENT OF THE MATTER BAND BELONGING TO THE INNER GAS RING 

Analogous to the process which leads to the gap in the outer gas ring (see Section 5.13 
and Figure 10) we have, for the inner gas ring, an overlapping region which is 
(according to Equation (59)) a little bit smaller than the gap of the outer gas ring. 
Thus, gravitational forces are directed into this overlapping region. If there is enough 
solid matter in this ring, a larger body can be formed. 

Further development now only depends on how quickly the planetary accretion in 
the outer gas ring takes place. We assume that the minimal distance D between the 
centre of the two gas rings, D = Rp - R~ in Figure 8a, is constant, which also means 
that, later,/~p - Rs = D in Figure 8b, where Rp and later/~p are the distances between 
the accreting planet and the central body. 

With increasing mass and constant D there are three successive phases for the 
development of the inner jet stream: 

I. Because the mass of the accreting planet is too small, it is impossible for it to 
collect the matter of the inner jet stream. 

II. The jet stream is captured in a retrograde direction, which corresponds to the 
trajectory 90.9 in Dole's paper (1962). 
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III. The jet stream is captured in a prograde direction, corresponding to the 
trajectory 91.2 in Dole's paper (1962). 

One point is very important. Not only is condensed matter captured, but also the 
gas from the region slightly outside the centre of the inner gas ring (see Figure 8b). 
This capture from a circular orbit is favoured because of the low angular velocity 
(see Equation (19)) of this gas (which means that the difference between the angular 
velocities of this gas and of the planet are relatively small) and as a result of the 
ejection of gas due to turbulence and shock waves. But this cannot take place until 
the density of the gas surrounding the planet (that is, outside its atmosphere) is 
lower than the gas density of that region from which the gas comes. Then, the inclina- 
tion angle between the orbit of the planet and the centre of the inner ring has also 
decreased (to about 3~ 

If there are greater planetesimals, their capture is relatively independent of the 
capture of the gas. Because the mass of the gas is greater by a factor of 102 than that 
of the condensed matter, the capture of this gas into a circumplanetary disk has the 
most important influence on the spin period and on the inclination of the equator to 
the orbit of the planet. 

Owing to friction, and because the gas is captured in a wide stream, one does not 
have the diversity of trajectories as calculated by Dole (1962) but only a prograde or 
retrograde capture. 

The formation of an 'accompanying planet' (like Triton) in the inner gas ring is 
only possible if there is enough mass and if, at the end of the planet formation (which 
is given by the beginning contraction of the inner gas ring), the planet has just started 
with the retrograde capture of the gas and solid bodies (phase II, above). 

A summary of all processes and consequences of the capture of matter from the 
inner gas ring is given in Table I. A quantitative analysis for this is given in Section 6. 

5.15. SPIN AND INCLINATION OF EQUATOR TO ORBIT OF THE PLANETS 

If the mass ratio between the greatest planetesimals and the planet is small - such as 
in this theory - and if the complete system is always plane, there is no inclination of 
equator to orbit. Marcus (1967) and Safronov and Zvjagina (1969) have shown that 
within their planetesimal concept the above mass ratio is so great that a statistical 
distribution of the inclination of equator to orbit seems possible. But if one looks at 
the inclination angles of the 'regular' planets, one sees that there is no statistical 
distribution. In this theory the planets were formed from matter which orbits in 
different planes. The planetary spin vector has two components: 

(i) So, which is the result of the planet collecting matter from the outer jet stream 
in a prograde direction. The planet collects the planetesimals as well as dust 
and gas from the outer jet stream. We expect a small inclination of equator to 
orbit and, for the sake of simplicity, we take here 0 ~ 



132 V ,  D Y C Z M O N S  

TABLE I 

Consequences of the capture process of gas and solid matter from the inner gas ring 
caused by the planets 

Planet Process Most important 
consequences 

Venus No capture of matter; 'inverse 
swing-by process' 

Earth Prograde capture 
Mars Retrograde capture of a small 

quantity of matter 
Jupiter Prograde capture 
Saturn Prograde capture 
Uranus Retrograde capture 

Neptune Retrograde capture of a small 
quantity of matter [Swing-by 
process] 

Small spin; no satellite; Mercury 
and its orbit 

Moon 
Relatively small spin; Asteroid 

Pallas 
Regular satellites 
Regular satellites; especially Titan 
Spin axis of 98~ relatively small 

spin; regular satellites 
Relatively small spin; Triton; 

[Pluto = proto-planet 1; see 
Section 5.13] 

(ii) St, which is a result of the capture of matter by the planet from the inner gas 
ring in a retrograde or prograde direction, depending on AR and the final 
mass of the planet Mp; we expect an inclination of equator to orbit of about 
145 ~ and - 35 ~ respectively. 

Therefore, it is essential that So and S~, due to the inclination of the two rings to 
each other, are never anti-parallel. 

Most of the spin So is contained in the huge oblate spherical atmosphere. Because 
of the friction between the gas in the outer gas ring and the planet, due to their relative 
velocity, one expects only a small gas disk outside the huge atmosphere. The captured 

gas from the inner gas ring also travels into the planet's atmosphere when it forms 
the circumplanetary disk. Owing to turbulence and high temperatures (one expects a 

very thick gas disk and plasma)one gets one system (including planet, atmosphere 
_+ --+ 

and gas disk) with a spin vector S given by the addition of So and S~. 
We assume that the mass of the gas disk is about 5~ of Mp, the average distance 

from the centre of the planet with radius R~ is about 20Rp; the angular Velocity ~% 
of the planet just formed and of its atmosphere is about 0.03cox(Rp), and the angular 
momentum of the planet together with its atmosphere is about 2M~R~oJp. So we find 
that the angular momenta Spa (=  spin of the planet and its atmosphere) and Sa 
(=  spin of the gas disk) have the same order of magnitude. Normally it holds that 
Sa is greater than So by roughly a factor of 4. 

The final planetary spin Sp is the sum of Spa and of the angular momentum Sr 
which the gas ring has when it is absorbed (after many turn-over processes) by the 
outer regions of the planet's atmosphere. 
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5 . 1 6 .  D I F F E R E N C E S  BETWEEN THE P L A N E T A R Y  SYSTEM A N D  THE SATELLITE SYSTEMS 

According to the hetegonic principle, the formation process of the satellite systems is 
the same as for the planetary system. In spite of this there are, however, four 
differences between the two formation processes: 

(a) Because the angular velocities of the planets just accreted are relatively low, 
one does not expect an extensive transport of angular momentum from the central 
body to the gas disk - as assumed in the solar system (see Section 3); this means there 
is no separation between atmosphere and gas disk. 

(b) At the end of the main process the gas ring is absorbed by the central body. 
The additional angular velocity which the central body gets due to this is smaller 
by at least a factor of 10 for the Sun (see Section 6.2) than for the planets. 

(c) The acceleration of the solid matter due to friction with the gas within the 
circumplanetary disk is (according to Equations (57) and (58)), on average, greater 
by a factor of 105 than in the circumsolar disk. 

(d) The main process for the satellite systems is influenced by the gravitational field 
of the Sun. As a consequence of the great gravitational quadrupole moment of the 
system consisting of the oblate planet and atmosphere and the gas disk, this system 
precesses, perturbed by the Sun, with the same angular velocity. However, this is not 
true for the gas ejected far away from the outer regions of the gas ring with an apogee 
near the Lagrangian radius of the planet. It has a higher precessional rate and by this 
the building of a libration is hastened. Therefore, the average R,+l/R~-values are 
smaller for the satellite systems with respect to the solar system. 

A more detailed analysis of (b), (c) and especially of (d) will be given in Part II. 

6. First Applications of the Theory 

6 . 1 .  C A L C U L A T I O N  OF THE SMALL DIAMETERS OF THE GAS TORI 

Owing to the contraction without new gas coming in from the gas disk, we have a 
mass loss - cf. Equation (29). Since, normally, there is a plasma in the state of partial 
corotation outside at the gas torus (cf. Section 5.8), in Equation (29) we take the 
following values into account: ~/R -- 1.2; ;( = I. 15 and ($ +/~) ~ 30 ~ By integration 
of (29) for the mass MR of the gas ring contracted from Ro to R we get 

MR(R/Ro) = MR(1)(R/Ro) ~ (61) 

For the calculation of the ~-values (see Equations (7), (21) and (22)) we take the 
abundances of elements estimated by Urey (1972). For the atomic abundances we 
have 90.752~ H-atoms, 9.075~ He-atoms and 0.173~ atoms of other elements; for 
the percentage ratio by mass we get 69.99/00 H~, 27.9~ He and 2.2~ for all other 
elements. Since the torus wind consists mainly of H2 and a little He, the average 
molecular weight of the gas in the torus increases. If  qm(He/H2) is the ratio by mass 
between He and H2 we get, according to Section 5.4 (i.e., with a Maxwellian velocity 
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distribution) for the ratio qa(He/H2) of mass between He and H2 in the torus wind 

qa(He/H2) = Caqm(He/H2), (62) 

where ca has a value of about 0.06. Due to the plasma outside the gas torus, the 
Maxwellian velocity distribution is only a rough approximation and we estimate 

ca ~ 0.1 for R > 2.2 AU. Because we expect for R < 2.2 AU the dissociation of H2 
in the outermost regions of the gas torus we estimate in this case Ca ,~ 0.02. The 

~(i)-values were computed (see Table II) with Equation (62), the mass distribution is 
given in Table II, and the condensation sequence given by Lewis (1972a). 

The T(i)-values of the gas ring - at the two points with v ~ = 0 ~ 180 ~ (see (50), (51)) 
immediately before the turn-over - are calculated according to Equations (43a) and 
(43b); from this and Equations (43a) and (43b) we get the ~r(i) of Table II. But the small 
diameter of the gas torus is also determined - due to its own mass - by the gravitational 

contraction. With the Me(i)-values and their centres of gravity (see Table II), one 
can easily calculate from (61) the mass MR(R~) of the subsequent gas rings. The results 
are given in Table II. 

To determine the gravitational force caused by the mass MR of the gas ring, a 
three-dimensional integration is necessary. We have done this for the mass distribution 
given by (22b) by numerical integration with 2 x 106 points for each of 25 ~7-values in 

the range between 60 and 1000. For small (d/R)-values (see Equation (22b)) this 
gravitational force is nearly directionally independent (see Figure 1). For ~/ = 400 
and M~/Mb = 0.01, this force is plotted as a function of d (see Figure 11). For the 

abscissa of the maximum of the gravitational force function it follows that dm/R = 
1.157/~/~. With a maximal error of 3~ with ~ ~ [90; 800] it holds for the slope g of the 
straight line going through the origin of ordinates and the maximum 

~(~) = O. 177(MR/M~)~ 7. (63) 

We approximate the gravitational force by this straight line in the region d e [0; 1.4din] 
(see Figure 11). We denote the effective ~-value inside the small circle with radius 
d = 1.4dm = 1.62R/~/~ with ~7c. If we approximate the average ~-value outside this 
small circle with radius d by ~7~ = ~/~-~-~h (see Equations (22a) and (22b)), the mass 
inside this small circle is reduced by a factor Z. As can easily be seen, Z is given by 

Z = 1/[1 + (~7~/~7r - 1) exp ( -  1.622)], (64) 

making it possibIe to substitute ZMR for MR. 
If  we add the repelling forces (cf. Equations (6), (20) and Figure 11), we get the 

effective ~Tc-value 

'7~ = ~r(1 + O.177(Z(MR/M~)~7~). (65) 

When the inner jet stream is captured by the planet we estimate for the gas ring: 
= 0.92 and T~(~ = O)/T~(~ = 0) = 0.90. For the corresponding r it then 

holds that "Or(i) = ~/~Tu = x / ~ -  1-~7r(i)/0.90 ~ ~Tr(i). This means we can take 
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Fig. 11. Repelling forces towards the centre of the small circle of the gas torus. The force f l  is 
caused by Mc and given by Equations (6), (20; ~ = 1). The force f2 originates from the gravitational 
attraction of the gas torus' own mass MR. This force function f2 is shown for ~ = 400, ~ -- 1 and 

MR = 0.01Me. In the region [0; 1.4rm] we approximate f2 by the straight line with the slope Y. 

the same ~ ( i ) -  and ~c(i)-values as if r = 1 and T = T(i), given by Equations (43a) 

and (43b) as 

~Tc(i) = ~r(i)/(1 - O.177Z~T(i)Mn(i)/M~). (66) 

These ~c(i)-values are summarized in Table II. 

6.2. CAPTURE SITUATIONS FOR THE INDIVIDUAL PLANETS 

Now we want to determine the capture situations (see Section 5.14) of the inner 

rings for the individual planets relative to each other. This can only be done precisely 

by calculating the trajectories of the capturable gas and solid bodies within the 

gravitational field of the central body and the gas torus. But for our purpose the 
following rough analysis is sufficient (see Figure 12). 

We assume that the planet with mass Mp is moving on a circle with radius R + AR 

and angular velocity ~o2. The motion of a capturable mass Am is approximated as 

follows: if this mass is not in the vicinity of the planet, it is moving on a circle with 
radius R and angular velocity o~1; the inclination angle a of its orbit to the planets' 

orbit also depends, of  course, on Vc and we estimate that 

a = (50/~/~3 ~ (67) 

The distance to the planetary orbit is given by Equation (50) (AR = r0). A capture 
can only take place if not only the planet, but also the mass Am, are in the vicinity of 

the section line of both orbits (see Figure 12). 
We take, as a corotating reference plane, Ac, which is perpendicular to the planetary 
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Fig. 12. Capture situations for the individual planets: O1 is the orbit of the capturable mass Am 
and 02 is the planet's orbit. Ps is the plane of separation between the inner and outer gas ring. 
Ac denotes the corotating reference plane. S~ is the section line between the inner and outer gas 
ring as well as between the planes of O1 and 02. As a criterion for the capture situation we take 

the relative radial distance As/AR. 

orbit and includes Mc as well as the rotat ing planet. We now consider the following 

capture situation. The capturable mass Am has moved on a circle up to the point  P 

(see Figure 12), which is at a distance AR from the rotat ing plane Ac; furthermore,  the 

angle ~ between At and the section line of  both  orbits is smaller than 10 ~ We estimate 

that  

A R  = 0 . 5 R / V ' ~  <<. D (68) 

(see Figures 8a and 8b). Then it holds that  r(~) can be substituted by r0 (see Equat ion 

(50)) with an error of  less than 4%. The acceleration ap caused by the planet which 

acts on the mass Am in a radial direction when it is at point  P is then given by 

ap = (1 /V '2)TMp/(2AR2) .  (69) 

The time t which the mass Am needs to cover the distance ~x (see Figure 12) in our 

corotat ing system is then given by 

t = (3x/R)/(~ol - oJ2). (70) 

As a criterion for the capture situation we take the relative distance ( A s / A R )  = 

0.5apt~/AR which the mass Am has covered in the time t in a radial direction. Wi th  

~ x / A R  = const. << 1, and with oJ = (:eMeff(R)/Ra)~ we get (cf. Equat ion (68)) 

A s l A R  ~., M v V r - ~ I [ ~  - %/Meff(R + AR)/(t + ARIR)~'5] 2, 

(71) 
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where the proportional factor is (~x/AR)2/~/'~. Because it is simpler and also plausible, 
we assume that during the capture process the inner matter band is within the centre 
of the whole librating gas torus. To a good approximation we can, for It~[ < 10 ~ 
ignore the swinging of the gas torus for the determination of the effective mass. Our 
computer calculation leads to 

Meff(R + 0.5R/~/~) = Mef,(R) + O.142Z(MR/Mo)~r (72) 

with Z from Equation (64) and Mof~(R) ,~ Mc + MR. The results of As//XR without 
the proportional factor are listed in Table II. 

For the inner planets the capture situation for ~ > 10 ~ is more adverse than for 
the outer planets. The reason for this is that Equation (72) holds only for small values 
of IS[ or ] 8 - 180~ Outside these regions (o~1 - w2)/col does not change very much 
for the outer planets, but it enlarges considerably for the inner planets. If we take this 
into account we can interpret our calculated (As/AR)-values in the following way: 

(1) Neptune and Mars captured only a small amount of matter in a retrograde 
direction. 

(2) Uranus captured a greater amount of matter in a retrograde direction. 
(3) Earth and Saturn have captured the matter of the inner gas ring in a prograde 

direction; because their capture situations are equivalent we expect that the 
primordial Earth system was similar to the Saturnian satellite system. 

(4) Jupiter has collected the matter of the inner gas ring in a prograde direction, 
but also Jupiter is that planet which has collected by far most of the solid 
matter from the gas disk. We suggest that the perturbed planetesimals have 
swept up solid matter from the cool gas disk excluding a disk region with a 
radius of about 1.4 AU, so we expect that it has the smallest inclination of 
equator to orbit of all planets. 

(5) We get quite a different capture situation for Venus, because of ~ox - w2 < 0. 
A capture does not seem to be possible; thus we expect the formation of an 
'accompanying' planet (Mercury) in the inner gas ring. Due to the strong 
gravitational interaction with Venus (note the high As/AR-value in Table II), 
Mercury has lost a portion of its angular momentum. This brings about its 
elliptical orbit. It is conjectured that Mercury has lost a further part of its 
angular momentum due to friction with the contracting gas torus. 

This result for the capture situations of the planets is relatively independent of 
the parameters we have chosen: e.g. we can reduce the masses MD(i) and the tem- 
peratures T(i) in Table II by 20~ and enlarge AR (cf. Equation (68)) by 50~ to get 
the same results. 

6.3. SPIN AND SPIN AXIS OF THE PLANETS 

According to Section 5.15 one gets the spin axes of the planets by adding the vectors 
So and St. If, according to Section 5.15, all three successive phases have occurred, 
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one has of course two vectors f. a small one S,(II) of phase II, where the growing 

planet has captured the matter in the retrograde direction, and a great one S,(III) 
belonging to phase III. 

The vector model we use here according to Section 5.15 is defined by: The angles 
-_> 

between equator to orbit are, for So, 0 ~ and for S, in the case of a retrograde capture 
145 ~ and a prograde capture - 3 5  ~ The spin So is smaller the more gas a planet has 
captured in relation to solid matter. Further, it depends on the e-values of the orbits 
of the captured planetesimals. For the inner planets the e-values are relatively small 

because here the friction with dense gas in the gas rings is high - especially for Venus, 
which is probably the reason for its retrograde spin (cf. A. and A, 1970b), but this 
may also be caused by 0,~ < 0,2 (see Figure 12 and Table II). Further, the relation 
between the escape velocity from the planets and their orbital velocities is small 
compared to the outer planets. Yet to get a simple qualitative vector model we put 
the relative spins ~o = So/Op, where 0~ is the present moment of inertia of the planets, 
constant except for Earth and Saturn, where we reduce the constant by a factor of {. 
Together with the relative spins S, = SdO~ we get the vector model of Figure 13 for 

the capture situations of Mars, Neptune; Uranus; Earth, Saturn. 
The final relative spin Sp = Sv/Op = 0,~ of each planet is not (cf. Section 5.15) 

[So + S~[ but the sum of the small primordial spin ~qp~ of the planet with its atmos- 
phere and of the angular momentum of ~ ,  which the gas ring has when it is absorbed 
(see Figure 13). That means the spin Sp < [So + S~[; this reduction is not great for 
these planets with a relatively small gas disk (Mars, Neptune), but for those planets 

i 
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Neptune 

Uranus 

t ' � 9  

i 

% 
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Fig. 13. Vector model for the capture situations (1), (2), (3) of Section 6.2. So is parallel to the 
orbital angular momentum .4o. The angle between .4o and S~(II) (= retrograde capture) is 135 ~ 
and with S~(III) (= prograde capture) is -35 ~ The total spin S~ + So is reduced by the main 
process to the planetary spin Sp. To get the angular velocity co r = Sp/%, of the planets, all spins 
Sp, S~, So are divided by 0p so we get S~, S~, So. 

A better and more correct vector model we get by the following: The angles with .4o are for So 
10 ~ S~(II) 150 ~ and S,(III) 30~ Ao, S~ and ~(III) are within the same plane, but the angle between 

this plane and the plane subtended by .4o and S~(II) is about 90 ~ 



140 v. DYCZMONS 

with a relatively great original gas disk such as Jupiter, Saturn, and Earth. Also, if one 
takes this into account, then, for the spin periods ~ 1/o~p of Jupiter (9.8h), Saturn 
(10.2 h) and the original angular velocity of the Earth, one expects values smaller than 

for Mars (24.6h), Uranus, Neptune (here recent measurements from the Kitt-Peak 
Observatory yielded Uranus 23 h and Neptune 22h). 

The results of Sections 6.2 and 6.3 are summarized in Table I. 

6.4.  THE SEMI-MAJOR AXES OF THE PLANETS 

Because the turn-over process depends on the building up of a libration, we expect 
exactly a-geometric series for the Revalues, if (rr/R) ~ 1/a/~ is constant. The ~7(i)- 
values with regard to the turn-over process depend not only on ~Tc(i) but also somewhat 
on ~Tr(i); so we take 

~/(i) = ~7z(i)~ ~ (73) 

According to Table II, these ~7(i)-values get smaller with decreasing R-values; this 
means the turn-over ensues faster, i.e. the R~_ 1/Revalues get smaller. 

But there are three exceptions: for i = 2 (Uranus) the R1/R2-value (=1.57) is 
relatively small (incompatible with Titius-Bode's ' law')  and for i = 5.6 (Asteroides, 
Mars) these values are relatively large (1.88, 1.82). Yet the speed at which the turn-over 
process occurs also depends on the relation between the libration amplitude of the 
(i - 1)th turn-over to the ith turn-over. The reason for this is that a fixed portion of 
the vertical libration always remains (see Figure 7); the greater this libration amplitude 
in relation to the critical amplitude for the next turn-over, the faster of course does 
the turn-over occur. The relative change qT of the libration amplitude l~ ~ 1/a/~ is 
given by lglR grad l~ = V/~ R grad (1/V/T). So, for the relative change from the 
(i - 1)th to the ith turn-over, with Equation (73), we obtain 

q~,(i) = ( v ( i -  1)~7(i)) ~ • 

• ( R ( i -  1)R(i)) ~ 1 / V ~ ( / -  1 ) -  1 / ~ / ~ .  (74) 
R ( i -  1) -- R(i) 

The qr(i)-values are listed in Table II. With these qr(i)-values we can understand 
immediately the three 'exceptions'. For i = 2, qr has the greatest value, which means 
the turn-over occurs relatively fast; and for i -- 5.6 we have the smallest qr-values, 

which means the R~_ 1/Revalues are relatively large. Thus, we get the correct quantita- 
tive result for all semi-major axes of the regular planets. 

As A and A (1970a) and Birn (1973) have pointed out, it is very improbable that 
the Revalues have changed very much after the formation of the planetary system. 

6.5. MASS RATIOS 

Here we give only simple applications for our four systems (planetary, Jovian, 
Saturnian and Uranian system). Because the greatest secondary bodies have collected 
solid matter from the inside gas disk, we expect that the next - but not the previous - 
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secondary bodies to be formed are unexpectedly small or they have not been formed 

at all. This is true for all four systems. 
Further, we expect that the outermost regular secondary bodies (Neptune, Callisto, 

Titan, Oberon) have a surprisingly great mass. This is also true. There are two reasons 
for this: the first is that only here does the building up of the libration begin ' at zero'  
which means that the contraction of the gas torus was greater here than it was for all 
other secondary bodies; and the second is that only here was there no mass loss 
caused by the collection of solid matter by the next outer secondary body. 

Further, this theory can explain the mass ratios between satellite systems and the 
planets. The first principle is, therefore, that the better the capture situation, the 

greater the mass ratio between the regular satellites and the planets. This is true for 
the capture situations (1), (2) and (3) in Section 6.2. Further, we have to take into 
account that the decrease in temperature due to turn-over is greatest for small R- 
values. Therefore, the mass of the condensed matter of the inner gas ring is high here 
in relation to the allied planet's mass (Mercury/Venus = 0.068; Moon/Earth = 
0.012; sum of the Saturnian satellites/Saturn = 0.0031). 

The reason the mass ratio Triton/Neptune = 0.0033 is relatively great is that 
Neptune has collected only a small quantity of gas due to the small MR(1)-value (see 
Table II); we suggest that this is also the reason for its relatively high density. 

6.6. THE FORMATION OF THE SATURNIAN RINGS 

When the gas ring comes into the outer region of Saturn's atmosphere, the inner part 

of the gas ring is braked. We expect a short intensive heating of the gas and a short 
period of intensive shock waves. By this a great quantity of plasma outside the gas 
ring is formed which is, by Equation (48), shifted outwards because it enters a state of 
partial corotation. Within a short period the gas ring is absorbed by the atmosphere 
and this enlarges the rotational velocity of Saturn. 

We agree with the formation process of the Saturnian rings proposed by A and A 
(1973) and Alfv6n (1976). This means that the plasma condensed and, according to 
the two-thirds law, the grains produced by the condensation fell down to two-thirds 
of their original central distances. We believe that A and A's formation process of the 

Saturnian rings can be understood very well in the framework of this theory because 
(1) it is clear that there is no neutral gas in the central plane, which would thoroughly 
disturb the two-thirds law because of friction with the small condensed infalling 
grains (see Equation (57)) and (2) it is necessary that Janus and Mimas were already 
in existence. 

Acknowledgements 

I wish to thank Prof. W. Deinzer, Dr J. Hardorp, Prof. H.-H. Voigt and Dr A. 
Wittmann for their interest and encouragement; furthermore, I am obliged to 
Dr A. Wittmann for reviewing the manuscript. The support of this work by Prof. 
W. A. Bingel is gratefully acknowledged. 



142 V. DYCZMONS 

References 

Alfv6n, H. and Arrhenius, G. : 1970a, Astrophys. Space Sci. 8, 338. 
Alfv6n, H. and Arrhenius, G. : 1970b, Astrophys. Space Sci. 9, 3. 
Alfv6n, H. and Arrhenius, G. : 1973, Astrophys. Space Sci. 21, 117. 
Alfv6n, H. and Arrhenius, G.: 1974, Astrophys. Space Sci. 29, 63. 
Alfv6n, H.:  1976, Astrophys. Space Sci. 43, 97. 
Allen, C. W. : 1973, Astrophysical Quantities (3rd edn.), The Athlone Press. 
Anders, E.: 1971, Ann. Rev. Astron. Astrophys. 9, 1. 
Brecher, A. : 1972, Nice Conference, Symp. Origin of  the Solar System, Edition du Centre Nationale 

de la Recherche Scientifique, Paris, p. 260. 
Birn, J.: 1973, Astron. Astrophys. 24, 283. 
Cameron, Az G. W.: 1972, Nice Conference, Syrup. Origin of  the Solar System, Edition du Centre 

Nationale de la Recherche Scientifique, Paris, p. 56. 
Cameron, A. G. W.: 1973, Icarus 18, 407. 
Cameron, A. G. W.: 1975, Icarus 25, 588. 
Danielsson, L. : 1973, Astrophys. Space Sci. 24, 459. 
Dole, S. H.:  1962, Planetary Space Sci. 9, 541. 
Glasstone, S.: 1965, Sourcebook on the Space Sciences, Van Nostrand Company, p. 341. 
Handbury, M. J. and Williams, J. P. : 1976, The Observatory 96, 140. 
Giuli, R. T.: 1968a, Icarus 8, 301. 
Giuli, R. T.: 1968b, Icarus 9, 186. 
Larson, R. B. : 1972, Nice Conference, Symp. Origin of  the Solar System, Edition du Centre Nationale 

de la Recherche Scientifique, Paris, p. 142. 
Lewis, J. S.: 1972a, Icarus 16, 241. 
Lewis, J. S.: 1972b, Nice Conference, Symp. Origin of  the Solar System, Edition du Centre 

Nationale de la Recherche Scientifique, Paris, p. 202. 
Lewis, J. S. : 1973, Technology Review, Massachusetts Institute of Technology, 76, 20. 
Marcus, A. H.: 1967, Icarus 7, 283. 
Mestel, L. : 1972, Nice Conference, Syrup. Origin of  the Solar System, Edition du Centre Nationale 

de la Recherche Scientifique, Paris, p. 21. 
Newburn, R. L., Jr. and Gulkis, S.: 1973, Space Sci. Rev. 14, 179. 
Safronov, V. S.: 1972, Nice Conference, Symp. Origin of  the Solar System, Edition du Centre 

Nationale de la Recherche Scientifique, Paris, p. 89. 
Safronov, V. S. and Zvjagina, E. V. : 1969, Icarus 10, 109. 
Schmitt, Harrison H.:  1975, Space Sci. Rev. 3, 259. 
ter Haar, D.:  1972, Nice Conference, Symp. Origin of  the Solar System, Edition du Centre 

Nationale de la Recherche Scientifique, Paris, p. 71. 
Urey, H. C.: 1972, Ann. New York Acad. Sci. 194, 35. 
Whipple, F. L., Lecar, M. and Franklin, F. A.: 1972 Nice Conference, Symp. Origin of  the Solar 

System, Edition du Centre Nationale de la Recherche Scientifique, Paris, p. 312. 


