Skip to main content
Log in

q-Orthogonal polynomials and the oscillator quantum group

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The oscillator quantum algebra is shown to provide a group-theoretic setting for the q-Laguerre and q-Hermite polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drinfel'd, V. G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Berkeley (1986), Vol. 1, Amer. Math. Soc., 1987, pp. 798–820.

  2. JimboM., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10, 63–69 (1985); A q-analogue of U(gl(N+1)), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11, 247–252 (1986).

    Google Scholar 

  3. Woronowicz S. L., Compact matrix pseudogroups, Comm. Math. Phys. 111, 613–665 (1987).

    Google Scholar 

  4. Faddeev L. D., Reshetikhin N. Yu., and Takhatajan L. A., Quantization of Lie groups and Lie algebras, in Algebraic Analysis, Vol. 1, Academic Press, New York, 1988, p. 129.

    Google Scholar 

  5. Manin Yu. I., Quantum Groups and Non-Commutative Geometry, Centre de Recherches Mathematiques, Montréal, 1988.

    Google Scholar 

  6. Gasper G. and Rahman M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  7. Exton H., q-Hypergeometric Functions and Applications, Ellis Horwood, Chichester, 1983.

    Google Scholar 

  8. Askey R., Ramanujan and hypergeometric and basic hypergeometric series, Russian Math. Surveys 45, 37–86 (1990).

    Google Scholar 

  9. Vilenkin N. Ya., Special Functions and the Theory of Group Representations, Amer. Math. Soc. Transl. of Math. Monographs 22, Amer. Math. Soc., Providence, 1968.

    Google Scholar 

  10. Miller W., Symmetry Groups and Their Applications, Academic Press, New York, 1972.

    Google Scholar 

  11. Vaksman L. L. and Soibelman Ya. S., Algebra of functions of the quantum group SU(2), Funct. Anal. Appl. 22, 1–14 (1988).

    PubMed  Google Scholar 

  12. Masuda T., Mimachi K., Nakagami Y., Noumi M., and Ueno K., Representations of quantum groups and a q-analogue of orthogonal polynomials, C.R. Acad. Sci. Paris 307, 559–564 (1988).

    Google Scholar 

  13. Koornwinder T. H., Representations of the twisted SU(2) quantum group and some q-hypergeometric orthogonal polynomials, Nederl. Akad. Wetensch. Proc. Ser. A 92, 97–117 (1989).

    Google Scholar 

  14. Vaksman L. L. and Soibelman Ya. S., An algebra of bounded functions on the quantum group of the motions of the plane, and q-analogues of Bessel functions, Soviet Math. Dokl. 39, 173–177 (1989).

    Google Scholar 

  15. Masuda T., Mimachi K., Nakagami Y., Noumi M., Saburi Y., and Ueno K., Unitary representations of the quantum group SU q (1, 1): structure of the dual space of U q (sl(2)), Lett. Math. Phys. 19, 187–194 (1990); Unitary representations of the quantum group SU q (1, 1): II-matrix elements of unitary representations and the basic hypergeometric functions, Lett. Math. Phys. 19, 195–204 (1990).

    Google Scholar 

  16. Kirillov A. N. and Reshetikhin N. Yu., Representations of the algebra U q (sl(2)), q-orthogonal polynomials and invariants of links, in V. G.Kac (ed.), Infinite Dimensional Lie Algebras and Groups, World Scientific, Singapore, 1989, pp. 285–339.

    Google Scholar 

  17. Noumi M. and Mimachi K., Quantum 2-spheres and big q-Jacobi polynomials, Comm. Math. Phys. 128, 521–531 (1990); Big q-Jacobi polynomials, q-Hahn polynomials, and a family of quantum 3-spheres, Lett. Math. Phys. 19, 299–305 (1990).

    Google Scholar 

  18. Biedenharn L. C., The quantum group SU(2) q and a q-analogue of the boson operators, J. Phys. A22, L873-L878 (1989).

    Google Scholar 

  19. Macfarlane A. J., On q-analogues of the quantum harmonic oscillator and the quantum group SU(2) q , J. Phys. A22, 4581–4588 (1989).

    Google Scholar 

  20. Sen C.-P. and Fu H.-C., The q-deformed boson realization of the quantum group SU(n) q and its representations, J. Phys. A22, L983-L986 (1989).

    Google Scholar 

  21. Floreanini R. and Vinet L., q-Analogues of the parabose and parafermi oscillators and representations of quantum algebras. J. Phys. A23, L1019-L1023 (1990).

    Google Scholar 

  22. Hayashi T., Q-analogue of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127, 129–144 (1990).

    Google Scholar 

  23. Chaichan M. and Kulish P., Quantum Lie superalgebras and q-oscillators, Phys. Lett. B234, 72–80 (1990).

    Article  Google Scholar 

  24. Floreanini R., Spiridonov V. P., and Vinet L., Bosonic realization of the quantum superalgebra osp q (1, 2n), Phys. Lett. B242, 383–386 (1990).

    Article  Google Scholar 

  25. Floreanini R., Spiridonov, V. P., and Vinet, L., q-Oscillator realizations of the quantum superalgebras sl q (m, n) and osp q (m, 2n), Comm. Math. Phys., to appear.

  26. D'Hoker, E., Floreanini, R., and Vinet, L., q-oscillator realizations of the metaplectic representation of quantum osp q (3, 2), J. Math. Phys., to appear.

  27. Abe E., Hopf Algebras, Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  28. Yan, H., q-Deformed oscillator algebra as a quantum group, Academia Sinica-preprint, AS-ITP-90-33 (1990).

  29. Agarwal A. K., Kalnins E. G., and Miller W., Canonical equations and symmetry techniques for q-series, SIAM J. Math. Anal. 18, 1519–1538 (1987).

    PubMed  Google Scholar 

  30. Moak D. S., The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl. 81, 20–47 (1981).

    Article  Google Scholar 

  31. Erdélyi A. (ed), Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.

    Google Scholar 

  32. Carlitz L., Some polynomials related to theta functions, Ann. Mat. Pura Appl. (4) 41, 359–373 (1955).

    Google Scholar 

  33. Carlitz L., Some polynomials related to theta functions, Duke Math. J. 24, 521–527 (1957).

    Google Scholar 

  34. Carlitz L., Note on orthogonal polynomials related to theta functions, Publicationes Mathematicae 5, 222–228 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Laboratoire de Physique Nucléaire, Université de Montréal, Montréal, Canada H3C 3J7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floreanini, R., Vinet, L. q-Orthogonal polynomials and the oscillator quantum group. Lett Math Phys 22, 45–54 (1991). https://doi.org/10.1007/BF00400377

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400377

AMS subject classifications (1980)

Navigation