Skip to main content
Log in

Actin filaments: the main components of the scolopale in insect sensilla

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Two types of insect sensilla, mechanosensitive scolopidia and thermo-/hygrosensitive poreless sensilla contain a scolopale, which consists of numerous microtubules embedded in bundles of filaments (7–10 nm in diameter). The bundles are readily seen in the electron microscope in cryofixed (high-pressure freezing and rapid injection) and substituted samples. The filaments can be identified as actin filaments by using fluorescent phalloidins. Both electron microscopy and Triton-extraction exeriments reveal mechanical linkage between the main components in both types of sensilla. Since myosin appears to be absent in the scolopale, the actin filaments are unlikely to be involved in any contraction mechanism; these filaments more probably provide mechanical stability. The functional properties of the scolopale are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner H (1977) Insect sensillum specificity and structure: an approach to a new typology. In: Le Magnen J, MacLeod P (eds) Olfaction and taste. Information Retrieval, London, pp 295–303

    Google Scholar 

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Ann Rev Entomol 30:273–295

    Google Scholar 

  • Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemothermo- and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139

    Google Scholar 

  • Altner H, Tichy H, Altner I (1978) Lamellated outer dendritic segments of a sensory cell within a poreless thermo- and hygroreceptive sensillum of the insect Carausius morosus. Cell Tissue Res 191:287–304

    Google Scholar 

  • Altner H, Schaller-Selzer L, Stetter H, Wohlrab I (1983) Poreless sensilla with inflexible sockets. A comparative study of a fundamental type of insect sensilla probably comprising thermo- and hygroreceptors. Cell Tissue Res 234:279–307

    Google Scholar 

  • Bereiter-Hahn J (1978) A model for microtubular rigidity. Cytobiologie 17:298–300

    Google Scholar 

  • Crouau Y (1983) Ultrastructure study of the 9+0 type cilia of insect and crustacean chordotonal sensilla. Generalization of the hypotheses on motility. J Submicrose Cytol 15:295–299

    Google Scholar 

  • DeRosier DJ, Tilney LG (1984) How to build a bend into an actin bundle. J Mol Biol 175:57–73

    Google Scholar 

  • DeRosier DJ, Tilney LG, Bonder EM, Frankl P (1982) A change in twist of actin provides the force for the extension of the acrosomal process in Limulus sperm: the false-discharge reaction. J Cell Biol 93:324–337

    Google Scholar 

  • Drenckhahn D, Dermietzel R (1988) Organisation of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol 107:1037–1048

    Google Scholar 

  • Drenckhahn D, Kellner J, Mannherz HG, Gröschel-Stewart U, Kendrick-Jones J, Scholey J (1982) Absence of myosin-like immunoreactivity in the stereocilia of cochlear hair cells. Nature 300:531–532

    Google Scholar 

  • Egelman EH, Padrón R (1984) X-ray diffraction evidence that actin is a 100 Å filament. Nature 307:56–58

    Google Scholar 

  • Egelman EH, Francis N, DeRosier DJ (1982) F-actin is a helix with a random variable twist. Nature 298:131–135

    Google Scholar 

  • Egelman EH, Francis N, DeRosier DJ (1983) Helical disorder and the filament structure of F-actin are elucidated by the anglelayered aggregate. J Mol Biol 116:605–629

    Google Scholar 

  • Faulstich H, Zobeley S, Rinnerthaler G, Small JV (1988) Fluorescent phallotoxins as probes for filamentous actin. J Muscle Res Cell Motil 9:370–383

    Google Scholar 

  • Fulton AB (1984) The cytoskeleton: cellular architecture and choreography. Chapman and Hall, New York

    Google Scholar 

  • Hansen K, Hansen-Delkskamp E (1983) The development of the taste and tactile hairs in the pharate fly Protophormia terraenovae (Diptera, Calliphoridae) and in the embryonal cricket Achaeta domestica (Orthopteroidea, Ensifera). Zoomorphology 102:241–259

    Google Scholar 

  • Haug T (1985) Ultrastructure of the dendritic outer segments of sensory cells in poreless (‘no-pore’) sensilla of insects. A cryofixation study. Cell Tissue Res 242:313–322

    Google Scholar 

  • Haug T, Altner H (1984) A cryofixation study of presumptive hygroreceptors on the antennule of a terrestrial isopod. Tissue Cell 16:377–391

    Google Scholar 

  • Keil T, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla. In: King RC, Akai H (eds) Insect ultrastructure, vol 2. Plenum, New York, pp 477–516

    Google Scholar 

  • McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 6. Nervous system: sensory. Pergamon, Oxford, pp 71–132

    Google Scholar 

  • Moor H (1987) Theory and practice of high-pressure freezing. In: Steinbrecht RA, Zierhold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 175–191

    Google Scholar 

  • Moran DT, Rawley JC (1975) The fine structure of the cockroach subgenual organ. Tissue Cell 7:91–106

    Google Scholar 

  • Moran DT, Varela FJ, Rowley JC (1977) Evidence for active role of cilia in sensory transduction. Proc Natl Acad Sci USA 74:739–797

    Google Scholar 

  • Morgensen MM, Tucker JB (1988) Intermicrotubular actin filaments in the transalar cytoskeletal arrays of Drosophila. J Cell Sci 91:431–438

    Google Scholar 

  • Moulins M (1976) Ultrastructure of chordotonal organs. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 387–426

    Google Scholar 

  • Müller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Science of biological specimen preparation. SEM. AMF O'Hare, Chicago, pp 131–138

    Google Scholar 

  • Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Ann Rev Biochem 55:987–1035

    Google Scholar 

  • Schmidt K (1969) Der Feinbau der stiftführenden Sinnesorgane im Pedicellus der Florfliege Chrysopa Leach (Chrysopidae, Planiipennia). Z Zellforsch 99:357–388

    Google Scholar 

  • Schmidt M (1989) The hair-peg organs of the shore crab, Carcinus maenas (Crustacea, Decapoda): ultrastructure and functional properties of sensilla sensitive to the changes in seawater concentration. Cell Tissue Res 257:609–621

    Google Scholar 

  • Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the campaniform sensilla' of the shore crab, Carcinus meanas (Decapoda, Crustacea)? II. Ultrastructure. Cell Tissue Res 237:81–93

    Google Scholar 

  • Sitte H, Edelmann L, Neumann K (1987) Cryofixation without pretreatment at ambient pressure. In: Steinbrecht RA, Zierhold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 87–113

    Google Scholar 

  • Slepecky N, Chamberlain SC (1983) Distribution and polarity of actin in inner ear supporting cells. Hearing Res 10:359–370

    Google Scholar 

  • Slepecky N, Chamberlain SC (1985) Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and musclelike contractile proteins in inner ear sensory hair cells. Hearing Res 20:245–260

    Google Scholar 

  • Slepecky N, Chamberlain SC (1986) Correlative immuno-electronmicroscopic and immunofluorescent localisation of actin in sensory and supporting cells of the inner ear by use of low-temperature embedding resin. Cell Tissue Res 245:229–235

    Google Scholar 

  • Smith DS (1984) The structure of insect muscles. In: King RC, Akai H (eds) Insect ultrastructure, vol 2. Plenum, New York, pp 111–150

    Google Scholar 

  • Steinbrecht RA (1980) Cryofixation without cryoprotectants. Freeze substitution and freeze etching of an insect olfactory receptor. Tissue Cell 12:73–100

    Google Scholar 

  • Steinbrecht RA (1984) Chemo- hygro- and thermoreceptors. in: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1: invertebrates. Springer, Berlin Heidelberg New York, pp 523–553

    Google Scholar 

  • Steinbrecht RA (1989) The fine structure of thermo-/hygrosensitive sensilla in the silkmoth Bombyx mori: receptor membrane substructure and sensory cell contacts. Cell Tissue Res 255:49–57

    Google Scholar 

  • Steinbrecht RA, Gnatzy W (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi. I. Reconstruction of the cellular organization of the sensilla trichodea. Cell Tissue Res 235:25–34

    Google Scholar 

  • Steinbrecht RA, Lee J-K, Altner H, Zimmermann B (1989) Volume and surface of receptor and auxiliary cells in hygro-/thermoreceptive sensilla of moths (Bombyx mori, Antheraea pernyi, and A. polyphemus). Cell Tissue Res 255:59–67

    Google Scholar 

  • Studer D, Müller M (1989) Cryofixation of thick (500 μm) biological specimens by high-pressure freezing. In: Bailey GW (ed) Proceddings of the 47th annual meeting of the electron microscopy society of America. San Francisco Press, San Francisco, pp 732–733

    Google Scholar 

  • Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. In: Albrecht R, Ornberg R (eds) The science of specimen preparation. SEM. AMF O'Hare, Chicago, pp 253–269

    Google Scholar 

  • Tilney LG, DeRosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86:244–259

    Google Scholar 

  • Tilney LG, Egelman EH, DeRosier DJ, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent. J Cell Biol 96:822–834

    Google Scholar 

  • Toh Y, Yokohari F (1985) Structure of the antennal chordotonal sensilla of the American cockroach. J Ultrastruct Res 90:124–134

    Google Scholar 

  • Weiss DG, Langford GM, Allen RD (1987) Implications of microtubules in cytomechanics: static and motile aspects. In: Bereiter-Hahn J, Anderson OR, Reif W-R (eds) Cytomechanics. Springer, Berlin Heidelberg New York, pp 100–113

    Google Scholar 

  • Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76:4498–4502

    Google Scholar 

  • Yamazaki S, Maeda T, Miki-Noumura T (1982) Flexural rigidity of singlet microtubules estimated from statistical analysis of fluctuating images. In: Sakai H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic Press, Tokyo, pp 41–48

    Google Scholar 

  • Yokohari F (1978) Hygroreceptor mechanism in the antenna of the cockroach Periplaneta. J Comp Physiol 124:53–60

    Google Scholar 

  • Yokohari F (1981) The sensillum capitulum, an antennal hygroand thermoreceptive sensillum of the cockroch, Periplaneta americana L. Cell Tissue Res 216:525–543

    Google Scholar 

  • Yokohari F, Tateda H (1976) Moist and dry hygroreceptors for relative humidity of the cockroach, Periplaneta americana L. J Comp Physiol 106:137–152

    Google Scholar 

  • Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Philos Trans R Soc Lond [Biol] 256:401–426

    Google Scholar 

  • Zacharuk RY (1985) Antennae and sensilla. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 6. Nervous system: sensory. Pergamon, Oxford, pp 1–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfrum, U. Actin filaments: the main components of the scolopale in insect sensilla. Cell Tissue Res 261, 85–96 (1990). https://doi.org/10.1007/BF00329441

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329441

Key words

Navigation