Skip to main content
Log in

Freezing of molecular hydrogen and its isotopes in porous vycor glass

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have made a detailed ultrasonic study of freezing and melting of molecular H2, HD and D2 in the pores of Vycor glass. The behavior was similar to that seen in previous measurements with argon and helium. The hydrogen liquids under cooled about 2.5 K below their bulk triple points before freezing began and there was substantial hysteresis between freezing and melting. The velocity and attenuation began to increase suddenly at the onset of freezing. The velocity continued to increase to the lowest temperatures (2 K) and the attenuation had a broad peak at about two thirds of the freezing temperature. We attribute these effects to stress relaxation via thermally activated vacancy motion in the solid hydrogen, an interpretation confirmed by looking at the frequency dependence of the velocity and attenuation. The magnitude of the velocity and attenuation changes increased in going from H2 to HD to D2, as expected based on their increasing densities and elastic constants. However, there were no qualitative differences between the boson (H2 and D2) and fermion (HD) cases nor, for that matter, between hydrogen and argon. We believe that essentially all the hydrogen was frozen a few tenths of a kelvin belowT F, at the point where the melting/freezing hysteresis began. If even a few per cent of the hydrogen had remained liquid and become superfluid at some lower temperature, it would have been seen as a further increase in the velocity and a critical attenuation peak. The sensitivity of our ultrasonic measurements allowed us to make accurate measurements of the freezing and melting temperatures of the different liquids in Vycor. We found that the fractional undercooling, (T B -T F )/T B , increased as the molecular mass decreased which may indicate the importance of quantum effects on the liquid-solid interfacial energy σ ls .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vycor 7930 “Thirsty Glass” from Corning Glass. The pore structure of this glass has been characterized by many techniques, including small angle neutron scattering. See, e.g., P. Wiltzius, F. S. Bates, S. B. Dierker, and G. D. Wignall,Phys. Rev. A36, 2991 (1987).

    Google Scholar 

  2. K. M. Unruh, T. E. Huber, and C. A. Huber,Phys. Rev. B48, 9021 (1993).

    Google Scholar 

  3. C. L. Jackson and G. B. McKenna,J. Chem. Phys. 93, 9002 (1990).

    Google Scholar 

  4. D. D. Awschalom and J. Warnock,Phys. Rev. B35, 6779 (1987).

    Google Scholar 

  5. P. E. Sokol, W. J. Ma, K. W. Herwig, W. M. Snow, Y. Wang, J. Koplik, and J. R. Banavar,Appl. Phys. Lett,61, 777 (1992).

    Google Scholar 

  6. E. Molz, A. P. Y. Wong, M. H. W. Chan, and J. R. Beamish,Phys. Rev. 48, 5741 (1993).

    Google Scholar 

  7. J. R. Beamish, A. Hikata, L. Tell, and C. Elbaum,Phys. Rev. Lett. 50, 425 (1983); J. R. Beamish, N. Mulders, A. Hikata, and C. Elbaum,Phys. Rev. B44, 9314 (1991); E. B. Molz and J. R. Beamish,J. Low Temp. Phys. 101, 1055 (1995).

    Google Scholar 

  8. E. D. Adams, K. Uhlig, Y.-H. Tang, and G. E. Haas,Phys. Rev. Lett. 52, 2249 (1984);J. Low Temp. Phys. 66, 85 (1987); D. N. Bittner and E. D. Adams,J. Low Temp. Phys. 97, 519 (1994).

    Google Scholar 

  9. S. R. Haynes, D. F. Brewer, and A. L. Thomson,Jap. J. Appl. Phys. 26, 301 (1987); D. F. Brewer, J. Rajendra, N. Sharma, A. L. Thomson, and Jin Xin,Physica B 165 & 166, 551 (1990);B 165 & 166, 577 (1990); Cao Lie-zhao, D. F. Brewer, C. Girit, E. N. Smith, and J. D. Reppy,Phys. Rev. B33, 106 (1986).

    Google Scholar 

  10. M. Shimoda, T. Mizusake, M. Hiroi, and A. Hiroi,J. Low Temp. Phys. 64, 285 (1986).

    Google Scholar 

  11. M. Bretz and A. L. Thompson,Phys. Rev. B24, 467 (1981).

    Google Scholar 

  12. J. L. Tell and H. J. Maris,Phys. Rev. B28, 5122 (1983).

    Google Scholar 

  13. R. H. Torii, H. J. Maris, and G. M. Seidel,Phys. Rev. B41, 7167 (1990).

    Google Scholar 

  14. D. F. Brewer, J. Rajendra, N. Sharma, and A. L. Thomson,Physica B 165 & 166, 569 (1990); D. F. Brewer, J. C. N. Rajendra, and A. L. Thomson,Physica B 194 & 195, 687;J. Low Temp. Phys. 101, 317 (1995).

    Google Scholar 

  15. M. Schindler, A. Dertinger, Y. Kondo, and F. Pobell,Phys. Rev. B53, 11451 (1996); Y. Kondo, M. Schindler, and F. Pobell,J. Low Temp. Phys. 101, 195 (1995).

    Google Scholar 

  16. J. De Kinder, A. Bouwen, and D. Shoemaker,Phys. Rev. B52, 15872 (1995).

    Google Scholar 

  17. Y. Wang, W. M. Snow, and P. E. Sokol,J. Low Temp. Phys. 101, 929 (1995); P. E. Sokol, R. T. Azuah, M. R. Gibbs, and S. M. Bennington,J. Low Temp. Phys. 101, 23 (1995).

    Google Scholar 

  18. V. L. Ginzburg and A. A. Sobyanin,Sov. Phys. JETP 15, 242 (1972).

    Google Scholar 

  19. H. W. Wooley, R. B. Scott, and F. G. Brickwedde,J. Res. Nat. Bureau of Standards 41, 379 (1948).

    Google Scholar 

  20. R. Wanner and H. Meyer,J. Low Temp. Phys. 11, 715 (1973).

    Google Scholar 

  21. F. R. N. Nabarro (unpublished); C. Herring,J. Appl. Phys. 21, 437 (1950); see also, J.-P. Poirier,Creep of Crystals (Cambridge University Press, London, 1985).

    Google Scholar 

  22. J. R. Gaines, P. A. Fedders, G. W. Collins, J. D. Sater, and P. C. Souers,Phys. Rev. B52, 7243 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaudoin, G., Haljan, P., Paetkau, M. et al. Freezing of molecular hydrogen and its isotopes in porous vycor glass. J Low Temp Phys 105, 113–131 (1996). https://doi.org/10.1007/BF00754630

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754630

Keywords

Navigation