Skip to main content
Log in

Regional differences in hindgut structure and function in the nutria, Myocastor coypus

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Morphologically the large intestine of the nutria resembles that of other caviomorphs, notably the guinea pig. The cecum is voluminous: it contributes 8.6% of the total intestinal length and 12.7% of the total intestinal surface area (considering the surface enlargement factor). It contains 27–32% of the wet ingesta and 20–23% of the dry matter in the gastrointestinal tract. In the colon the corresponding figures are: 21.8% of length, 12.6% of surface area, 16–21% of wet ingesta, and 16–40% of dry matter. The colon can be subdivided both structurally and functionally into two sections, the proximal and the distal colon, the border between the two being the apical flexure of a long parallel loop. The proximal colon (42% of colonic length) displays on the mucosal surface of its mesenterial side a narrow furrow bordered by ridges, which is absent in the distal colon. The ridges contain subepithelial accumulations of coiled tubuloalveolar mucoid glands, entwined by bundles of muscle fibers. Determinations of nitrogen in the contents near the furrow suggest a concentration of bacteria in this part of the lumen. It is hypothesized that the structural differentiations of the proximal colon provide mechanisms for the transport of bacteria from the proximal colon back into the cecum to maintain the fermentation function. The slopes of the longitudinal profiles for dry matter and for concentrations of sodium, potassium and calcium in the luminal contents change at the tip of the parallel loop. The electrical potential difference “intestinal lumen — blood” is particularly large in the proximal colon, indicating active electrogenic ion transport in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SEF :

surface enlargement factor

CSM :

colonic separation mechanism

PEG :

polyethylene glycol

DM :

dry matter

References

  • Alexander F (1962) The concentration of certain electrolytes in the digestive tract of the horse and the pig. Res Vet Sci 3:78–84

    Google Scholar 

  • Björnhag G (1972) Separation and delay of contents in the rabbit colon. Swed J Agric Res 2:125–136

    Google Scholar 

  • Björnhag G (1981a) The retrograde transport of fluid in the proximal colon of rabbits. Swed J Agric Res 11:63–69

    Google Scholar 

  • Björnhag G (1981b) Separation and retrograde transport in the large intestine of herbivores. Livest Prod Sci 8:351–360

    Google Scholar 

  • Björnhag G (1987) Comparative aspects of digestion in the hindgut of mammals. The colonic separation mechanism (CSM). Dtsch tierärztl Wschr 94:33–36

    Google Scholar 

  • Bonfert A (1928) Vergleichende Untersuchung über die Homologie der Darmteile bei Nagetieren unter teilweiser Berücksichtigung der arteriellen Blutversorgung. Anat Anz 65:369–398

    Google Scholar 

  • Gabella G (1981) On the musculature of the gastrointestinal tract of the guinea-pig. Anat Embryol 163:135–156

    Google Scholar 

  • Gorgas M (1967) Vergleichend-anatomische Untersuchungen am Magen-Darm-Kanal der Sciuromorpha, Hystricomorpha und Caviomorpha (Rodentia). Z Wiss Zool 175:331–404

    Google Scholar 

  • Gosling LM (1979) The twenty-four hour activity cycle of captive coypus (Myocastor coypus). J Zool 187:341–367

    Google Scholar 

  • Grzimek B (1979) Grzimeks Tierleben. Säugetiere 2. Deutscher Taschenbuch Verlag, München, pp 419–421

    Google Scholar 

  • Hamilton DL, Roe WE (1977) Electrolyte levels and net fluid and electrolyte movements in the gastrointestinal tract of weanling swine. Can J Comp Med 41:241–250

    Google Scholar 

  • Harder W (1950) Zur Gliederung des Enddarmes der Nagetiere. Anat Anz Erg H 97:235–238

    Google Scholar 

  • Holtenius K, Björnhag G (1985) The colonic separation mechanism in the guinea pig (Cavia porcellus) and the chinchilla (Chinchilla laniger). Comp Biochem Physiol 82A:537–542

    Google Scholar 

  • Hörnicke H, Schürg A, Krattenmacher R (1985) Kotfressen (Koprophagie) beim Sumpfbiber (Nutria) —eine normale, für die Nährstoffversorgung wichtige Verhaltensweise. Der deutsche Pelztierzüchter 50:161–162

    Google Scholar 

  • Illman O (1961) The coypu (Myocastor coypus Molina) as a laboratory animal. J Anim Tech Assoc 12:8–10

    Google Scholar 

  • Jacobshagen H (1937) Mittelund Enddarm. In: Bolk L, Goeppert E, Kallus E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere. Bd 3, Verlag Urban and Schwarzenberg, Berlin pp 563–724

    Google Scholar 

  • Kämmerer D, Wetzig H (1966) Histologische und histochemische Untersuchungen am Colon des Sumpfbibers (Myocastor coypus Mol.) Morphol Jahrb 108:344–362

    Google Scholar 

  • Koch T, Rothe G, Mosch K (1953) Beiträge zur Anatomie des Sumpfbibers. Hirzel Verlag, Leipzig

    Google Scholar 

  • Kostanecki K (1926) Le caecum des vertébrés. Bull Int Acad polonaise. Classe sci mathém et naturelle Série B Cracovie, No Supplémentaire

  • Kurohmaru N, Hayakawa T, Seki M, Zyo K (1984) Morphological characteristics of the intestinal mucosa in the Afghan pika (Ochotona rufescens rufescens). Exp Anim 33:509–518

    Google Scholar 

  • Lereboullet M (1945) Notes pour servire à l'anatomie du coipou (Myopotamus coipus, Commerson). Mem Soc Museum d'Histoire Naturelle de Strassbourg, pp 1–26

  • Luppa H (1961) Makroskopische, mikroskopische und topochemische Untersuchungen an der Schleimhaut des Enddarmes der Bisamratte (Ondatra zibethica L.) und einiger murider Nager. Z Mikroskop Anat Forsch 67:610–631

    Google Scholar 

  • Sakata T, v Engelhardt W (1981) Luminal mucin in the large intestine of mice, rats and guinea pigs. Cell Tissue Res 219:629–635

    Google Scholar 

  • Snipes RL (1978) Anatomy of the rabbit cecum. Anat Embryol 155:57–80

    Google Scholar 

  • Snipes RL (1979) Anatomy of the cecum of the vole, Microtus agrestis. Anat Embryol 157:181–203

    Google Scholar 

  • Snipes RL (1985) The mammalian cecum. In: Duncker H-R, Fleischer G (eds) Vertebrate Morphology. Fortschritte der Zoologie. Vol 30, Gustav Fischer Verlag, Stuttgart New York, pp 325–327

    Google Scholar 

  • Snipes RL, Clauss W, Weber A, Hörnicke H (1982) Structural and functional differences in various divisions of the rabbit colon. Cell Tissue Res 225:331–346

    Google Scholar 

  • Specht W (1977) Morphology of the intestinal wall. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 4–40

    Google Scholar 

  • Sperber I (1968) Physiological mechanisms in herbivores for retention and utilization of nitrogenous compounds. In: Isotope studies on the nitrogen chain. IAEA, Vienna, pp 209–219

    Google Scholar 

  • Sperber I, Björnhag G, Ridderstråle Y (1983) Function of proximal colon in lemming and rat. Swed J Agric Res 13:243–256

    Google Scholar 

  • Staaland H (1975) Absorption of sodium, potassium and water in the colon of the Norway lemming Lemmuns lemmus (L.). Comp Biochem Physiol 52A:77–80

    Google Scholar 

  • Stahl W (1987) Physiologische Untersuchungen am Magen-DarmTrakt der Nutria (Myocastor coypus Molina, 1782). Vet Diss München, Tierärztliche Fakultät, Universität München

  • Wagner JA (1963) Gross and microscopic anatomy of the digestive system of the nutria, Myocastor coypu honariensis (Geoffroy). J Morphol 112:319–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. K.-E. Wohlfarth-Bottermann, Institut für Cytologie und Mikromorphologie der Universität Bonn, Bonn, Federal Republic of Germany, on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snipes, R.L., Hörnicke, H., Björnhag, G. et al. Regional differences in hindgut structure and function in the nutria, Myocastor coypus . Cell Tissue Res. 252, 435–447 (1988). https://doi.org/10.1007/BF00214387

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214387

Key words

Navigation