Skip to main content
Log in

Effects of infrared detector nonlinearity on thermal diffusivity measurements using the flash method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

When using an infrared detector to measure temperature changes as in the case of the flash technique, the effects of detector nonlinearity can have drastic effects on the experimental data. In the flash technique, the detector nonlinearity tends to shift the calculated half-time to larger values, resulting in underpredicted values of thermal diffusivity especially in experiments performed at room temperature. In order to predict the error in the diffusivity calculation, the nonlinear relationship between the detector signal and the temperature change was developed into a Taylor series expansion used in the flash technique's mathematical model. The nonlinear detector model proves to yield accurate correction factors for the presently calculated values of diffusivity. In order to utilize the model, it is necessary to estimate the maximum temperature rise of the back surface and the degree of detector nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32:1679 (1961).

    Google Scholar 

  2. R. E. Taylor and K. D. Maglić, in Compendium of Thermophysical Property Measurement Methods, Vol. I, K. D. Maglić, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum Press, New York, 1984), pp. 305–336.

    Google Scholar 

  3. L. M. Clark III and R. E. Taylor, J. Appl. Phys. 46:4584 (1975).

    Google Scholar 

  4. R. C. Heckman, J. Appl. Phys. 44:1455 (1973).

    Google Scholar 

  5. M. G. Dreyfus, Appl. Opt. 2(11):1113 (1963).

    Google Scholar 

  6. R. E. Taylor and L. M. Clark III, High Temp. High Press. 6:65 (1974).

    Google Scholar 

  7. R. E. Taylor, H. Groot, and R. L. Shoemaker, in 17 Biennial Conference on Carbon, University of Kentucky, Lexington (1985).

    Google Scholar 

  8. R. E. Taylor, in Thermal Conductivity, Vol. 19, D. W. Yarbrough, ed. (Plenum Press, New York, 1988), pp. 407–409.

    Google Scholar 

  9. D. P. H. Hasselman and K. Y. Donaldson, Int. J. Thermophys. (in press).

  10. D. P. H. Hasselman and G. Mekel, J. Am. Ceram. Soc. 72:967 (1989).

    Google Scholar 

  11. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1981), Chaps. 2 and 13.

    Google Scholar 

  12. J. J. Hoefler, M.S.M.E. thesis (Purdue University, West Lafayette, Ind., Dec. 1989), Chap. 2, App. B.

    Google Scholar 

  13. P. Cielo, J. Appl. Phys. 56:230 (1984).

    Google Scholar 

  14. H. Groot, in Thermal Conductivity, Vol. 20, D. P. H. Hasselman and J. R. Thomas, Jr., eds. (Plenum Press, New York, 1989), pp. 361–363.

    Google Scholar 

  15. G. C. Wei and J. M. Robbins, Bull. Am. Ceram. Soc. 64:691 (1985).

    Google Scholar 

  16. W. D. Lawson and J. W. Sabey, in Research Techniques in Nondestructive Testing, Vol. I, R. S. Sharpe, ed. (Academic Press, New York, 1970), pp. 443–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoefler, J.J., Taylor, R.E. Effects of infrared detector nonlinearity on thermal diffusivity measurements using the flash method. Int J Thermophys 11, 1099–1110 (1990). https://doi.org/10.1007/BF00500563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500563

Key words

Navigation