Skip to main content
Log in

Defects restoration during cooling and annealing in PTC type barium titanate ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The PTC-type BaTiO3 ceramics of similar microstructure are obtained by careful control of a sintering scheme. The defect chemistry of them is modified by varying the cooling rate and annealing conditons. In addition to applying Heywang and Jonker models for explaining the resistivity anomaly of these samples, the outward diffusion of oxygen vacancies (VO), which left excess barium vacancies (VBa) behind, is proposed to be the formation mechanism of surface states. The formation of defect complex consisting of a V ..O - Ba pair is assumed to be the cause of small diffusivity of VO in these materials. The phenomena, in which the slower cooling rate raises the resistivity of samples, is ascribed to the higher concentration of excess barium vacancies (VBa) contained in these samples. However, the maximum potential barrier height (φmax) of the samples is the same, irrespective of the amount of surface state concentration (N s) and is estimated to be φmax = 0.66eV, from the In (ϱmax)-1/T max plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Haayman, R. W. Dam andH. A. Klasens, German Patent 929350, June (1955).

  2. W. Heywang,Solid State Electron. 3 (1961) 51.

    Google Scholar 

  3. W. Heywang,J. Amer. Ceram. Soc. 47 (1964) 484.

    Google Scholar 

  4. G. H. Jonker,ibid. 7 (1964) 895.

    Google Scholar 

  5. W. T. Peria, W. R. Brastchum andR. D. Fenity,Ibid. 44 (1961) 249.

    Google Scholar 

  6. J. B. Macchesney andJ. F. Potter,ibid. 48 (1965) 81.

    Google Scholar 

  7. H. Ihrig andW. Pushchert,J. Appl. Phys. 48 (1977) 3081.

    Google Scholar 

  8. J. Daniels, K. H. Häerdtl andR. Wernicke,Philips Technol. Rev. 38 (1978/79) 73.

    Google Scholar 

  9. H. Nemoto andI. Oda,J. Amer. Ceram. Soc. 63 (1980) 398.

    Google Scholar 

  10. G. B. Lewis andC. R. A. Catlow,Ibid. 68 (1985) 555.

    Google Scholar 

  11. H. A. Sauer and J. R. Fisher,Ibid. 44 (1961) 54.

    Google Scholar 

  12. P. K. Gallagher, F. Schrey andF. V. DiMarcello,ibid. 46 (1963) 358.

    Google Scholar 

  13. H. Ueoka andM. Yodogawa,IEEE Trans. Mfg. Tech. MFT-3 (1974) 72.

    Google Scholar 

  14. M. Kuwabara, S. Suemura andM. Kawahara,Amer. Ceram. Soc. Bull. 64 (1985) 1394.

    Google Scholar 

  15. O. Saburi andK. Waking,IEEE Trans. Comp. Parts Cp-10 (1963) 53.

    Google Scholar 

  16. E. Andrich,Elctron. Appl. 26 (1965/66) 123.

    Google Scholar 

  17. T. Matsuoka et al., J. Amer. Ceram. Soc. 55 (1972) 108.

    Google Scholar 

  18. G. H. Jonker, in “Advances in Ceramics”, Vol. 1, edited By L. M. Levinson (The American Ceramic Society, Columbus, Ohio, 1981) P. 155.

    Google Scholar 

  19. W. Heywang,J. Mater. Sci. 6 (1971) 1214.

    Google Scholar 

  20. T. Fukami andH. Tsuchiya,Jpn J. Appl. Phys. 18 (1979) 735.

    Google Scholar 

  21. H. Ihrig,J. Amer Ceram. Soc. 64 (1981) 617.

    Google Scholar 

  22. M. Kuwabara,ibid. 64 (1981) C-170.

    Google Scholar 

  23. T. Ashida andH. Toyoda,Jpn J. Appl. Phys. 5 (1966) 269.

    Google Scholar 

  24. R. N. Basu andH. S. Maiti,Mater. Lett. 5 (1987) 99.

    Google Scholar 

  25. I. Ueda andS. Ikegami,J. Phys. Soc. Jpn 20 (1965) 546.

    Google Scholar 

  26. M. Khan,Amer. Ceram. Soc. Bull. 50 (1971) 677.

    Google Scholar 

  27. Y. Matsuo et al., Ibid. 41 (1968) 292.

    Google Scholar 

  28. R. N. Basu andH. S. Maiti, in Proceedings of The IEEE 6th Isaf., Bethlehem, Pa, Usa, June 1986, (IEEE, New York, 1986) p. 685.

    Google Scholar 

  29. R. Wernicke,Philips Res. Rep.31 (1976) 526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, TF., Hu, CT. & Lin, IN. Defects restoration during cooling and annealing in PTC type barium titanate ceramics. J Mater Sci 25, 3029–3033 (1990). https://doi.org/10.1007/BF00584922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584922

Keywords

Navigation