Skip to main content
Log in

Density and viscosity of tetralin and trans-decalin

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New measurements are reported for the density and viscosity of tetralin and trans-decalin. The density was determined from room temperature to 60°C for tetralin and to 95°C for trans-decalin. The kinematic viscosity was measured up to temperatures slightly above 100°C. Our results improve upon the values recommended by the American Petroleum Institute for these liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. J. Weinstein, Fundamental Data Needs for Coal Conversion Technology, TID-28152 (Recon Systems, Princeton, N.J., 1977).

    Google Scholar 

  2. A. L. Conn et al., Refining Synthetic Liquids from Coal and Shale (National Academy Press, Washington, D.C., 1980).

    Google Scholar 

  3. C. T. Lin. M. R. Brulé, F. K. Young, L. L. Lee, K. E. Starling, and J. Chao, Hydrocarbon Process. 59:229 (1980).

    Google Scholar 

  4. J. Kestin et al., Thermophysical Properties for Synthetic Fuels, DOE/ER-0172 (Division of Engineering, Brown University, Providence, R.I., 1983).

    Google Scholar 

  5. C. Tsonopoulos, J. L. Heideman, and S. C. Hwang, Thermodynamic and Transport Properties of Coal Liquids (Wiley, New York, 1986).

    Google Scholar 

  6. D. S. Robinson, A. J. Kidnay, and V. F. Yesavage, J. Chem. Thermodyn. 17:855 (1985).

    Google Scholar 

  7. D. A. Flanigan and V. F. Yesavage, J. Chem. Thermodyn. 19:931 (1987).

    Google Scholar 

  8. V. F. Yesavage, R. M. Baldwin, and J. Sandarusi, Private communication.

  9. N. Bauer and S. Z. Lewis, in Techniques of Organic Chemistry, Vol. 1, A. Weissberger, ed. (Interscience, New York, 1959), p. 131.

    Google Scholar 

  10. Melles Griot, Optics Guide 4 (Melles Griot, Rochester, N.Y., 1988), pp. 3–13.

    Google Scholar 

  11. L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).

    Google Scholar 

  12. J. Kestin, J. V. Sengers, B. Kangar-Parsi, and J. M. H. Levelt Sengers, J. Phys. Chem. Ref. Data 13:175 (1984).

    Google Scholar 

  13. J. Kestin and J. V. Sengers, J. Phys. Chem. Ref. Data 15:305 (1986).

    Google Scholar 

  14. L. Haar, Private communication.

  15. L. H. Bird and E. F. Daly, Trans. Faraday Soc. 35:588 (1939).

    Google Scholar 

  16. W. F. Seyer and C. H. Davenport, J. Am. Chem. Soc. 63:2425 (1941).

    Google Scholar 

  17. D. L. Camin and F. D. Rossini, J. Phys. Chem. 59:1173 (1955).

    Google Scholar 

  18. J. D. Gómez-Ibáñez and T. C. Wang, J. Phys. Chem. 70:391 (1966).

    Google Scholar 

  19. G. Körösi and E. sz. Kováts, J. Chem. Eng. Data 26:323 (1981).

    Google Scholar 

  20. API, API Publication 706 (American Petroleum Institute, Washington, D.C., 1978).

    Google Scholar 

  21. F. A. Gonçalves, K. Hamano, J. V. Sengers, and J. Kestin, Int. J. Thermophys. 8:641 (1987).

    Google Scholar 

  22. J. F. Swindells, R. Ullman, and H. Mark, in Techniques of Organic Chemistry, Vol. 1, A. Weissberger, ed. (Interscience, New York, 1959), p. 689.

    Google Scholar 

  23. J. V. Sengers and J. T. R. Watson, J. Phys. Chem. Ref. Data 15:1291 (1986).

    Google Scholar 

  24. H. Vogel, Phys. Z. 22:645 (1921).

    Google Scholar 

  25. W. F. Seyer and J. D. Leslie, J. Am. Chem. Soc. 64:1912 (1942).

    Google Scholar 

  26. K. Chylinski and R. Stryjek, Pol. J. Chem. 54:1797 (1980).

    Google Scholar 

  27. M. Sakurai and T. Nakagawa, J. Chem. Thermodynam. 14:269 (1982).

    Google Scholar 

  28. F. W. G. Kohlrausch, Praktische Physik, Band 3 (B. G. Teubner, Stuttgart, 1968), p. 40.

    Google Scholar 

  29. E. W. Washburn, ed., International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1927 and 1928), Vol. II, p. 327, and Vol. III, p. 79.

    Google Scholar 

  30. G. Schroeter, Justus Liebig's Ann. Chem. 426:1 (1922).

    Google Scholar 

  31. W. Herz and P. Schuftan, Z. Phys. Chem. 101:269 (1922).

    Google Scholar 

  32. W. MacFarlane and R. Wright, J. Chem. Soc. (London) 114 (1933).

  33. B. J. Mair and A. J. Streiff, J. Res. Natl. Bur. Stand. 27:343 (1941).

    Google Scholar 

  34. W. Karo, R. L. McLaughlin, and H. F. Hipsher, J. Am. Chem. Soc. 75:3233 (1953).

    Google Scholar 

  35. Y. Oshmyansky, H. J. M. Hanley, J. F. Ely, and A. J. Kidnay, Int. J. Thermophys. 7:599 (1986).

    Google Scholar 

  36. API, API Publication 705 (American Petroleum Institute, Washington, D.C., 1978).

    Google Scholar 

  37. S. Harada, Private communication.

  38. C. H. Byers and D. F. Williams, J. Chem. Eng. Data 32:344 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, F.A., Hamano, K. & Sengers, J.V. Density and viscosity of tetralin and trans-decalin. Int J Thermophys 10, 845–856 (1989). https://doi.org/10.1007/BF00514480

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00514480

Key words

Navigation