Skip to main content
Log in

Hypochlorite electro-generation. I. A parametric study of a parallel plate electrode cell

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A parametric study is described of a parallel plate Ti/PbO2/x mol dm−3 NaCl/Ti hypochlorite cell, for which the cell voltage, current efficiency, and energy yield (mol ClO kWh−1) were examined as functions of current density, chloride concentration, and electrolyte flow rate, inlet temperature and pH.

The cell was found to behave ohmically, with current efficiencies of 85–99% for 0.5 mol dm−3 NaCl electrolyte, a typical chloride concentration for sea water. However, the hypochlorite energy decreased substantially with increased current density, reflecting the large contribution of the electrolyte ohmic potential drop to the cell voltage.

The behaviour of the Ti/PbO2 anode was found to be irreproducible, and low temperature (say ⩽ 278K)/high current density operation was irreversibly detrimental both in terms of the anode potential/cell voltage and current efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

polarization resistance (ohm m2)

d min :

interelectrode spacing to minimize the cell voltage (m)

f(x) :

volume fraction of gas at levelx f

av :

average volume fraction of gas

F :

Faraday constant (96487 C mol−1)

h :

electrode length/height (m)

i(x) :

current density at positionx (A m−2)

i av :

average current density (A m−2)

I :

cell current (A)

P :

pressure of gas evolved at electrodes (N m−2)

R :

universal gas constant (8.314 J mol−1K−1 )

R eff :

total ohmic resistance of electrolyte and gas in cell (ohm)

s :

bubble rise rate (m s−1)

\(t_{Cl^ - } \) :

chloride ion transport number

T :

electrolyte temperature (K)

w :

electrode width (m)

x :

distance from bottom of electrodes (m)

z :

number of Faradays per mole of gas evolved

η(x) :

overpotential at positionx (V)

π :

resistivity of gas free electrolyte (ohm m)

π(x) :

resistivity at levelx of electrolyte containing bubbles (ohm m)

References

  1. ‘Local Generation and Use of Chlorine and Hypochlorite’, SCI Electrochemical Technology Group Meeting, London, 14–16 October 1980.

  2. G. H. Kelsall, Electricity Council Research Centre Report N1059 (June 1977).

  3. A. T. Kuhn and R. B. Lartey,Chem. Ing. Tech. 47 (1975) 129.

    Google Scholar 

  4. C.W. Tobias,J. Electrochem. Soc. 106 (1959) 333.

    Google Scholar 

  5. Z. Nagy,J. Appl. Electrochem. 6 (1976) 171.

    Google Scholar 

  6. N. Ibl and D. Landolt,J. Electrochem. Soc. 115 (1968) 713.

    Google Scholar 

  7. L. Hammar and G. Wranglen,Electrochim. Acta 9 (1964) 1.

    Google Scholar 

  8. A. T. Kuhn, H. Hamzah and G. C. S. Collins,J. Chem. Tech. Biotechnol 30 (1980) 423.

    Google Scholar 

  9. A. T. Kuhn and H. Hamzah,Chem. Ing. Technol. 52 (1980) 762.

    Google Scholar 

  10. G. R. Heal, A. T. Kuhn and R. B. Lartey,J. Electrochem. Soc. 124 (1977) 1690.

    Google Scholar 

  11. D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier, Amsterdam (1977).

    Google Scholar 

  12. For example L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013.

    Google Scholar 

  13. N. Hackerman and C. D. Hall,J. Electrochem. Soc. 101 (1959) 827.

    Google Scholar 

  14. N. T. Thomas and K. Nobe,ibid. 117 (1970) 622.

    Google Scholar 

  15. D. T. Pickett and K. L. Ong.Electrochim. Acta 19 (1974) 875.

    Google Scholar 

  16. R. E. De La Rue and C. W. Tobias,J. Electrochem. Soc. 106 (1959) 827.

    Google Scholar 

  17. R. E. Meredith and C. W. Tobias, ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 2. Interscience, New York (1962).

  18. J. Newman, ‘Electrochemical Systems’, PrenticeHall, New York (1973).

    Google Scholar 

  19. D. Jennings, A. T. Kuhn, J. B. Stepanek and R. Whitehead,Electrochim. Acta 20 (1975) 903.

    Google Scholar 

  20. M. Morita, C. Iwakura and H. Tamura,Electrochim. Acta 22 (1977) 325.

    Google Scholar 

  21. T. Loucka,J. Appl. Electrochem. 7 (1977) 211.

    Google Scholar 

  22. M. Hayes and A. Kuhn,ibid. 8 (1978) 327.

    Google Scholar 

  23. D. Gilroy,ibid. 12 (1982) 171.

    Google Scholar 

  24. For example, P. Faber, ‘Power Sources 4’, Proceedings 8th International Symposium, Brighton (September 1972), (edited by D. H. Collins) Oriel Press, Newcastle, UK (1973).

    Google Scholar 

  25. G. H. Kelsall and R. Stevens, Electricity Council Research Centre Report M1266 (July 1979).

  26. G. H. Kelsall, unpublished work.

  27. J. E. Bennett, Symposium on Electrochemical Reaction Engineering, Southampton University, (18–20 April 1979).

  28. G. H. Kelsall, Electricity Council Research Centre Report N1060 (June 1977).

  29. A. I. Vogel, ‘Textbook of Quantitative Inorganic Analysis’, 4th edn., Longmans, London (1978).

    Google Scholar 

  30. M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’, National Association Corrosion Engineers, Houston, USA (1974).

    Google Scholar 

  31. H. Vogt,Electrochim. Acta 26 (1981) 1311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelsall, G.H. Hypochlorite electro-generation. I. A parametric study of a parallel plate electrode cell. J Appl Electrochem 14, 177–186 (1984). https://doi.org/10.1007/BF00618736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618736

Keywords

Navigation