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The potential contribution of endothelin-1 to neurovascular 
abnormalities in streptozotocin-diabetic rats 
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Summary Abnormal vascular endothelium function 
may contribute to the reduced nerve perfusion impli- 
cated in the aetiology of neuropathy in diabetes melli- 
tus. The aim was to test the hypothesis that a powerful 
vasoconstrictor, endothelin-1, could be involved in 
nerve dysfunction in streptozotocin-diabetic rats. 
After 6 weeks of untreated diabetes, rats were im- 
planted with osmotic minipumps which continuously 
delivered the endothelin-1 antagonist, BQ-123, to the 
circulation via a jugular vein cannula. Sciatic motor 
conduction velocity, monitored serially, was in- 
creased after 4 days, treatment (p = 0.028), and 
reached asymptote by 9-11 days (p = 0.0001), when 
the degree of amelioration was approximately 60 % 
of the initial diabetic deficit. Treatment of non-dia- 
betic rats for 13 days with BQ-123 had no significant 
effect on motor conduction velocity. Sensory saphe- 
nous nerve conduction velocity was measured acutely 
after 20 days, BQ-123 treatment. The amelioration of 
a sensory deficit was approximately 80 % (p < 0.001); 

the resultant conduction velocity value was not sig- 
nificantly different from that of a non-diabetic con- 
trol group. After 20 days, treatment, sciatic nutritive 
endoneurial blood flow was measured by microelec- 
trode polarography and hydrogen clearance. A 48 % 
deficit with untreated diabetes (p < 0.001) was 64 % 
ameliorated by BQ-123 treatment (p < 0.001). In 
non-diabetic rats, BQ-123 treatment had no effect on 
blood flow. We conclude that endothelin-1 does not 
seem to be involved in the control of nerve blood 
flow in non-diabetic rats; however, it makes a major 
contribution to the perfusion deficit in experimental 
diabetes. This has deleterious consequences for nerve 
conduction, and it is possible that endothelin-1 recep- 
tor blockade may have therapeutic potential in dia- 
betic patients. [Diabetologia (1994) 37: 1209-1215] 
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An early reduction in peripheral nerve blood flow 
and consequent endoneurial hypoxia [1, 2] in experi- 
mental diabetes mellitus leads to the rapid develop- 
ment of diminished nerve conduction velocity 
(NCV) and increased resistance to ischaemic conduc- 
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tion failure [3, 4]. Similar subclinical functional indi- 
cators are found in newly-diagnosed diabetic pa- 
tients [5, 6]. Endoneurial hypoxia and reduced blood 
flow are also present in patients with established neu- 
ropathy [7-9]; therefore it is likely that neurovascular 
effects play a major role in the aetiology of this dia- 
betic complication. 

Abnormalities of and damage to vascular endo- 
thelium contribute to diabetic microangiopathy [10. 
16]. Thus, prostacyclin release is decreased in experi- 
mental diabetes [17] and in patients [18] because of 
reduced substrate availability as a consequence of 
impaired o)-6 essential fatty acid metabolism [19, 
20]. In addition, the synthesis or action of nitric 
oxide (NO) is diminished [10-14], and activity in the 



1210 

coagu la to ry  system is increased [21]. Together,  these 
result  in loss of  local vasodilat ion,  and increased 
th rombos is  fo rma t ion  which cont r ibute  to nerve  
i schaemia  [22]. Inc reased  L D L  and part icular ly its 
oxidised and glycated forms may  play a ma jo r  role 
in damaging  the endo the l ium [23-25]. Endo the l i a l  
d a m a g e  and tissue hypoxia  cause increased release 
of  a third factor,  the po ten t  vasocons t r ic tor  peptide,  
endothel in-1 (ET)  [26, 27]. P lasma E T  levels are ele- 
va ted  in several  vascular  disease states, including 
those  in diabet ic  pat ients  and rats [28-30]. A l t h o u g h  
the cardiovascular  significance of  e leva ted  p lasma 
E T  is unknown,  levels are p robab ly  too low to exert  
a p r o f o u n d  genera l  vascular  effect. However ,  p lasma 
E T  is der ived f r o m  an "over f low"  effect, reflecting 
great ly  enhanced  synthesis at the local tissue level 
[27]. 

There  is increased E T  release by the e n d o t h e l i u m  
of mesen te r ic  vessels in diabet ic  rats [29]. I f  this also 
occurs in nerve  vascular  supply, the likely effect  is va- 
soconstr ic t ion and reduced  b lood  flow. Thus, the aim 
was to examine  whe the r  E T  was involved in neuro-  
vascular  deficits in exper imenta l  diabetes. To this 
end, the effect  of  a specific E T  A recep to r  antagonis t  
on  N C V  and sciatic endoneur ia l  b lood  f low was ex- 
amined  in s t rep tozotoc in-d iabe t ic  and non-diabe t ic  
rats. 

Materials and methods 

Male Sprague-Dawley rats (Aberdeen University breeding 
colony), 19 weeks old at the start of the study were used. Dia- 
betes was induced by streptozotocin freshly dissolved in ster- 
ile 154 mmol 1-1 NaC1 solution (40-45 mg. kg -1 i.p.), and was 
verified 24 h later by estimating hyperglycaemia and glycosur- 
ia (Visidex II and Diastix; Ames, Slough, Bucks., UK). Ani- 
mals were tested weekly, and weighed daily. They were reject- 
ed if blood glucose was less than 20 mmol 1-1 or if they showed 
a consistent increase in body weight over 3 days. Samples for 
plasma glucose measurement using a standard test kit (GOD- 
Perid method; Boehringer Mannheim, Mannheim, Germany) 
were taken on the day of final experiments. 

After 6 weeks of untreated diabetes, rats were implanted 
subcutaneously with osmotic minipumps (Alzet 2ML2, Alza 
Corp., Palo Alto, Calif., USA) filled with the selective ET A an- 
tagonist BQ-123 (Berlex, Richmond, Calif., USA), cyclo (-D- 
Trp-D-Asp-Pro-D-Val-Leu), dissolved in sterile phosphate 
buffered NaC1 solution (154 mmol. 1-1, pH 7.35). Output of 
the pump was fed to a cannula inserted in the jugular vein. 
Rats were treated for up to 20 days with a dose of BQ-123 of 
approximately 0.7 mg. kg q day -1. The dose was governed by 
the pump delivery rate and the maximum solubility of BQ- 
123. In acute experiments on anaesthetized rats, infusion of 
BQ-123 at a dose 10-20 times less than that used in this investi- 
gation substantially (67 %) attenuated the pressor response to 
ET infusion [31]. Thus, a high level of chronic ET A receptor 
blockade would be expected at the dose employed. Osmotic 
minipumps were replaced at 14 days. A separate group of 
non-diabetic rats was also implanted with BQ-123-containing 
osmotic minipumps, delivering a similar dose to that used for 
diabetic rats. 
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The day before pump implantation in the diabetic group, 
NCV in the sciatic branch to tibialis anterior muscle was mea- 
sured to establish baseline values using a previously described 
method [32]. Briefly, under halothane anaesthesia (2-5 % in 
air), sterile bipolar needle stimulating electrodes (2 mm se- 
paration of tips) were inserted through the skin to stimulate 
sciatic nerve at the sciatic notch and popliteal fossa. A sterile 
concentric bipolar recording electrode was inserted into tibia- 
lis anterior muscle. Leg skin temperature was kept in the 
range 36-38 ~ by radiant heat. EMGs evoked from both stim- 
ulation sites were averaged eight times and latencies of the first 
inflections were measured. The sciatic nerve between the two 
stimulating electrodes takes a fairly straight course, and inter- 
electrode distances were used to calculate NCV. 

Serial measures of NCV were made in this treated diabetic 
group every 2 or 3 days for 18 days to examine the time course 
of NCV correction. In final experiments (day 20), saphenous 
sensory NCV was measured as previously described [33]. Pa- 
tency of the jugular cannulae was also tested in final experi- 
ments, by connecting a syringe, filled with sterile NaC1 solu- 
tion (154 mmol. l-l), in place of the osmotic minipump. If 
moderate pressure applied to the syringe plunger did not re~ 
sult in free flow into the jugular vein, the cannula was consid- 
ered blocked. This was an a priori criterion for acceptance of 
data. Thirteen rats were implanted at the start of the NCV 
study. Of these, 1 died and of the remaining 12 rats surviving 
the full experimental period, 2 proved to have blocked cannu- 
lae and NCV results from these rats were excluded. 

For groups of diabetic (n = 9) and non-diabetic (n = 12) rats 
given BQ-123 treatment, blood flow was determined after 20 
and 12-14 days, respectively. There were no losses due to 
blocked cannulae in these groups. Before blood flow measure- 
ment, for the non-diabetic group, sciatic NCV to tibialis ante- 
rior muscle in the contralateral leg was determined. In addi- 
tion to these groups, separate untreated non-diabetic and dia- 
betic rats were used to give reference values for NCV and 
blood flow. 

Nerve blood flow was measured by microelectrode hydro- 
gen polarography as previously described [1, 2]. In final experi- 
ments, rats were anaesthetized with inactin (50-100 mg kg -1 
i.p.), the trachea was cannulated for artificial ventilation and 
a carotid cannula was used to monitor mean systemic blood 
pressure. Core temperature of the animal was monitored and 
regulated between 37 ~ and 38 ~ using a rectal probe and radi- 
ant heat. The skin around the sciatic nerve incision was sutured 
to a metal ring and used to form a pool which was filled with li- 
quid paraffin at 37 ~ to a depth of at least 1 cm to minimise 
diffusion of gases directly to or from the nerve. Rats were giv- 
en neuromuscular blockade using d-tubocurarine (Sigma, 2 
mg. kg -1 via the carotid cannula) and artificially ventilated. 
The level of anaesthesia was monitored by observing any reac- 
tion of blood pressure to manipulation, and supplementary in- 
actin was given as necessary. Briefly, a glass-insulated plati- 
num microelectrode (tip diameter 2-8 ~m) was inserted into 
the middle portion of the sciatic nerve, above its trifurcation, 
and polarized at 0.25 V with respect to a reference electrode 
inserted subcutaneously in the flank of the rat. 10 % H 2 was ad- 
ded to the inspired gas, the proportions of 02 and N 2 being ad- 
justed to 20 % and 70 %, respectively. When the H2 current re- 
corded by the electrode had stabilized (20-30 min), indicating 
equilibrium with arterial blood, the H 2 supply was shut off 
and N2 delivery was increased appropriately. The H 2 clearance 
curve was recorded until baseline (30 min - 1 h), the latter 
being defined as no systematic decline in electrode current 
over 5 min. This procedure was then repeated at another 
nerve site. After the experiment, clearance curves were digi- 
tized and mono- or bi-exponential curves were fitted to the 
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Fig. 1. Serial measurements of the effects of ET antagonist 
treatment on sciatic motor conduction velocity following 6 
weeks of untreated diabetes. BQ-123 treated diabetic rats 
(0 ) ,  n = 10; non-diabetic rats treated for 13 days (O), n = 12. 
Horizontal solid line flanked by dashed lines, mean + SEM 
for a group of untreated non-diabetic rats, n = 10. All data are 
mean + SEM. Statistics: NCV in diabetic rats was significantly 
improved by treatment from day 4 (p = 0.028 vs baseline value 
on day 0) onwards. Asymptote was reached by day 11 
(p < 0.0001 vs baseline), but NCV was reduced compared to 
the untreated non-diabetic group (p = 0.001) 
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Fig.2. Effects of ET antagonist treatment on sensory saphe- 
nous nerve conduction velocity following 6 weeks of un- 
treated diabetes. C, non-diabetic control group, n = 12; D, un- 
treated 2-month diabetic group, n = 11; BQ-123, 20-day ET an- 
tagonist-treated diabetic group, n = 10. All data are 
mean + SEM. Statistics: C vs D, p < 0.001; C vs BQ-123, NS; D 
vs BQ-123, p < 0.001 
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data by computer using appropriate non-linear regression soft- 
ware that employed the Marquardt algorithm and the least 
squares method for optimising goodness-of-fit (Inplot; Graph- 
pad, San Diego, Calif., USA). The slow exponent, represent- 
ing nutritive flow [34], was accepted. The average of the two 
determinations was taken to represent sciatic endoneurial 
blood flow. Vascular conductance was calculated by dividing 
blood flow by mean arterial blood pressure during the record- 
ing period. 

Statistical analysis 

Data are expressed as mean + SEM. One-way analysis of var- 
iance was performed, followed by Student-Newman-Keuls 
tests to correct for multiple comparisons and assign differen- 
ces to individual between-group comparisons when overall sig- 
nificance (p < 0.05) was attained. Paired Student's t-tests were 
used to assess the significance of within-rat changes for serial 
measurement of motor NCV and unpaired Student's t-tests 
were used for comparison with a non-diabetic control group. 

Results 

Diabe t ic  rats were  hyperglycaemic ,  with a plasma 
glucose concen t ra t ion  of 41.7 _+ 2.3 m m o l  �9 1-1 and 
showed a weight  loss f rom 473 + 14 to 333 + 13 g. 
Th e re  was no effect  of  BQ-123 t r ea tmen t  on  these 
pa ramete r s  (plasma glucose 44.1 _+ 1.6 m m o l -  1-1, 
weight  loss f rom 476 + 8 to  338 + 18 g). BQ-123 also 
had  no effect  on  non-diabe t ic  rats; p lasma glucose 
was 8.8_+0.6 m m o l .  1-1 and weight  changed f rom 
466 + 9 to 477 + 9 g over  the 13-day t r e a tm en t  per iod.  

Figure 1 shows the m o t o r  N C V  changes with in- 
creasing dura t ion  of  BQ-123 t rea tment .  C o m p a r e d  
to the basel ine value fol lowing 6 weeks  of  un t r ea t ed  
diabetes  (day 0), the re  was a progress ive increase  in 
N C V  which reached  asympto te  af ter  9-11 days. The  
amel iora t ion  for  days 14-18 was approx imate ly  60 % 
(p < 0.0001). BQ-123 t r e a tm en t  for  13 days had  no  
significant effect  on  N C V  in non-diabet ic  rats. 

D a t a  f rom sensory  saphenous  N C V  de te rmina-  
tions are shown in Figure 2. The re  was a 12.5 + 1.4 % 
deficit  af ter  2 months  of un t r ea t ed  diabetes.  BQ-123 
t r ea tmen t  for  the last 20 days r educed  the deficit  to 
2.5 + 0.7 % (p < 0.001), which was not  significantly 
di f ferent  f rom the  non-diabe t ic  cont ro l  value. 

Endoneu r i a l  b lood  f low (Fig .3A) was 48 % re- 
duced  by  2 months  of  un t r ea t ed  diabetes  (p < 0.001). 
T rea tmen t  with BQ-123 had  no  significant effect  in 
non-diabe t ic  rats; however ,  with diabetes  the re  was a 
significant (p < 0.001) i m p r o v e m e n t  in b lood  flow 
which co r r e sponded  to a 63.5 + 9 .1% cor rec t ion  of 
the  deficit. The re  were  variat ions in b lood  pressure  
(Fig.3B) b e tw een  groups, with pressures  genera l ly  
being lower  for  diabetes.  This was not  statistically sig- 
nif icant  for  un t r ea t ed  diabetes;  however ,  the lowest  
pressure  was seen in the BQ-123 t r ea t ed  diabet ic  
g roup  (p < 0.001). BQ-123 t r e a tm en t  did no t  have  a 



1212 N.E. Cameron et al.: Endothelin-1 and neurovascular function 

O~ 
oo 

"7 
.=_ 
E 

..gO 
U.. 

"I- 

E 
g 

13- 

"r- 

E 
E 

"T 

E 

8 

o 
O 

1 6  A 

12  

8 -  

4 - 

0 - 

1 5 0  B 

1 3 0  

1 1 0  

9 0  

0 . 1 5  - C 

T _ 
x ~  
X X X X  
X X X X  
X X X X  
X X X X  
X X X X  
~ < X X X  
~ < X X X  
~<)<)CX 
~ X ~ X  

X X X X  
X [ X X X  
X X X X  
~ X X X  
::,C~)O< 

II 

K X X ) <  
~ X X X  
K.X X)< 
K X X ) <  
K X X ) <  
K . X X X  
K X X X  
K X X X  
K . X X X  
K X X X  
~ X X ~ <  
< . X X X  
K X X ) ' (  

< X X X  

0 . I 0  - 

0 . 0 5  - 

0 . 0 0  - . . . .  i 4XXX~ 

BQ- 123 
Control 

/ 
~SNN 
X X X N  
X X X N  
X X X X  

X X N N  
) O ( X N ~  
X N ) ~ X  

X X X X  
X X X X  
X X X X  
X X X X  
X X X X  
X X X X  
X X X X  
X X X X  
Y X X X  
Y X X X  

BQ- 123 
Diabetic 

Fig. 3. (A-C) Nutritive endoneurial blood flow (A), mean sys- 
temic arterial pressure (B) and nutritive endoneurial vascular 
conductance (C) in rlon-diabetic and diabetic rats with and 
without ET antagonist treatment. All data are group 
means+SEM. Control groups, untreated, n= 10; BQ-123 
treated for 13 days, n = 12. Diabetic groups, 2-month un- 
treated, n = 16; BQ-123 treated for 20 days following 6 weeks 
of untreated diabetes, n = 9. Statistics: Control vs Con- 
trol + BQ-123, NS for all measurements; blood flow, Control 
vs Diabetic untreated, p < 0.001; Control vs Diabetic + BQ- 
123, p < 0.01; Diabetic vs Diabetic + BQ-123, p < 0.001; blood 
pressure; all comparisons NS except for Diabetic + BQ-123 vs 
Control, Control + BQ-123 or Diabetic groups, p < 0.001; vas- 
cular conductance, Control vs Diabetic untreated, p < 0,001; 
Control vs Diabetic+BQ-123, NS; Diabetic vs Diabet- 
ic+ BQ-123, p < 0.001; Control + BQ-123 vs Diabetic + BQ- 
123, NS 

hypotensive effect in non-diabetic rats. When the 
data were expressed in terms of vascular conduct- 
ance (Fig.3C), thus compensating for blood pres- 
sure differences, there was complete normalization 
of conductance with BQ-123 treatment in diabetic 
rats (p < 0.001 vs untreated diabetic group, NS vs con- 
trol group). In contrast, BQ-123 had no significant ef- 
fect on sciatic vascular conductance in non-diabetic 
rats. 

Discussion 

These data provide the first demonstration that 
blockade of ET A receptors in streptozotocin-diabetic 
rats produces a marked improvement  in motor  and 
sensory nerve function. In common with other va- 
soactive treatments that return NC V to normal, the 
functional improvement  parallels an increase in nu- 
tritive blood flow [2, 35]. In addition to conventionai 
vasodilators, similar findings apply to agents that act 
on some of the metabolic consequences of diabetes 
and hyperglycaemia, such as aldose reductase inhibi- 
tors [36, 37], aminoguanidine [38], anti-oxidants [39] 
(o-6 essential fatty acids [40] and insulin [41]. Thus, it 
is likely that hyperglycaemia causes vascular dysfunc- 
tion which in turn leads to nerve abnormalities. 

Previous work on vessel function has highlighted 
the importance of endothelial abnormalities in the ae- 
tiology of diabetic microvascular disease. Thus, endo- 
thelium-dependent relaxation by NO is reduced [10- 
14] and there may be increases in endothelium-depen- 
dent contracting factors [14, 15]. Prostacyclin syn- 
thesis is at tenuated [17, 18] and the thrombolytic sys- 
tem is also impaired [21]. These alterations favour va- 
soconstriction, platelet aggregation, adhesion to the 
endothelium and thrombosis. Other changes, such as 
increased local product ion  of angiotensin II, would 
further favour vasoconstriction [35] and the smooth 
muscle proliferation involved in atherogenesis [42]. 

The data for BQ-123 treatment are in accord with 
this generalized view of endothelial dysfunction. An 
increase in plasma ET levels and evidence of local en- 
hancements of tissue activity are associated with 
some cardiovascular disease states including dia- 
betes [26-29]. ET  gene expression is also increased 
by diabetes, particularly in patients with peripheral 
vasculopathy [30]. There are several potential stimu- 
li for increased ET synthesis and release, such as en- 
dothelial damage and hypoxia [27]. In addition, at 
least in cultured endothelial cells, high glucose levels 
enhance ET secretion [43]. Diabetic vessels have re- 
duced ET sensitivity [44-461, perhaps caused by a 
down-regulation of receptors [47,48] or transduction 
mechanisms [49] in response to chronic exposure. Re- 
gional blood flow patterns for bolus ET  injection are 
altered by diabetes in conscious rats [10, 50] but the 
changes are complex, suggesting tissue heterogene- 
ity. Thus, for renal and mesenteric vascular beds, 
where flow is increased by diabetes, ET-mediated va- 
soconstriction was increased. However,  in the hin- 
dlimb circulation, where flow decreases with dia- 
betes, the vasoconstrictor response was relatively 
muted [50]. The data for sciatic nerve agree with the 
latter finding, as the effects of BQ-123 suggest that 
there would already be much greater local ET pro- 
duction and vasoconstriction with diabetes. 

In non-diabetic rats, sciatic nerve segmental vascu- 
lar supply is sensitive to acute exogenous ET adminis- 
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tration, which causes a sufficiently powerful vasocon- 
striction to transiently impair neuronal  function [51]. 
The present  data are the first to show that chronic 
BQ-123 t rea tment  improved the reduced nutritive 
blood flow and vascular conductance associated with 
experimental  diabetes. Vascular conductance was 
within the non-diabetic range; however, blood flow 
remained somewhat  subnormal because blood pres- 
sure was lower in treated than untreated diabetic 
rats, which would be expected as vasa nervorum 
shows minimal  pressure autoregulatory responses 
[52]. In marked  contrast, BQ-123 had no effect on 
blood flow, vascular conductance or blood pressure 
in non-diabetic rats. This is contrary to the findings 
for some other vasodilators, such as those blocking 
the sympathetic noradrenergic system [53] or nitrova- 
sodilators [54], which increase nerve blood flow in 
non-diabetic rats, al though a similar lack of effect on 
nerve perfusion was found for an angiotensin II an- 
tagonist [35]. Thus, the data suggest that  ETA-rece p - 
tor-mediated effects do not normally play a major 
role in the control of (resting) vasa nervorum blood 
flow, and probably blood pressure. However,  with 
diabetes, basal ET release :had a significant influence 
on both nerve perfusion and blood pressure. While 
this data provides evidence for the "classic" vasocon- 
striction effect of ET A receptor  activation [10, 27] on 
vasa nervorum, it is not known if there are additional 
effects media ted  by ET B receptors in diabetes. A test 
of this not ion awaits the development  of specific 
ET n antagonists. 

The sciatic motor  NCVamel iora t ion  by BQ-123, in 
percentage terms, matched that for blood flow rather 
than vascular conductance.  Treatments that comple- 
tely return nutritive blood flow to the non-diabetic 
range, such as guanethidine or aldose reductase inhi- 
bition, also completely restore sciatic motor  NCV [2, 
36]. This suggests that  the hypotensive effect of BQ- 
123 seen in anaesthetized diabetic rats was probably 
also present  when they were conscious. Otherwise, 
based on the conductance data, a greater NCV ameli- 
oration would be expected. Compared  to sciatic mo- 
tor fibres, saphenous sensory fibres showed a greater 
NCV response to BQ-123. We have previously noted  
this t rend f rom other studies, for example using al- 
dose reductase inhibitors, where the degree of ameli- 
oration was greater for a given dose [33] and the 
ED50 for saphenous was lower than for sciatic nerve 
[36]. Thus, it may be that the vascular supply of the re- 
latively small saphenous nerve has a greater safety 
margin than that  of the major  sciatic trunk. 

Sciatic nerve endoneur ium is hypoxic in experi- 
mental  diabetes [1, 36, 39], as is the sural nerve in 
neuropathic  patients [7]. This provides one potential  
stimulus for endothelial  ET synthesis and release 
[27]. Hypoxia enhances oxidative stress which direct- 
ly affects neurons [55]. A high level of oxygen free ra- 
dicals causes lipid peroxidation which inhibits prosta- 
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cyclin synthesis [56]. The ability of resistance vessels 
to relax is further impaired as oxygen free radicals 
react with NO [57], preventing the stimulation of 
smooth muscle guanylate cyclase. Reaction products, 
such as the hydroxyl radical [58] can damage endo- 
thelial cells directly. Cytotoxic effects of oxidised 
L D L  on the endothel ium have also been noted [24, 
25]. Damage  to endothelial  cells is a further stimulus 
for ET release [27]. Thus, there may be an e lement  
of positive feedback, involving a cycle of oxidative 
stress, hypoxic damage, endothelial  dysfunction and 
vasoconstriction which maintains reduced nerve per- 
fusion in experimental  diabetes. Blocking any ele- 
ment  of this self-reinforcing cycle could potentially 
restore blood flow. It is of interest that  t rea tment  
with oxygen free radical scavengers improves nerve 
conduction [39, 59], nutritive blood flow [39], endo- 
thel ium-dependent  relaxation [60] and protects 
against the development  of markers  of endothelial  
damage such as increased plasma angiotensin con- 
verting enzyme concentrat ion [39]. Thus, it is plausi- 
ble that anti-oxidant t rea tment  would also reduce lo- 
cal and circulating ET  levels. 

Elevated ET  product ion in diabetes may also be 
important  for other aspects of neurovascular func- 
tion. Thus, in non-diabetic rats ET causes increased 
vascular permeability [61], which is greatly exacer- 
bated when NO synthase activity is also blocked 
[62]. Many treatments  that  normalise NCV in diabet- 
ic rats also improve blood flow, which would reduce 
nerve hypoxia and, therefore, minimise at least one 
potential stimulus for local ET production. Such 
agents include aldose reductase inhibitors, anti-oxi- 
dants and aminoguanidine [36-39, 63]. They also pre- 
vent or correct increases in vascular albumin permea- 
tion [64], therefore, it is plausible that  their c o m m o n  
actions on nerve function, blood flow and albumin 
permeat ion arise because they all protect  against en- 
dothelial dysfunction, damage and consequent  ET  re- 
lease [12-14, 16, 38, 39, 60]. The efficacy of these 
treatments would be further increased by their abil- 
ity to counteract  impaired NO action [13, 14, 35, 59, 
65]. 

In conclusion, evidence increasingly identifies ab- 
normalities of the vascular endothel ium as an impor- 
tant cause of impaired nerve perfusion and neuronal  
dysfunction in experimental  diabetes. Parallels may 
also be drawn with neurovascular changes in diabet- 
ic patients. Thus, ET  is probably one of the important  
contributory factors to the multiple aetiology of dia- 
betic microangiopathy and ET  A antagonists may 
have a potential  therapeutic  role for complications 
like neuropathy. 
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