Skip to main content
Log in

Phallolysin A mushroom toxin, forms proton and voltage gated membrane channels

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Phallolysin, a water soluble protein of M r 34,000 produced by the poisonous mushroom Amanita phalloides, causes lysis of various mammalian cell types. Lysis is thought to be initiated by the formation of ion permeable membrane channels. We therefore studied the interaction of phallolysin with solvent-free planar lipid bilayers. In the presence of low phallolysin concentrations (10–100 nM) single channel current fluctuations were observed. Unit channel conductances are 44 pS in 500 mM NaCl and 77 pS in 1 M NaCl. Although the channel does not significantly discriminate between alkali cations, its permeability to Cl- is lower (P K +/P Cl -=4/1). Gating kinetics display a pronounced bursting behavior and a dependence on membrane voltage, cis side pH-value, and on membrane lipid composition. An equivalence relation between membrane voltage and proton concentration was found, i.e. a pH change of one unit is equivalent to a corresponding voltage change of 130 mV. Dependence on the amount of negatively charged lipids is explained by changes of the actual pH due to surface charge effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1,3-SMPC:

1-stearoyl-3-myristoyl-glycero-2-phosphocholine

1,2-DOPS:

1,2-dioleoyl-glycero-3-phosphoserine

References

  • Adams DJ, Dwyer TM, Hille B (1980) The permeability of endplate channels to monovalent and divalent metal cations. J Gen Physiol 75:493–510

    Google Scholar 

  • Apell HJ, Bamberg E, Läuger P (1979) Effects of surface charge on the conductance of the gramicidin channel. Biochim Biophys Acta 552:369–378

    Google Scholar 

  • Bean RC, Shepherd WC, Chan H, Eichner J (1969) Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol 53:741–757

    Google Scholar 

  • Bell JE, Miller C (1984) Effects of phospholipid surface charge on ion conduction in the potassium channel of sarcoplasmic reticulum. Biophys J 45:279–287

    Google Scholar 

  • Benz R (1984) Structure and selectivity of the porin channels. In: Stein WD (ed) Ion channels: Molecular and physiological aspects. Academic Press, New York (Current topics in membranes and transport, vol 21, pp 199–219)

    Google Scholar 

  • Boheim G, Kolb HA (1978) Analysis of the multi-pore system of alamethicin in a lipid membrane I. Voltage-jump current-relaxation measurements. J Membr Biol 38:99–150

    Google Scholar 

  • Boheim G, Hanke W, Barrantes FJ, Eibl H, Sakmann B, Fels G, Maelicke A (1981) Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers. Proc Natl Acad Sci USA 78:3586–3590

    Google Scholar 

  • Boheim G, Hanke W, Jung G (1983) Alamethicin pore formation: voltage dependent flip-flop of α-helix dipoles. Biophys Struct Mech 9:181–191

    Google Scholar 

  • Boheim G, Hanke W, Barhanin J, Pauron D, Lazdunski M (1985) Single channel formation of cooperatively interacting units of the highly-purified Na-channel protein. In: Changeux JP et al. (eds) Molecular basis of nerve activity. W de Gruyter, Berlin

    Google Scholar 

  • Boquet P, Duflot E (1982) Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Natl Acad Sci USA 79:7614–7618

    Google Scholar 

  • Bühring HJ, Vaisius AC, Faulstich H (1983) Membrane damage of liposomes by the mushroom toxin phallolysin. Biochim Biophys Acta 733:117–123

    Google Scholar 

  • Cleveland MB, Slatin S, Finkelstein A, Levinthal C (1983) Structure-function relationships for a voltage dependent ion channel: properties of COOH-terminal fragments of colicin E1. Proc Natl Acad Sci USA 80:3706–3710

    Google Scholar 

  • Davidson VL, Brunden KR, Cramer WA, Cohen FS (1984) Studies on the mechanism of action of channel forming colicins using artificial membranes. J Membr Biol 79:105–118

    Google Scholar 

  • Eibl H (1980) Synthesis of glycerophospholipids. Chem Phys Lipids 26:405–429

    Google Scholar 

  • Eibl H (1984) Phospholipide als funktionelle Bausteine biologischer Membranen. Angew Chem 96:247–262

    Google Scholar 

  • Eibl H, McIntyre JO, Fleer EAM, Fleischer S (1983) Synthesis of labeled phospholipids in high yield. Methods Enzymol 98:623–632

    Google Scholar 

  • Faulstich H, Weckauf-Bloching M (1974) Isolation and toxicity of two cytolytic glycoproteins from Amanita phalloides mushrooms. Hoppe-Seyler's Z Physiol Chem 355:1489–1494

    Google Scholar 

  • Faulstich H, Zobeley S, Weckauf-Bloching M (1974) Cytolytic properties of phallolysin. Hoppe-Seyler's Z Physiol Chem 355:1495–1498

    Google Scholar 

  • Faulstich H, Bühring HJ, Seitz J (1983) Physical properties and function of phallolysin. Biochemistry 22:4574–4580

    Google Scholar 

  • Finkelstein A, Holz R (1973) Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In: Eisenman G (ed) Membranes, vol 2: Lipid bilayers and antibiotics. Marcel Dekker New York, pp 377–408

    Google Scholar 

  • Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 27:37–60

    Google Scholar 

  • Guy HR (1984) A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophys J 45:249–261

    Google Scholar 

  • Hamill OP, Sakmann B (1981) Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294:462–464

    Google Scholar 

  • Hanke W, Boheim G (1980) The lowest conductance state of the alamethicin pore. Biochim Biophys Acta 596:456–462

    Google Scholar 

  • Hanke W, Miller C (1983) Single chloride channels from Torpedo electroplax: activation by protons. J Gen Physiol 82:25–45

    Google Scholar 

  • Hanke W, Methfessel C, Wilmsen U, Boheim G (1984) Ion channel reconstitution into lipid bilayer membranes on glass pipettes. Bioelectrochem Bioenerg 12:329–339

    Google Scholar 

  • Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Google Scholar 

  • Jung G, Brückner H, Schmitt H (1981) Properties of the membrane modifying polypeptide antibiotics alamethicin and trichotoxin A-40. In: Voelter W, Weitzel G (eds) Structure and activity of natural peptides. W de Gruyter, Berlin, pp 75–114

    Google Scholar 

  • Kagan BL, Finkelstein A, Colombini M (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc Natl Acad Sci USA 78:4950–4954

    Google Scholar 

  • Kobert R (1891) Über Pilzvergiftung. St Petersb med Wochenschr 16:471–474

    Google Scholar 

  • Methfessel C, Boheim G (1982) The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism. Biophys Struct Mech 9:35–60

    Google Scholar 

  • Michaels DW (1979) Membrane damage by a toxin from the sea anemone Stoichactis helianthus I. Formation of transmembrane channels in lipid bilayers. Biochim Biophys Acta 555:67–78

    Google Scholar 

  • Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566

    Google Scholar 

  • Mueller P, Rudin DO (1968) Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol 18:222–258

    Google Scholar 

  • Noda M et al. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532

    Google Scholar 

  • Noda M et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Google Scholar 

  • Odenthal KP, Seeger R, Vogel G (1975) Toxic effects of phallolysin from Amanita phalloides. Naunyn-Schmiedeberg's Arch Pharmacol 290:133–143

    Google Scholar 

  • Pattus F, Cavard D, Verger R, Lazdunski C, Rosenbusch J, Schindler H (1983) Formation of voltage dependent pores in planar bilayers by colicin A. In: Spach G (ed) Physical chemistry of transmembrane ion motions. Elsevier, Amsterdam, pp 407–413

    Google Scholar 

  • Petzinger E, Seeger R (1976) Scanning electron microscopic studies on the cytolytic effect of phallolysin on isolated rat hepatocytes and As-30 D hepatoma cells. Naunyn-Schmiedeberg's Arch Pharmacol 295:211–213

    Google Scholar 

  • Sakmann B, Neher E (eds) (1983) Single channel recording. Plenum Press, London

    Google Scholar 

  • Sakmann B, Patlak J, Neher E (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286:71–73

    Google Scholar 

  • Schein SJ, Kagan BL, Finkelstein A (1978) Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163

    Google Scholar 

  • Schindler G, Feher G (1976) Branched bimolecular lipid membranes. Biophys J 16:1109–1113

    Google Scholar 

  • Seeger R (1975) Some physico-chemical properties of phallolysin obtained from Amanita phalloides Naunyn-Schmiedeberg's Arch Pharmacol 288:155–162

    Google Scholar 

  • Seeger R, Burkhardt M (1976) The haemolytic effect of phallolysin. Naunyn-Schmiedeberg's Arch Pharmacol 293:163–170

    Google Scholar 

  • Seeger R, Lehmann D (1973) Tumorhemmende Wirkung von Phallolysin aus Amanita phalloides. Naunyn-Schmiedeberg's Arch Pharmacol 279:235–242

    Google Scholar 

  • Seeger R, Kraus H, Wiedmann R (1973) Zum Vorkommen von Hämolysinen in Pilzen der Gattung Amanita. Arch Toxikol 30:215–226

    Google Scholar 

  • Seitz J, Adler G, Stofft E, Faulstich H (1981) The mechanism of cytolysis of erythrocytes by the mushroom toxin phallolysin. Morphological and biochemical evidence for sodium influx and swelling. Eur J Cell Biol 25:46–53

    Google Scholar 

  • Stümpel J, Eibl H, Niksch A (1983) X-ray analysis and calorimetry on phophatidylcholine model membranes. The influence of length and position of acyl chains upon structure and phase behavior. Biochim Biophys Acta 727:246–254

    Google Scholar 

  • Urry DW, Alonso-Romanowski S, Venkatachalam CM, Trapane TL, Prasad KU (1984) The source of the dispersity of gramicidin A single channel conductances. The l-Leu5-gramicidin A analog. Biophys J 46:259–266

    Google Scholar 

  • Varanda W, Finkelstein A (1980) Ion and nonelectrolyte permeability properties of channels formed in planar lipid bilayer membranes by the cytolytic toxin from the sea anemone Stoichactis helianthus. J Membrane Biol 55:203–211

    Google Scholar 

  • Wieland T (1968) Poisonous principles of mushrooms of the genus Amanita. Science 159:946–952

    Google Scholar 

  • Wieland T, Faulstich H (1978) Amatoxins, phallotoxins, phallolysin, and antamanide: The biologically active components of poisonous mushrooms. Crit Rev Biochem 5:185–260

    Google Scholar 

  • Wilmsen HU (1983) Rekonstitution biologischer Kanalproteine in planaren Lipidmembranen unter Verwendung feuerpolierter Glaspipetten. Untersuchungen zur Protonen-und Spannungsabhängigkeit des Phallolysinkanals. Diplomarbeit, Ruhr-Universität Bochum

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmsen, HU., Faulstich, H., Eibl, H. et al. Phallolysin A mushroom toxin, forms proton and voltage gated membrane channels. Eur Biophys J 12, 199–209 (1985). https://doi.org/10.1007/BF00253846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00253846

Key words

Navigation