
Machine Learning, 23, 221-249 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Controllers for Industrial Robots

baroglio@di.unito.it C. BAROGLIO

Dipartimento di lnJormatica, Universith di Torino, C.so Svizzera 185, 10149 Torino, Italy

A. GIORDANA attilio@di.unito.it

Dipartimento di Informatica, Universit& di Torino, C.so Svizzera 185, 10149 Torino, Italy

M. KAISER kaiser @ira.uka.de

University of Karlsruhe, Institute for Real-Time Computer Systems & Robotics

M. NUTTIN nuttin @ mech.kuleuven.ac.be

Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division PMA

R. PIOLA piola@di.unito.it

Dipartimento di Informatica, Universith di Torino, C.so Svizzera 185, 10149 Torino, Italy

Editors: Judy A. Franklin, Tom M, Mitchell, and Sebastian Thrnn

Abstract. One of the most significant cost factors in robotics applications is the design and development of
real-time robot control software. Control theory helps when linear controllers have to be developed, but it doesn't
sufficiently support the generation of non-linear controllers, although in many cases (such as in compliance control),
nonlinear control is essential for achieving high performance. This paper discusses how Machine Learning has
been applied to the design of (non-)linear controllers. Several alternative function approximators, including
Multilayer Perceptrons (MLP), Radial Basis Function Networks (RBFNs), and Fuzzy Controllers are analyzed
and compared, leading to the definition of two major families: Open Field Function Approximators and Locally
Receptive Field Function Approximators. It is shown that RBFNs and Fuzzy Controllers bear strong similarities,
and that both have a symbolic interpretation. This characteristic allows for applying both symbolic and statistic
learning algorithms to synthesize the network layout from a set of examples and, possibly, some background
knowledge. Three integrated learning algorithms, two of which are original, are described and evaluated on
experimental test cases. The first test case is provided by a robot KUKA IR-361 engaged into the "peg-into-hole"
task, whereas the second is represented by a classical prediction task on the Mackey-Glass time series. From
the experimental comparison, it appears that both Fuzzy Controllers and RBFNs synthesised from examples are
excellent approximators, and that, in practice, they can be even more accurate than MLPs.

Keywords: Robotics, Neural Networks, Fuzzy Controllers, Multistrategy Learning

1. Introduction

Traditionally, robotics has been a great challenge for artificial intelligence and machine
learning, since it offers the opportunity to design truly intelligent machines that interact
with their environment and exhibit human-like capabilities. Nowadays, the increasing
availability of sophisticated sensor systems for both manipulation and mobile robots makes
the development of smarter and more adaptive robots also technically possible. Such high-
performance systems are opening new markets to the robot technology, e. g. the recently
emerging market for intelligent service systems. However, the cost of programming such

105

222 c. BAROGLIO, A. GIORDANA, M. KAISER, M. NUTTIN. AND R. PIOLA

robots is high, and learning capabilities, i.e. the ability of the robot to gain profit from its ex-
periences, become indispensable for fully exploiting the robot's potential autonomy (Kaiser
et al., 1995b).

In this paper, we describe the results of an investigation done in the framework of the Esprit
project No. 7274, B-LEARN II. The fundamental goal of the project is the enhancement of
current industrial robots by incorporating learning capabilities on all levels of robot control.
The expected benefits are a decrease in the cost for developing the control software itself and
an increase in robots' reliability and flexibility. B-LEARN II is a wide-spectrum project,
structured into several subprojects related to different applicative fields (Kaiser et al., 1994).
In the research presented here, we focus on controllers for robots employed in assembly
lines, performing tasks (such as cutting and deburring), in which the same operation is
repeated thousands of times, and information coming from rough sensors only, such as
force and torque sensors, is exploited. In this kind of application, it is not interesting to
optimize any problem solving capability (as one might think reading about the application
of "AI techniques"), but to achieve high accuracy as well as high speed in accomplishing
simple operations such as following a contour.

In the traditional approach, such robots are usually controlled by means of linear con-
trollers. However, the simplifications involved in linear controller design are not always
justified. Especially the physical characteristics of the robot and the existing hardware and
software limitations that must be taken into account in the real world introduce nonlinearities
that are difficult to model.

The aim of this work is to assess the usability of ML techniques to increa~se the robot's
performance by means of nonlinear control, to ease the development of these controllers,
and to decrease the cost for realizing a new application. Learning to control robots on
a low level means learning continuous, real-valued functions: it is a regression problem.
In the literature, regression has been tackled by means of different techniques such as
neural networks (Rumelhart & McClelland, 1986; Rumelhart et al., 1985), prediction trees,
statistics (Cramer, 1974; Quinlan, 1993), regression trees (Breiman et al., 1984), and fuzzy
logics (Berenji, 1992); moreover, it has been seen either as a supervised or as areinforcement
learning task (Barto et al., 1983; Gullapalli, 1990).

The aim of this paper is to perform a comparative analysis of the different methods in order
to find out both the function approximators and the learning algorithms that are suitable
for the class of robotic applications described above. The major result of this research is
the characterization of a class of approximators (including Radial Basis Function Networks
(Poggio & Girosi, 1990) and Fuzzy Controllers (Berenji, 1992)), that we will call Locally
Receptive Field Networks (LRFN), which exhibits properties that are more interesting
than those of the well-known multilayer perceptron. More specifically, LRFNs, beyond
being excellent approximators, can be interpreted in terms of symbolic knowledge and
can be synthesised by means of standard symbolic and/or statistic learning algorithms.
Furthermore, LRFNs allow for incremental learning, which is an important issue especially
when realizing adaptive controllers (Miller et al., 1990).

An important novelty is the multistrategy method we propose for learning LRFNs from
examples of correct behavior and background knowledge. The emphasis will be given to
supervised learning, which can also be a basis for reinforcement learning architectures, as

106

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 223

shown by experiments based on Williams REINFORCE algorithms (Williams, 1992; Nuttin
et al., 1995).

The paper is organized as follows. The next section investigates the requirements posed
by the robotic applications we are interested in. Section 3 performs a comparative analysis
of the main methods available for regression, and tries to set a unifying view. Section 4 de-
scribes the supervised learning methods, and Section 5 presents an experimental evaluation
of both the approximators and the corresponding learning techniques. Finally, the results
are discussed in Section 6 and the conclusions are taken in Section 7.

2. Learning Compliance: a Key Issue in Assembly Robots

In this section we will investigate the nature of the control activity in a robot oriented to
industrial production in an assembly line. As it has been introduced above, we assume them
to be devoted to repetitive tasks, guided by rough sensors 1.

Typically, the program controlling a robot employed in an industrial assembly line can be
considered as organized in two layers. The highest one establishes the basic cycle executed
by the robot. This layer can be realized by a traditional robot program, but it can as well
be given as a dispatcher acting as a plan execution unit. The lowest level closes the loop
between sensing and action and takes care of the compliant behavior of the robot. To this
aim, data originating from force and torque sensors are employed.

In general, compliant motion refers to tasks that require the robot to establish or maintain
contact with its environment such that the capability of continuously adapting the robot's
action to its perception is needed (Mason, 1981). As an example, we can think of executing
the insertion of a peg into a hole. The quality of this action can be evaluated as a trade-
off between the global time required for achieving the goal state peg-inserted, and the
strength of the forces which should remain as low as possible during the whole insertion,
The solutions for dealing with this problem in the presence of uncertainty are the use of
intelligently designed passive compliance by means of elastic joints as well the realization of
an active compliance mechanism, for instance by means of conventional PID-controllers 2.

Plan Executor (Dispatcher) /

f
Continuous Control I

(Compliance)

Signal
Pre-processing

T
Sensors

Motor Drivers I

Actuators

Figure 1. Two layer control architecture for an assembly robot.

107

224 C. BAROGLIO, A. GIORDANA. M, KAISER: M. NUTTIN, AND R. PIOLA

Such a controller tries to keep the system in a nominal state; if the state changes, the
controller reacts with a signal proportional to the difference between the nominal state and
the actual one. In our case, for instance, a linear controller could be used to keep the
contact force between the surfaces constant. Unfortunately, a reaction proportional to the
error is not always the best solution to restore the nominal state as quickly as possible.
For the peg-into-hole task, it has even been proven that the optimal controller must be non
linear (Asada, 1990).

However, while control theory offers a good basis for developing linear controllers, it
does not support the design of non-linear controllers sufficiently. Therefore, empirical
tools such as Fuzzy Controllers (Berenji, 1992), that allow non-linear control functions to
be realized while avoiding the burden O f developing a mathematical model, are attracting
a lot of attention. In this context, we claim that ML can be of substantial help for both the
reduction of the development costs of an empirical solution as well as for the improvement
of the implementation quality.

When and how can ML techniques be applied to this aim? A possible answer can be
obtained by examining the knowledge sources available for an empirical approach to control
synthesis. A first knowledge source can be a qualitative theory about the control problem.
In fact, although it is difficult, or even impossible to derive an analytical control function
from a quantitative theory, it is easy to find some expert having a qualitative idea of its
general shape. In general, this knowledge is the starting point for manual fuzzy controller
synthesis (Bonissone & Chiang, 1993; Nuttin et al., 1994).

A second source is represented by the ability of a human operator (or of some other
machine) of executing the control task him/herself. It is extremely hard to explicitly for-
malize this knowledge as a theory; nevertheless, it is easy to apply it to generate examples
of control, and even from bad examples, control knowledge can be obtained (Kaiser et al.,
1995a).

Considering this second knowledge source, we immediately recognize the typical super-
vised learning framework, that can be applied for regression as well as for classification
problems. We would like, however, to stress the importance of exploiting qualitative theo-
ries too. As a matter of fact, in many cases, it is difficult to have a set of examples of control
actions covering all possible cases (a necessary condition for learning a complete control
function). In this case, using a domain theory can help to reduce the amount of training
examples significantly. The success of the manual synthesis (Bonissone & Chiang, 1993;
Yih & Shieh, 1992) is an implicit proof of this claim.

However, learning only from examples provided by a teacher has an intrinsic limitation:
it allows the synthesis of controllers performing a t m o s t as well as the teacher him/herself.
Actually, taking an optimistical view (filtering the noise from the examples and using a
good domain theory), we might even achieve a performance better than that of the teacher,
but this does not mean to overcome the inherent limitation. The only way to get rid of this
problem is to widen the learning framework by means of an integrated approach (Kaiser
& Kreuziger, 1994), using also other learning paradigms (such as reinforcement learning)
that are capable of continuously improving the controller's performance. In this respect,
an important feature of the learning algorithms and the representations that are to be used

108

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 225

is their support of incremental learning, to allow an expert to supply his/her knowledge
progressively as well as to allow for on-line refinement of the control function.

In the following sections, we will analyse and compare several tools for approximating
continuous functions. We will investigate which of them meet the requirements mentioned
above and are therefore most suitable. We'll also identify those that allow for incremental
learning and can use domain knowledge and examples. For two major reasons, the emphasis
will be on supervised learning algorithms. Firstly, many reinforcement learning techniques
do actually rely on supervised learning algorithms, such as backpropagation. Secondly,
supervised learning is a good means for initializing a robot's knowledge off-line. The
robots we are dealing with are delicate and potentially harmful. Therefore, we would
like a robot controller to be at least partially operational from the very beginning. A
reinforcement learning approach based on random exploration without any knowledge
about the environment is simply not feasible: the robot will damage itself (or it will cause
too many troubles) before learning anything. Therefore, the only viable solution is to off-
line generate a controller that already fulfills minimal operationality requirements before
beginning to learn by reinforcement.

3. Approximating Control Functions

The task of learning to approximate continuous functions has been investigated in many
fields, using alternative approaches such as statistics (Breiman et al., 1984; Specht, 1988;
Specht, 1990), connectionism (Rumelhart & McClelland, 1986; Barto et al., 1990), fuzzy
logics (Zadeh, 1992; Berenji, 1992), and symbolic machine learning (Sammut et al., 1992).

In applicative domains such as robotics and automated controls, two approximators at-
tracted a great attention: Multi-Layer Perceptrons (MLPs) and Fuzzy Controllers (FCs).
The reason for their popularity is mostly due to their robustness and inherent simplicity,
which allows applications to be quickly developed without requiring specific skills from
the user. Furthermore, low cost hardware supporting real time computation is available for
both architecture types.

Even if MLPs and/or FCs seem to be an obvious choice in a project with an industrial
perspective, we are interested in examining the problem of control function approximation
from a more general viewpoint. Therefore, many different architectures have been analysed
and compared. Apart from regression and prediction trees, all existing approximators
(independent on the approach they originate from) can be represented by some multi-
layered network, in which nodes (or neurons) computing a simple function (activation
function) are connected by means of weighted links. The differences among the various
kinds of approximators reside in the activation functions and in the methods used to build
the network and to update the weights (the learning algorithms).

The activation functions can be grouped into two major families: Open Field Func-
tions (OFFs) and Locally Receptive Field Functions (LRFFs). The OFFs exhibit an anti-
symmetry property with respect to a hyperplane splitting the input domain into two semi-
spaces, whereas LRFFs have radial symmetry. A good example of the first family is the
well-known sigmoid function ~7(x) -- 1 1+~-~' widely used in MLPs and in all their de-
scendants. Examples of the second family are the multidimensional Gaussian functions

109

226 C. BAROGLIO. A. GIORDANA, M. KAISER, M. NUTTIN, AND R. PIOLA

used in Radial Basis Function Networks (RBFNs) (Poggio & Girosi, 1990) or in Statistical
Neural Networks (SNN) (Specht, 1988; Specht, 1990). The choice of an activation function
belonging to one or the other family entails properties fundamentally different.

As it has been proven in (Hornik et al., 1989), a universal function approximator can be
constructed using only three layers of nodes (input, hidden and output), if the activation
function in the hidden layer is non-linear. In Figure 2 we compare the structure of two
networks of this kind: one based on sigmoidal and the other on bell-shaped functions.
From a topological viewpoint, they look identical. Nevertheless, the way they encode the
target function is very different.

Z Z

X Y X Y

(a) (b)

Figure 2. Multilayer perceptron (a) and Radial Basis Function Network (b) architecture. The fundamental
difference is in the activation function in the hidden layer neurons. In both cases the output neuron performs the

N
sum E ~ = I WiOi.

Considering the activation function O, = ~ (~ - - 1 wijIj) of the MLP's hidden units, we
see that each neuron (apart from a narrow region where the sigmoid transient occurs) splits
the input space into two semi-spaces where its output is significantly close to 1 or to 0. Only
the semispace where the output is close to 1 contributes to the value of the target function.

In case of the LRFN, each neuron is associated to a closed region in the input space
(hyper-ellipse), where its response is significantly greater than zero, and dominates over
that of every other node. The contribution to the approximation of the target function comes
essentially from this region.

In order to understand the different behaviors of the two network types, suppose to modify
a weight between two nodes in the MLR The effect affects an infinite region of the input
space and can also affect a large part of the co-domain of the target function. On the
contrary, changing the amplitude or shifting the position of the activation function in a
LRFN will have an effect local to the corresponding region. This locality property of the
LRFN allows for the network layout to be incrementally constructed (e.g. (del R. Mill~n,
1994)) by adjusting existing neurons and/or adding new ones. As every change has a local

110

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 227

effect, the knowledge encoded in the other parts of the network is not lost; so, it will not be
necessary to go through a global revision process.

Another property of LRFNs that is related to locality is the tendency to undergeneralize.
Depending on the way the hidden layer (the layout) is constructed, it is possible to have
large regions of the input space that are not covered by any neuron. If the current input
situation falls in such regions, the output of the network will constantly remain close to the
null value (usually zero), because no neuron will fire. On the contrary, every neuron of a
MLP covers an infinite region of the input space, so the network will usually be active in
any situation. A trained MLP has, therefore, the tendency to overgeneralize. Depending on
the application (e.g., if it is safety-critical or not), under(over)generalization can be either
an advantage or a disadvantage.

2.3

Y

1.2

Activation area of neuron A

~ Symbolic

X>I & x<3 & y>l.2 & Y < 2.3 ~-----~ A

II-

1 3
X

Figure 3. The closed region where the LRF-Function is dominant can be roughly approximated by a conjunctive
logical assertion.

Finally, an important property of LRFNs (as opposed to OFFNs, which, with few ex-
ceptions (Towell et al., 1990), are black-boxes w.r.t, their interpretation) is the possibility
to directly obtain a symbolic interpretation of the hidden neurons. In fact, a closed re-
gion in the input space can be approximated using a hyper-rectangle which, in turn, can
be described by a propositional formula, as shown in Figure 3. This property has already
been exploited for manually encoding fuzzy controller's layouts using qualitative domain
knowledge (Bonissone & Chiang, 1993). We will show how symbolic learning algorithms
can be used to automatically build excellent layouts for LRFNs.

In the following, four specific network architectures will be introduced: Time-Delay
Neural Networks, Radial Basis Function Networks, Time-Delay Radial Basis Function
Networks, and a Fuzzy Controller architecture belonging to the LRFN family. It is worth
noticing that the choice of these four types originates from an earlier, much wider, explo-
rative investigation.

111

228 C. BAROGLIO, A. GIORDANA, M. KAISER, M. NUTTIN: AND R. PIOLA

Wi

'+n

Figure 4. Basic structure of a TDNN elementary unit.

3.1. Time-Delay Neural Networks

The Time-Delay Neural Networks (TDNNs) have been introduced by A. Waibel (Waibel
et al., 1989) to handle time variant signals, and are basically an extension of the multilayer
perceptron. When coping with time variant signals, it is important to consider the short
term history in order to predict the future values. The idea followed in TDNNs is based on
the invention of the time delays, i.e., of a First-In First-Out memory, that enable a neuron
to store the history of its input signals (Fig. 4).

Each delayed input is associated to a weight that can be trained using the generalized
delta rule in combination with the backpropagation algorithm. Thus a neuron can detect
relationships between the current and the former input values, i.e., the the network can adapt
to spatio-temporalpatterns. Delaying neurons' input in a hidden or output layer is similar
to multiplying the layers in a multilayer perceptron. This may help in dealing with pattern
scaling and translation. Of course, delaying also results in a higher network complexity.

3.2. Radial Basis Function Networks

RBFNs (Fig. 2b) are a family of LRF-Networks architecture that has already been investi-
gated by several authors and recently received a strong mathematical foundation thanks to
Poggio and Girosi (Poggio & Girosi, 1990).

Principally, a RBFN consists of an input layer holding the current input values, a hidden
layer representing a number of closed regions (often called kernels) in the input space, and
an output layer integrating the signals calculated by the hidden layer units. This calculation
is performed on the basis of two parameters specific of each hidden unit: center and width.

The hidden neuron associated to a particular area returns the highest output value if
the inputs it receives are close to its center. The actual output of a hidden neuron is
determined by its activation function (mostly a multidimensional Gaussian function or a

112

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 229

function representing a hypersphere or a hypercube), applied to a distance measure, usually
computed by means of the Euclidean rule, i.e., for any input vector i , a RBFN computes
an output y, by means of equation n

y = f(~) = s((~-~wiri(Z))+ wo)
i=1

where s denotes the activation function of the output neuron (which is often the identity),
the wi's are the weights on the connections between the hidden layer and the output neuron,
w0 is a bias and ri(Z) is the activation function for hidden neuron i. Usually,

r i (: ~) = e ~i .

Here , /~ is the center and ~i the width of neuron i, the transfer function r~ is a multidi-
mensional Gaussian. Alternatively, a multidimensional Gaussian can be replaced by the
product of N unidimensional Gaussians

r i (Z) = e j:l , ,

where dim(Z) is the dimension of the input space. It has been proven that these networks
are capable of universal approximation on ~ or on compact subsets of ~ (Park & Sandberg,
1993), given suitable centers #i-

3.3. Time-Delays in Radial Basis Function Networks

For handling time-variant inputs, time delays can also be introduced in RBFNs. Such an
extension has been proposed by Berthold (Berthold, 1994).

q(~-d))
F i g u r e 5. Structure of a Radial Basis Function Network with time delays in the hidden layer.

Figure 5 shows the structure ofa RBFN network with d time-delays in the hidden (cluster)
layer. The output neuron calculates its output y by adding current membership values and
their history over the last d time steps, such that

n d

i=l j=o

113

230 C. B A R O G L I O , A. G I O R D A N A , M. K A I S E R : M. N U T T I N : A N D R. P I O L A

In addition, it is also possible to delay the actual input vector "£(t), i.e., to give each
neuron access to S(t), S(t - 1) , . . . , S(t - d) (Berthold, 1994). However, this increases
the dimension of the input space from dim(S) to (d + 1) x dim(S) and, consequently,
results in a much higher number of connections that are to be considered. Also, a higher
number of examples is necessary to sufficiently cover the input space. Since the application
investigated here is subject to real-time constraints, this option was not considered for the
experiments described in Section 5.

3.4. A Fuzzy Controller Architecture

Fuzzy controllers are universal function approximators developed within the fuzzy logic
community (Zadeh, 1992; Berenji, 1992). Even though they originate from a very different
approach, they bear strong similarities to RBFNs and share the same learning algorithms.
As a matter of fact, Fuzzy Controllers do not correspond to a single architecture but to a
wide family that contains the topology of Figure 2b as a special case. Nevertheless, in
our research, we focused on a specific topology, derived from the one proposed by Berenji
(Berenji, 1992). Figure 6 shows the corresponding network representation.

r

x l z

g
Gaussian Unit

Product Unit

Average Sum Unit

Figure 6. Network corresponding to the fuzzy control ler used in current experiments. Gauss ian units have a
unidimensional Gauss ian activation function. Product units compose the input values using ar i thmetic product or
softmin. An average sum unit per forms the weighted sum of the activation values received f rom the product units.

Differently than RBFNs, the fuzzy controller is organized as a three-layered network plus
an input layer. The first hidden layer neurons are feature detectors with a unidimensional
Gaussian activation field, which receives only one input signal. They compute the function

where rij is the value of membership of the j-th component x j of input i to a bell-shaped
fuzzy set of center ~i j and width a~j.

114

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 231

The neurons in the second hidden layer receive the membership values computed by
two (or more) neurons of the previous layer, which are required to process different input
signals. The output is obtained using the sofimin composition rule

j ~ l TiJ e-kr~j

ri : ~-~dina(~) e_kr i j
A...j= 1

(2)

that tends to the regular rain (the function usually employed for fuzzy AND) for k -+ cxz,
but is differentiable. Finally, the output neuron performs the linear combination

~ i wiri (3)
Y - ~ i ri

of the weights w~ and the activation values r~ of the corresponding second layer neurons.
Comparing this structure to an RBFN, two differences can be noticed: first, the locally

receptive field function is built as a combination of unidimensional functions using sofimin
(2) instead of product. This function is similar to a pyramid with smoothed corners and
allows for a more precise symbolic interpretation. The second difference is the use of
normalization (3) in the output unit. The consequence is an improved capability of gen-
eralization, so that good approximations can often be achieved using a smaller number of
neurons than in a corresponding RBFN.

In the fuzzy set literature, the following symbolic interpretation is given to this architec-
ture. The first hidden layer is interpreted as a mapping from continuous input features to
linguistic variables (Fuzzy Sets) and is called Fuzzifier. The second hidden layer is seen as
a set of implication rules in conjunctive form defining a logical mapping from the set of
linguistic variables to a discretized set of output values. For instance, by referring to Figure
6, neuron rl can be represented as a rule A N D ~ Wa. Finally, the last layer is seen as a
mapping from a discrete set of values to a continuous space and is called Defuzzifier.

4. Supervised Learning Algorithms for TDNN, RBFN and Fuzzy Controllers

Both in OFFNs and in LRFNs, layout construction and weight calculation are usually
performed in separate steps. OFFNs' layout is usually defined in an empirical way by
using rules of thumb to select both the number of neurons and the connnecting topology;
algorithms such as KBANN (Towell et al., 1990) or Cascade-Correlation (Fahlmann &
Lebiere, 1989) are designed for specific applications or architectures and do not help in
the general case. On the contrary, several algorithms are available for automating LRFNs
layout construction. The reason for this difference is to be sought in the locality property
characterizing LRFNs; in fact, the hidden layer can be constructed by subdividing the input
space into a mosaic of closed regions, allowing the approximation of the target function
by means of a histogram. In RBFNs literature, this task is usually accomplished using
clustering algorithms such as k-means or variants of it (Moody & Darken, 1989; Wilpon
& Rabiner, 1985). Afterwards, the weights on the links to the output level can be learned
either by performing a gradient descent of the quadratic error or using algorithms based on

115

232 C. BAROGLIO, A. GIORDANA: M. KAISER: M. NUTTIN, AND R. PIOLA

pseudo-inverse matrix transformation. Gradient descent can be quite slow but it can easily
be adapted in order to be done incrementally on-line. On the contrary, the pseudo-inverse
matrix transformation is fast but not incremental. Approaches to construct also the network
layout in an incremental manner are, for instance, GAL (Alpaydin, 1991) and Fritzke's
Growing Cell Structures (Fritzke, 1993).

The most common approach to design a Fuzzy Controller is to setup the network layout
manually, relying on the domain knowledge of a human expert (Nuttin et al., 1994). Variants
of the error gradient descent have been proposed in order to refine the fuzzy sets in a second
step (Berenji, 1990).

In the framework of the present work, three alternative procedures have been defined
in order to automate the layout construction of a LRFN. One of the procedures is based
on a variant of the k-means according to the algorithm described in (Moody & Darken,
1989; Wilpon & Rabiner, 1985). A second procedure is based on CART (Breiman et al.,
1984), an algorithm for generating Regression Trees. Finally, the third technique is based
on symbolic learning methods in the line of (Sammut et al., 1992), and allows learning both
from data and from background knowledge. In the present form, the procedure based on
k-means is immediately applicable to the RBFN and TDRBFN architectures whereas the
other two have been implemented in order to work on the architecture of the fuzzy controller.
Nevertheless, they can be easily generalized to work indifferently on every kind of LRFN
architecture. Afterwards, the networks can be trained on-line e.g. by error minimization
using a gradient descent technique, which has the advantage that it is also applicable on-line.

4.1. Learning LRFNs' Layout by means of Statistical Clustering

The original proposal by Moody and Darken (Moody & Darken, 1988) for learning RBFNs'
layouts was to use a modified k-means clustering algorithm to find a set of k clusters.
However, k-means is an unsupervised algorithm, i.e., it does not take the output information
into account. If the examples given for training the RBFN are in the form of (2", ~7) with

being the desired output vector for input :~, the network construction should use this
information.

The procedure applied for the experiments described in Section 5 is based on work pre-
sented in (Musavi et al., 1992). Its purpose can be described as3:

Given: A set of examples {(~1, Yl), .-- , (~,n, Yn)}
Determine: A set of clusters {(ill, C~l), - --, (tic, a t) } , C << n that covers the given :?i
and classifies them correctly with respect to the desired output yi.

The algorithm used for initializing RBFNs networks is the following:

1. Divide the output interval [Ymim Ymax] into K equidistant and distinct intervals I 1 , . . . , I~c

2. For all i E { 1 , . . . , n}: Define the index k E { 1 , . . . , K} of the interval Ik covering y~
as the class of xi. This is denoted by Class(:~i) = k.

116

L E A R N I N G C O N T R O L L E R S F O R I N D U S T R I A L R O B O T S 233

3. Define a cluster (/_7, a) : : (S~,/3amin) for each i E { 1 , . . . , n } , with ~Tmin : :
i n m ni , j=l , i¢ j l [x~ - S j l I. This step results in C = n initial clusters.

4. For all i , j E { 1 , . . . , C } , i ~ j , if C l a s s (~ i) = C l a s s (&) = k try to merge the
clusters:

m ~ + ~ for I E {1 , . . . ,dim(/f i)}. (A) Compute # ~ : # n ~ = z
1 (B) Compute < r ~ = ~l lm - 17jll + max(~,~j).

(C) Compute r = max~=a{llfi~ - S/ll " C l a s s (S t) = k} .

(D) Compute d = minLa{ l l f i~ - S~ll : Class(Sz) ¢ k}.
(E) I f d > c~r remove cluster j , set (fii, o'~) := (f i ~ , ~ w) - This means C = C - 1.

5. If at least two clusters have been merged (i.e., the number C of clusters has been
reduced) go back to 4.

The parameters c~ and/3, used in this procedure, have the following meaning: c~ tells how
conservat ive the algorithm is about generating clusters that cover some example belonging
to classes different than the one at issue. If c~ > 1, no cluster covering wrong examples
will be generated. If c~ < 1, the algorithm is allowed to generate clusters covering wrong
examples. Therefore, changing c~ is a way to influence both the accuracy that can be expected
from the RBFN generated on the found clusters (a greater c~ means higher accuracy) and
the size of the network (the smaller c~, the more clusters will be merged and the less will be
kept). Differently than the observations documented in (Musavi et al., t992), for function
approximation problems as they are considered here, selecting c~ < 1 has proven to provide
very satisfactory results, both in terms of network size and final approximation accuracy
(see Section 5).

The/3 parameter determines the initial size of the clusters. A conservative selection for
/3 is/3 < 0.5 or even/3 = 0, which guarantees that the initial clusters do not interfere.
A setting of/3 > 0.5 or even/3 > 1 results in an initial cluster set that already provides
ambiguous classifications. This is usually not desired.

4.2. Learn ing L R F N s ' Layou t s with CART

Regression Trees were introduced by (Breiman et al., 1984) for function approximation. A
regression tree partitions the domain of a function f (£) into rectangular regions (Fig. 7)
where the value o f f (S) is similar, such that it can be approximated by a constant. Therefore,
f (£) is approximated by a histogram as accurately as the subdivision of the input domain
permits.

The algorithm for generating a regression tree (CART) is simple and a detailed description
can be found in (Breiman et al., 1984).

Given a learning set {($1, yl) , - - •, (S~, y,~)}, CART works as follows:

1. Start with a tree containing only one leaf, classifying all samples in the same category,
and let the label of this leaf be the average value f (J) ;

117

234 c . BAROGLIO, A. GIORDANA. M. KAISER, M. NUTTIN, AND R. P IOLA

YE 0 Y NO

x2

I- F=I3.5
3 ___

1"6 l -

---" '2

F=I2

7

F=13

F=14

F=
15

1
I i

xl
12 24

Figure 7. A Regression Tree

. While the desired accuracy ~ has not been achieved, repeat:

(A) Choose a leaf F having an impurity I(F) (the mean square error) greater than 4;

(B) Find the feature z j for which there exists a split value kj so that the global impurity
I(FO)) + I(F(2)) for the two leaves F (1) and F (2), obtained by splitting F in kj,
is minimized;

(C) Convert F into a node with the test x j >_ kj and two leaves F (1) and F (2) as sons;

(D) Label F (1) and F (2) with the average value of f (£) in the corresponding regions
of the domain.

To control overfitting, the regression tree can be pruned: the tree is explored bottom-up
and every inner node (which corresponds to a test) is removed if this does not cause the
error computed on a second learning set (the pruning set) to increase.

A regression tree can be employed directly to build a controller, but it has some major
disadvantage: it approximates the function with a histogram (Fig. 10a), while smoothness
of the output is desirable to avoid harmful mechanical solicitations to the robot; only its
consequents (output values) can be fine-tuned, and not the input classification part, finally,
the known learning algorithms for regression trees are not incremental, whereas we need
an incremental tool for on-line refinement.

118

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 235

For all these reasons, we will convert a regression tree into the layout of a LRF network
(both a Fuzzy Controller or a RBFN) that can the be further refined. This is done by the
following algorithm:

1. For each leaf Fi in the tree, identify the rectangular region R~ it defines in the input
space. This is done by collecting the tests on the path from the root to the leaf.

2. If the target network is a RBFN, every region Ri becomes a neuron r~, centered on the
center of Ri and spanning on it; in the case of a Fuzzy Controller, every edge aij of
Ri becomes a neuron in the first hidden layer, associated to a unidimensional Gaussian
of amplitude aij, connected to a neuron ri in the second hidden layer and having the
s o f t m i n as activation function.

3. Every neuron r~ is connected to the output neuron by a link with weight wi equal to the
average value of f(~F) in the corresponding region Ri.

4.3. Constructing LRFNs" Layouts using a Concept Learning Algorithm

A regression problem can be mapped into a classification problem using a simple method:
the real co-domain of the target function f(aT) is approximated by a finite set (.9 of values.
f (~) is transformed into a histogram f* (J) by replacing each output value with the nearest
value in (.9. In this way, the regression problem becomes a classification problem, being O
the set of classes and f* (2F) the learning set, which can be solved using an algorithm such
as C4.5. An example of this method is also described in (Sammut et al., 1992).

The classification knowledge in a decision tree can be processed similarly to the one
encoded in regression trees, in order to obtain an LRFN network. The improvement, w.r.t.
the work of Sanmmt and Michie, is that both fuzzy controllers and RBFNs can be further
trained, obtaining a greater accuracy.

In the present case, we didn't use decision trees since they did not offer advantages over
regression trees. Instead, we applied a more flexible learner called SMART+ (Bergadano
et al., 1988; Botta & Giordana, 1993), that allows the induction process to be guided by
the background knowledge of a domain expert. SMART+ is a complex system capable of
learning in First Order Logics as well as in Propositional Calculus (as in the present case).
A thorough description of the system is ,beyond the aim of this paper, thus we will only
describe the subset of it that has been used here.

As well as FOIL (Quinlan, 1990) and FOCL (Pazzani & Kibler, 1992), SMART+ uses
a general to specific learning strategy. Given a set of classes (_9, it starts the search from a
formula @, which can be the predicate T r u e or a more complex formula (suggested by an
expert or deduced from a domain theory) (Bergadano & Giordana, 1988).

One major feature, distinguishing SMART+ from other first order language learning
systems, is its ability to deal with continuous attributes. This is done using predicate
schemes such as

P (z l , x 2 , . . . ,xn, K : [Vrnin,V 5]). (4)

119

236 c BAROGLIO, A. GIORDANA: M. KAISER, M. NUTTIN, AND R. PIOLA

In (4) x l, x2, ... , x n are variables and K denotes a numerical threshold to be determined
during the learning process. The interval [vmin, Vmaz, 5] defines the range for K and the
required precision. Obviously, in a learning problem framed in propositional calculus,
predicate schemes will not have any variable but only constants to tune. An example of a
predicate used for learning a controller's layout can be GreaterForcex(K : [10, 25, 0.1])
stating that the force along the X axis be greater than a constant K, ranging from 10 to 25
Newtons, with granularity 0.1.

In this case, the learning events are simply described as attribute vectors where Forcex is
one of them. The semantics of the predicate GreaterForeez is simply given by a function
which compares the attribute Foree~ with the value assigned to K and returns true if
the former is greater and false otherwise. SMART+ environment offers a function library
designed in order to define the predicate semantics on the attributes of the learning events.
In this way, background knowledge can be easily encapsulated in the predicate semantics.

A second method for supplying background knowledge is provided by necessity con-
straints which are statements of the type:

P(xl , x2,..., xn) needs ¢(Yl, y2, ..., Ym) (5)

where ¢(Yl, Y2,..., Ym) is an and/or formula belonging to the concept description language.
The meaning of (5) is: P(Xl, x2, ..., xn) can be true only if ¢(Yl, Y2, ..., Ym) has been
proven true. In general, SMART+ will use a predicate P for making a formula ~ more
specific, only if its necessity constraint ¢ is a subformula of ~b. The induction space can be
arbitrarily constrained by properly defining a set of necessity constraints.

The induction algorithm used by SMART+ for learning controller layouts learns one class
o at a time:

Let E(o~) be the set of examples for the current target class oi; let moreover, u(¢) be
a measure of the quality of an inductive hypothesis ¢. While E(oi) is not covered, or no
new inductive hypotheses are found, do:

1. Start with an "or" tree T containing the formula "True", or a tree previously initialized
with a set of formulas derived from a theory (or given by an expert).

2. Insert in the list O P E N all the leaves currently existing in T.

3. Select from O P E N the formula ¢ having the best ranking u(¢) .

4. Determine the set PA of predicates applicable to ¢ according to the predicate constraints.

5. For each predicate p(K) c PA, find the assignment k for the parameter K in p which
maximizes u(¢ A p(k)). If u > 0 put ¢ A p(k) in the list TODO sorted according to
decreasing values of u.

6. I fTODO is longer than a parameter n _> 1, limiting the branching factor of T, truncate
TODO after the n-th item. Then, expand T with the formulas in TODO and put them
in OPEN.

120

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 237

7. If O P E N contains some classification rule ~p(according to an assigned criterion), go
to step 1; otherwise go to step 2.

The function u used to rank an inductive hypothesis ¢, has been chosen to be the function

i f (v > vo) t h e n u = v w else u = 0 (6)

with 0 _< v < 1 and 0 < w < 1 being the proportion of positive examples covered by
¢ and the correctness of ¢, respectively. The condition v < v0 prevents the generation of
too specific classification rules, in order to control the overfitting. Additionally, SMART+
offers a wide choice of evaluation criteria, including the well known i n f o r m a t i o n 9ain.

Inductive hypotheses are accepted as classification rules also if they are slightly incon-
sistent. In particular, a classification rule ¢ is allowed to cover some examples of the two
classes corresponding to the two values in (_9 adjacent to the target class oi, provided that
its correctness doesn't drop below an assigned threshold w0. The tuning of w0 and Vo is
left to the user and can require several trials to find a proper setting. A second constraint
which can be posed on the acceptance of a classification rule is on the syntactic structure.
In particular, it is possible to require such a rule to contain one or more predicates specified
by the user. In this way, it is possible to achieve a complete characterization of the input
region associated to the value represented by the target class.

The antecedents of the rules generated by SMART+ describe hyper-rectangles in the input
space that can be processed as in the case of regression trees. Rule consequents are used for
initializing the weights on the connections from the generated networks' hidden layer to the
output neurons. Incompleteness and incorrectness of the rule set can easily be recovered
by subsequently training the network's weights.

4.4. Refining L R F N s On-line

Let E = ½ (Y - y)2 denote the square error exhibited by an approximation y = f (£) of
the function Y = F(Z) for a specific input £. Let moreover f (i) depend upon a set 7) of
tunable parameters. The error gradient descent is performed by iteratively updating each
parameter Pi ~ 7 ~ with the following rule (Rumelhart et al., 1985):

OE OE Oy Oy
zXP~ : -~ -g -~ : - 7 0y O ~ - ~ (z - Y) OP~ (7)

If the update of the parameter "P takes place immediately, the learning will be charac-
terized as on-line. If the effect is delayed until the whole learning set has been processed,
the learning method is called off-line or batch learning. Batch learning guarantees more
accurate results, and convergence proofs for backpropagation rely on batch learning as well.
However, in robotics often on-line learning is required for obvious reasons.

In the following, we will derive the update rules for the different parameters of LRFNs,
and we will show how they can be combined with other incremental learning rules.

121

238 c. BAROGLIO: A. GIORDANA, M. KAISER, M. NUTTIN, AND R. PIOLA

4.4.1. Refining RBFNs

The typical RBFN training procedure is to consider the clusters (fi, (7) as static. Only
the weights between the cluster neurons and the output neuron are trained by means of
the the rule (7) which for the case of s = id simply reduces to: A w i = r/(Y - y). In
the experimental section, networks trained using this simple method will be referred to as
RBFNs or T D R B F N s (S stands for Simple).

Keeping the cluster centers constant during the whole life of the network is, however,
not appropriate in all cases. Sometimes, not all data are available to perform the initial
clustering. Also, the effort to analyze all given examples might be too high, thus only a
subset considered representative is taken for setting up the network. A factor to be taken
into special consideration w.r.t, real time applications is the size of the network, i.e. the time
necessary for evaluation. The number of clusters should be small in such cases, making
it much more difficult to yield the desired output accuracy by training the output weights
only.

An obvious way to train the cluster centers during training is to apply a Kohonen-style
nearest neighbour algorithm, also referred to as adaptive incremental k-means algorithm
(Moody & Darken, 1988). Given an example (:g, Y), the center of the cluster closest to ~ is
moved into the direction of S according to

where r/denotes a learning rate. During training, this adaptation can be interleaved with
training the output weights, in order to avoid interference. Networks trained using this
procedure will be referred to as RBFNNN and TDRBFNNN.

Alternatively, if the cluster neurons' transfer function r is differentiable with respect to/7
and (7, it is possible to train both parameters by performing the error gradient descent, too
(Weymaere & Martens, 1991; Wettschereck & Dietterich, 1991). Considering expression
(7), for the case of a multidimensional Gaussian transfer function with individual cri for
each dimension, i.e., for

_(V.d~-,~)(~, .~)2)
r (2 ~) = e ~ , = 1 o~ ,

the partial derivatives of y with respect to #i and cri are

o y _ ~ m - x { , ~ , O y _ 2 (m - ~ : i)2r (o~)
0t~i z ~ - - ~ - r i x) and Oai ~aa i

In both cases, the error surface becomes extremely steep if the clusters are small, i.e.,
c~i << 1. Since we are only interested in the sign of the gradient, we took care of this
phenomenon by setting ~r~ = I for the calculation of the partial derivatives. The networks
trained using these methods are referred to as R B F N c or T D R B F N c and R B F N w or
T D R B F N w , respectively. If both methods are used in an interleaved way, this is referred
to as R B F N w c or T D R B F N w c .

122

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 239

4.4.2. Refining a Fuzzy Controller via Back-Propagation

The fuzzy controller of Figure 6 can be fine-tuned in a similar way as RBFNs; however, the
s o f t m i n composition function must be taken into account. When updating the weights in
the last layer, equation (7) becomes

ri (8)

oy T~ is the derivative of equation (3). For updating first layer weights (i.e., where ~ =

to adjust antecedent fuzzy sets), equation (7) must be rewritten as:

Oy Oy Ore Opi
APi = ~(Y - y) - ~ = r](Y - y) ~ Ore Opi OPt (9)

c

where {Pi} : {C{} U {~7~},

oy ~,~ (~ ~) - 1- (~ , ~)
Or---2 = (E~ ~)~ (lo)

is the derivative of (3),

oH D _ o~ jV Or~ ~ om
c~#i D 2 (11)

(Z ~ = ~ e -k"~ , N=~V'U~e -k'~ ," r ~ = H / D
z j

is the derivative of the softmin operator (2) and

om 2m(x-C~) 2 om 2 m (x - C d
3 ' OCi 2 O0-i ~Yi O-i

are the derivatives of the Gaussian membership functions (1).

for brevity)

(12)

5. Experimental Evaluation

In the following we will compare the function approximators and the learning procedures
proposed in Sections 2 and 4, on two test cases. The first is a robotic application, in which
the task is to approximate the output of a controller that is already operational on a robot
manipulator. The goal of the experiments was to check the accuracy of the methods in
capturing control functions. The results proved that all the approximators are potentially
able to capture the control function from examples of correct behavior only.

The second test case is a chaotic function, the Mackey-Glass temporal series, used by
many authors to check the predictivity of a function approximator.

What emerges from the experiments is that LRFNs are in general more accurate, especially
when they are synthesized using the symbolic approaches based on CART and on SMART+.

123

2 4 0 C. B A R O G L I O , A. G I O R D A N A . M. K A I S E R , M. N U T T I N , A N D R. P I O L A

5.1. Experiments on the Robot Traces

In this case, the experimental test-bed was given by a six-degrees-of-freedom KUKA-IR 361
manipulator equipped with a force-torque sensor. As the robot is kinematically controlled,
the controller generates a vector 1~ of translational and rotational velocities of the wrist.

The selected task, peg-into-hole, consists in learning to insert a peg into a hole and to
recover from error situations, in which, for instance, the peg is stuck midway because of a
wrong inclination. This application is particularly interesting because the optimal control
is known to be non-linear (Asada, 1990).

In our case, both the peg and the hole had a circular section. The diameter of the chamfered
peg was 30[mini, the clearance between the peg and the hole was 0.15[mm]. The hole was
located on a plane surface. In the experiments, a PID-controller was already available for
the robot (De Schutter & Van Brussel, 1988), and the goal was to learn to approximate the
behavior of the PID-controller using a set of examples of control behavior.

These examples were obtained by recording the traces of the pairs of input sensors readings
and corresponding speed values, during seven insertions with different initial conditions
such as different misalignments between the peg and the hole. Three of these sequences
were chosen as learning examples, the others were used as the test set. Figure 8 shows the
input signals for the seven sequences. Figure 9 shows the three output signals for the linear
velocity, generated by the PID-controller and used to train our function approximators.

-I0 , • : Fy

-30-205400 ~ ' ! ' '" ' "I ~:" : :\z : ::{ " : :;! ~V " !:~ : " :: Fz -
-60

0 500 i000 1500 2000 2500 3000 3500 4000

2 0 0 0 J ~ , , ! " T x --

," i /'~ , "~ :"~ ~ ioo0 /', A.. ~, ,a_. ~ / I :- ~ / : .; ~ Tz --

- 3 0 0 0

-2000 -3000 ~ i ~ 1 t I i .

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 8. Input signals for the seven insertion sequences: Fz , Fu and Fz correspond to the force sensors along
the three coordinates while Tx, r u and Tz correspond to the torque sensors. The values of the functions have
been sampled at 10 ms.

5.1.1. Comparative Results on Robot Traces

All learning methods have been applied to the case study, using the same learning and test
sets described above. In order to make comparable the results, the refinement performing
the error gradient descent has been done on-line and stopped after 1,500,000 learning steps.

124

L E A R N I N G C O N T R O L L E R S F O R I N D U S T R I A L R O B O T S 241

65°° ' - ' " " ' ' i~ ', ;,, ..-,.' v× - -
4o "i i i. i . ; : : ::i(.::":: ,.i'~ : " i .,i"~ : ~ i i ; i ~ ,: ', v y
30 " -: ~ :' i:. / ! i ~.: ' , i ! . , , . : ~i ,' : i "..," ! Vz

1o ":: :: " ':i"J i:: v i ,, ii i
0 - - -4 . "-" : "-- ! - '77"=- ' ! - r t ~ ' r - ~

- 1 0
0 500 1000 1500 2000 2500 3000 3500 4000

Figure 9. Veloci ty signals c o m p u t e d by the P tD-Con t ro l l e r f r o m the s ignals r epor t ed in the prev ious figure.

The method based on CART turned out very easy to apply because it didn't require any
special setting on control parameters, while the one based on SMART+ required a little
more work in order to decide the subdivision of the co-domain of the target functions into
classes. After several trials it turned out that a subdivision into 12 equal intervals was a
good choice for all three function V~, Vy and Vz. Moreover, a set of predicate constraints
has been defined in order to force SMART+ to generate rules necessarily accounting for the
three features Vx, Vu and Vz. The complexity of the trees generated by CART and SMART+
was comparable and ranged from 20 to 80 leaves corresponding to a number of neurons in
the hidden layer ranging from 60 to 160 (each neuron corresponds to an unidimensional
Gaussian).

RBFNs and TDRBFNs were constructed using the algorithm described in section 4.1
and have been trained using the alternative algorithms we described in section 4. For the
TDRBFN architecture only 1 delay has been used everywhere. The complexity of the
networks ranged from 30 to 60 neurons in the hidden layer (each neuron corresponds to a
6 dimensional Gaussian).

For the TDNN experiments, the structure of the network and the number of delays at
each layer was designed manually in a trial-and-error manner. Afterwards, the networks
were trained by backpropagation (Rumelhart et al., 1985). The topologies used had a
complexity ranging from 10 to 20 neurons. The best number of delay units found during
the experimentation was 3 in the input layer and 0 in the other layers.

Finally, the experiment has been done using the basic multilayer perceptron for compar-
ison purposes. Also in this case, the choice of the layout required several experiments.

The results are reported in Table 1. It is easy to see the methods based on CART and
SMART+ obtained very good results (CART is the best in absolute) as well as the TDNN
and the TDRBFN. On the contrary multilayer perceptron and normal RBFN were not so
good even if in general they can achieve acceptable results.

Concerning the training algorithm for RBFN we notice the relevance of training the hidden
layer neurons. In particular, the methods based on gradient descent performed better than
the one based on incremental k-means.

In order to better understand the behavior of the two methods based on CART and
SMART+, some details of the learning process are illustrated in Figure 10 and in Fig-
ure 11.

In particular, Figure 10a shows how CART alone approximates the target function with
a histogram; Figure 10b shows the output for the same sequence generated by the fuzzy

125

242 c. BAROGLIO. A. GIORDANA, M. KAISER, M. NUTTIN, AND R. PIOLA

Table 1. Statistical comparative results: all numbers are percentages (%)

½ ½ ½
System Erra~,g ± Std.dev. Erra~,g ± Std.dev. Erra,9 ± Std.dev.
CART (alone) 0.76 ± 1.05 1.02 ± 1.33 1.38 ± 5,01
FCcART 1.16 ± 2.51 1.77 ± 3.75 11.84 ± 20.92
FCcART + R 0.04 ± 0.17 0.05 ± 0.31 0.45 ± 2.75
FCsMART+ 1.49 ± 2.02 1.28 ± 1.93 2,12 ± 4.94
FCsMART+ + R 0.73 ± 0.42 0,56 ± 0.35 1,04 ± 4.18
RBFNs 3.0 :k 0,61 2.4 ± 0.37 3.4 5= 3.81
T D R B F N s (1 TD) 6.2 ± 0.85 11.5 ± 1.11 2.6 ± 2.37
RBFNNN 2.9 ± 0.67 7.6 ± 0.78 4.5 5= 4.62
TDRBFNNN (1 TD) 2.4 ± 0.45 1.8 4- 0.18 1.6 ± 3.15
RBFNc 2.2 5= 0.45 3.6 + 0.38 3.3 5= 3.80
T D R B F N C (1 TD) 1.7 ± 0.32 1.7 ± 0.18 1.0 ± 3.00
_RBFNw 2.1 ± 0,40 2.9 5= 0.29 3.3 ± 3.83
T D R B F N w (1 TD) 1.9 :k: 0.29 0.8 ± 0.09 117 5= 3.i0
R B F N c w 2.4 ± 0.50 2.3 5= 0.33 2.5 5= 3.67
T D R B F N c w (1TD) 1.5 5= 0.25 1,4 5= 0.15 1.9 5= 3,15
TDNN 3.9 ± 0.59 8.1 5= 0.90 2.7 ± 2,30
MLP 7.9 ± 1.13 10.9 5= 1.10 4.5 ± 3,84

=tl , , 1

:i i !d
. '

I L, ' '= .i.=~,.~:~.~7,-

(a) (b) (c)

Figure 10. Approximation of the control function V~ obtained using: (a) CART only; (b) after transforming the
tree of CART into a fuzzy controller; (c) after training the fuzzy controller performing the error gradient descent.

controller produced by converting the CART tree into a set of fuzzy rules. Figure 10c shows
the signal after further training with backpropagation. The signal shown is obtained from
the second training example and is the velocity V~.

In a similar way, the procedure based on SMART+ is illustrated in Figure 11. In particular,
1 la reports the histogram approximating the signal used as a learning set. Figure 1 lb shows
the approximation obtained by the fuzzy controller before the training and 1 lc shows the
result after the refinement step.

5.1.2. Results on the Robot Simulator

In order to test the learnt controllers "on the field", we used a professional robot simulation
package (De Schutter et al., 1993).

126

L E A R N I N G C O N T R O L L E R S FOR I N D U S T R I A L ROBOTS 243

r i.)i. ' ~ ' ~ "

i ' I
' ' . ~ J L.J !

t
:1]

~,, ~ ,~ ,~

. i

ii i

(a) (b) (c)

Figure 11. Approximation of the control function Vz obtained using SMART+: (a) histogram representing one
of the signals in the learning set; (b) approximation generated by the fuzzy controller generated by SMART+; (c)
after training by performing the error gradient descent.

5

4.8

4.6

4.4

4.2

4

3.8

3.6

3.4

teacher - -

i

a) ~ , ,°&o°,&or ~

5 2

4 6

4 2

Figure 12. The behavior of the robot with the teacher (a) and with the learnt controller (b)

Figure 12 shows the behavior of the simulated robot arm: every trace depicts a series of
insertions; each insertion is evaluated with the total insertion time (the lower, the better). As
can be seen, the learnt controller exhibits a behavior comparable to the one of the teacher.

However, a test on the real robot should be more convincing. This has not been done for
the simple reason that a controller generated using heuristic methods was not considered
safe enough for a robot delicate and expensive as the KUKA IR-361 is. This fact points out
another critical point which must be faced before using neural controllers in industrial appli-
cations, i.e., the development of validation techniques that are accepted by the mechanical
engineers (ERA, 1995).

5.2. Test on Mackey.Glass Chaotic Time Series

As the learning procedures based on CART and SMART+ represent an important novelty
which performed very well on robot traces, they have been tested also on a classical case
study widely used in the literature in order to have a more extensive validation and a
comparison with other methods. The task is to predict the value 84 time steps ahead in the

127

244 c. BAROGLIO, A. GIORDANA; M. KAISER: M. NUTTIN: AND R. PIOLA

Mackey-Glass chaotic series, which is described by the following differential equation:

= 0 . 2 x (t - ~-) _ 0.1x(t)
1 + x l° (t - ~-)

with x (t < 0) = 0, x(0) = 1.2 and 9- = 17; the task was to predict x (t + 84) given
x (t - 24), x (t - 18), x (t - 12) and x (t - 6),

The input features used by the approximators are the four values of the function at time
t, t - 6, t - 12, and t - 18. In order to correctly predict the function value, it is necessary
to capture the generative model of the phenomenon. This task was also investigated by
(Crowder, 1990; Jang, 1993; Jones et al., 1990; Lapedcs & Farber, 1987; Moody, 1989;
Moody & Darken, 1989; Sanger, 1991), so results can be compared directly.

The experiment has been organized as follows. First, a sequence of 1500 time steps has
been generated. Then the learning set has been obtained by taking the first 1000 whereas
the remaining 500 have been used as a test set. The results are reported in Table 2. The
Non-Dimensional Error Index (NDEI) is defined as the Root Mean Square Error divided
by the Standard Deviation of the target series.

Comparing the best results obtained in the literature in analogous experiments (Crowder,
1990; Jang, 1993), it appears that both the predictor generated by CART and the one
generated by SMART+ show excellent performances after training. In fact, the NDEI value
of 0.036 reported by ANFIS, followed by the 0.05 of the multilayer perceptron are the only
performances really comparable to those presented here.

However, the big advantage of our new methods is that the networks have been synthesised
automatically from examples, whereas for both ANFIS and the multilayer perceptron this
has been done manually.

Regarding the learning procedure based on modified h-means, we refer to the work by
(Moody & Darken, 1989). He reports a NDEI of 0.055 obtained with a training set of
10,000 examples and 1,000 hidden neurons. The method based on SMART+ obtained a
better result using a fuzzy controller of 91 rules corresponding to a global number of 305
neurons in the first hidden layer. Moreover, the learning set was of only 1,000 examples.

The controller generated by CART was even smaller: 42 leaves in the tree corresponding
to a global number of 161 neurons in the first hidden layer.

Table 2. Comparative results on the Mackey-Glass chaotic time series pre-
diction

Method Training cases Non-Dimensional Error Index
CART (Alone) 800+200 0.36
FCcART + R 1000 0.037
FCSMART+ + R 1000 0.032

6. Discussion

From the results presented in the previous section the excellent approximation capability
of LRFNs clearly emerges. In fact, they obtained favourable results w.r.t, the multilayer
perceptron and TDNNs, both on robot traces and on the Mackey-Glass series.

128

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 245

It is worth noticing that, considering the aim of robotic applications, the slight differences
of performance between OFFNs and LRFNs (though certainly meaningful from a statistical
viewpoint) cannot be decisive when looking for a technique to apply. Differences in the
third decimal digit are not a sufficient reason for adopting a TDNN rather than an RBFN or
a fuzzy controller; it is more fair to assume OFFNs and LRFNs as equivalent with respect
to the accuracy.

Other considerations must, therefore, be taken into account in order to allow to select
one architecture over another. LRFNs have specific properties that make them particularly
suitable for robotic applications. The first is support of incremental learning, which is due to
the locality property and has been discussed in Section 3. The possibility of incrementally
building the mapping from the input space to the output space is equivalent to split the
learning problem into subproblems; thus, different parts of the control function can be
learnt during different learning sessions. For example the robot can first be trained to work
slowly. Afterwards, specific experiments can be performed in order to increase its speed.
The locality property also helps to avoid the unlearning problem, that arises in OFFNs when
trained for a long time on a subset of the input space only: the network overspecializes and
forgets knowledge about regions of the input space it doesn't see for a while. Although
we didn't directly address this aspect of incrementality in our work, several examples can
be found in the literature (see for instance (del R. Mill~n & Torras, 1992; del R. Mill~n,
1994)).

A second important feature is the possibility of giving a symbolic interpretation to LRFNs.
We exploit this property when we apply symbolic and statistical learning algorithms for
producing the network layout. In our opinion, this is a key point of the presented work,
that establishes a bridge between approaches that (with a few exceptions) have traditionally
been considered far apart, and thus scarcely interacted. Beyond the theoretical interest, we
especially see practical benefits in the capability of merging the knowledge of an expert
into a network.

In the literature, at least two other methods have already been proposed in order to
integrate the symbolic and connectionist paradigms. The first is KBANN by Shavlik and
Towell (Towell et al., 1990), who proposed to use a propositional theory in order to initialize
a multilayer perceptron. The considered task was classification in a domain of Boolean
features. The experiments showed that if a theory, which is a good approximation of
the target Boolean function, is available, learning itself speeds up dramatically and the
classification rate increases as well.

The main difference between the approach proposed in this paper and that of Shavlik's
depends on the task they tackle. Learning a Boolean classifier is a simpler problem than
learning a continuous function in a continuous domain. In this second case, the problem of
learning the mapping from input signals to symbols, and then from symbols to an output
signal, is also included in the process. Such mappings, which are naturally supported by
the RBFNs are left out from the learning algorithm used by KBANN.

KBANN has been improved by adding algorithms for turning a multilayer perceptron
back into a propositional theory (see (Towell & Shavlik, 1993) for a description of the
method), a process we will call "inverse mapping of the network".

129

246 C. BAROGLIO, A. GIORDANA, M. KAISER, M. NUTTIN. AND R. PIOLA

Inverse mappings can be found, in general, also in the case of LRFNs, for two reasons:
(1) because of the locality property, that allows a discretization of inputs and outputs; (2)
because they maintain their topological structure during learning. In particular, in the case
of RBFNs and FCs, network inverse mappings can be obtained simply by reversing the
process of encoding the theory into a neural net. Last, for the sake Of completeness, it is
necessary to pinpoint a difference between the kind of theories we can map onto the layout
of an LRFN and those used by KBANN: the former are flat, in the sense that consequents
of rules are not used in antecedents of other rules, whereas the latter can be structured into
many layers.

A last point, needing a more detailed discussion, is the necessity of continuing the re-
finement of a controller beyond the teacher performances. Especially in the case of robot
control, it is quite unlikely that a human operator will generate perfect examples of behav-
ior (Kaiser et al., 1995c; Kaiser et al., 1995a). Therefore, some other solution has to be
sought in order to optimize the induced controller, and Reinforcement Learning seems to
be a promising approach. Actually, in RL literature we find many techniques for learning in
continuous domains (Peng & Williams, 1992; Berenji & Khedkar, 1992; Williams, 1992;
Gullapalli, 1990), in which agents implemented as neural networks are trained by means
of variants of backpropagation. In all these cases, the ability to learn from a reinforcement
signal is achieved by finding a quantity (depending on it) to backpropagate, i.e. playing the
part played by the error in supervised learning rules. Most of the techniques proposed are,
for instance, related to the TD(A) method, in which differences of prediction in subsequent
timesteps are exploited (see (Sutton & Barto, 1987)).

One system that integrates neural and reinforcement learning is Berenji's GARIC (Berenji
& Khedkar, 1992). This system uses a fuzzy controller, implemented as a neural network,
which is very similar to those described in Section 3. However, it is extremely easy to think
to GARIC's variants in which the other kinds of LRFN approximators are used instead of
fuzzy controllers. Therefore, the supervised learning methodologies presented here can be
thought of as building blocks for more complex architectures.

7. Conclusions

Throughout this paper, we presented results achieved in the framework of B-LEARN II,
a project that investigates the suitability of ML techniques for developing "advanced"
industrial robots. Nonetheless, the fundamental claims that have been presented (supported
by an extensive experimentation), are interesting also for ML researchers.

The first claim is that there is a class of problems related to non-linear control that can
potentially be solved by employing existing learning algorithms. More specifically, the
application of ML techniques to such problems can lead to real industrial applications,
with an increase in robot performance and a decrease in costs of controller design and
development. In particular, the experiments presented in this paper confirm that many
techniques, originating from different areas, are available for facing the regression problem
tied to non-linear control.

The second important claim concerns the integration of the symbolic and connectionist
paradigms. We have shown that, on the way opened by Shavlik and Towell (Towell et al.,

130

LEARNING C O N T R O L L E R S FOR I N D U S T R I A L R OBOTS 247

1990; Towell & Shavlik, 1993), it is possible to use symbolic knowledge in order to build a
quite accurate approximator that can further be improved using, e.g., backpropagation. This
result opens a wide perspective for the integration of symbolic and non-symbolic methods
in regression tasks.

At the same time we also established a link between ML and a parallel field, Fuzzy
Logic, in which function approximators have also been developed combining symbolic and
non-symbolic paradigms.

We made the attempt of adopting a unifying view for comparing architectures developed
by different communities with, sometimes, competing approaches. We believe we have
shown that, beyond the cultural background, there is a lot in common among them, which
m u s t be taken into account.

Notes

1. This is to be considered an advanced technological solution, since today's industrial robots make a very little
use of external sensors.

2. Proportional Integral Differential controller, i.e., a controller which produces an output that is proportional
to its input, the input derivative, and the input accumulated over time. The input might be the error, e .g , the
difference between the desired force and the actually measured force.

3. For clarity, only a one dimensional output vector is considered. However, the method works on examples
featuring arbitrary dimensions. With dim(~7) = n, the intervals I j are becoming hypercubes of dimension
n, and the number of classes to be considered becomes n × K .

References

Alpaydin, E. (1991). GAL: Networks that grow when they learn and shrink when they forget. Technical Report
TR-9b032, International Computer Science Institute, Berkeley, USA.

Asada, H. (1990). Teaching and learning of compliance using neural nets: Representation and generation of
nonlinear compliance. In Proceedings c~f the 1990 IEEE hlternational Conference on Robotics and Automation,
pages 1237- 1244.

Barto, A., Sutton, R., & Watkins, C. (1990). Sequential decision problems and neural networks. In Advances in
neural information processing ~2vstem, volume 2. Morgan Kauffman, San mateo, Ca.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man and Cybernetics, pages 835-846.

Berenji, H. (1990). Machine learning in fuzzy control. In International Conference on Fuzzy Logic & Neural
Networks, pages 231-234, lizuka, Fukuoka, Japan.

Berenji, H. (1992). Fuzzy logic controllers. In Yager, R. and Zadeh, L., editors, An Introduction to Fuzzy Logic
Applications in Intelligent Systems. Kluwer Academic Publishers.

Berenji, H. & Khedkar, P. (1992). Learning and tuning fuzzy controllers through reinforcements. IEEE
Transactions on neural networks, 3(5):724-740.

Bergadano, E & Giordana, A. (1988). A knowledge intensive approach to concept induction. In Proceedings of
the 5th International Conference on Machine Learning, pages 305-317, Ann Arbor, ML Morgan Kauffman.

Bergadano, E, Giordana, A., & Saitta, L. (1988). Learning concepts in noisy environment. IEEE Transaction on
Pattern Analysis and Machine Intelligence, pages 555-578.

Berthold, M. (1994). A time delay radial basis function network for phoneme recognition. In IEEEhzternational
Conference on Neural Networks, Orlando, Florida~

Bonissone, R & Chiang, K_ (1993)_ Fuzzy logic controllers: from development to deployment. In tEEE
International Conference on Neural Networks, volume 2, San Francisco, CA.

Botta, M. & Giordana, A. (1993). SMART+: A multi-strategy learning tool. In HCAI-93, Proceedings of the
Thirteenth International Joint Con]erence on Artificial Intelligence, volume 2, Chambdry, France.

131

248 c . BAROGLIO, A. GIORDANA, M. KAISER, M. NUTTIN, AND R. PIOLA

Breiman, L., Friedman, J., Ohlsen, R., & Stone, C. (1984). Classification And Regression Trees. Wadsworth &
Brooks, Pacific Grove, CA.

Cramer, H. (1974). Mathematical Methods of Statistics. Princeton University Press.
Crowder, R. (1990). Predicting the mackey-glass time series with cascade-correlation learning. In D. Touretzky,

G. H. and T.Sejnovsky, editors, Proceedings of the 1990 Connectionist Models Summer School, pages 117-123.
Carnegie Mellon University.

De Schutter, J. & Van Brnssel, H. (1988). Compliant robot motion II, a control approach based on external control
loops. The International Journal of Robotics Research, 7(4).

De Schutter, J., Witvrouw, W., Van De Poel, R, & Bruyninckx, H. (1993). Rosi: a task specification and simulation
tool for force sensor based robot control. In 24th International Symposium on Industrial Robots.

del R. Millfin, J. (1994). Learning efficient reactive behavioral sequences from basic reflexes in a goal-directed
autonomous robot. In Proceedings of the third International Conference on Simulation of Adaptive Behavior.

del R. Millfin, J. & Torras, C. (1992). A reinforcement connectionist approach to robot path finding in non-maze-
like environments. Machine Learning, 8:363-395.

ERA (1995). NeuralNetworks: Producing Dependable Systems, Solihull, West Midlands, UK. ERA Technology.
Fahlmann, S. E. & Lebiere, C. (1989). The cascade-correlation learning architecture. In Advances in Neural

Information Processing Systems 2 (NIPS-2), Denver, Colorado.
Fritzke, B. (1993). Growing cell structure: A self-organizing network for unsupervised and supervised learning.

Technical Report TR-93-026, International Computer Science Institute.
Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for learning real valued functions. Neural

Networks, 3:671-692.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-forward networks are universal approximators.

Neural Networks, 2:359-366.
Jang, J. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. 1EEE Transactions on Systems, Man

and Cybernetics, SMC-23(3):665-687.
Jones, R., Lee, Y., Barnes, C., Flake, G., Lee, K,, & Lewis, P. (1990). Function approximation and time series

prediction with neural networks. In Proceedings of lEEE International Joint Conference on Neural Networks,
pages 1-649-665.

Kaiser, M., Camarinha-Matos, L., Giordana, A., Klingspor, V., del R. MillSn, J., Nuttin, M., & Suarez, R. (1994).
Robot learning - three case studies in robotics and machine learning. In Proceedings of the 1VAR '94, Leuven,
Belgium.

Kaiser, M., Friedrich, H., & Dillmann, R. (1995a). Obtaining good performance from a bad teacher. In
International Conference on Machine Learning, Workshop on Programming by Demonstration, Tahoe City,
California.

Kaiser, M., Klingspor, V., del R. MillSaa, J., Accame, M., Wallner, F., & Dillmann, R. (1995b). Using machine
learning techniques in real-world mobile robots. 1EEE Expert.

Kaiser, M. & Kreuziger, J. (1994). Integration of symbolic and connectionist processing to ease robot programming
and control. In ECA1"94 Workshop on Combining Symbolic and Connectionist Processing, pages 20 - 29.

Kaiser, M., Retey, A., & Dillmann, R. (1995c). Robot skill acquisition via human demonstration. In Proceedings
of the International Conference on Advanced Robotics (ICAR '95).

Lapedes, A, & Farber, R. (1987). Nonlinear signal processing using neural networks: Prediction and system
modeling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory.

Mason, M. (1981). Compliance and force control for computer controlled manipulators. 1EEE Transactions on
Systems, Man and Cybernetics, 11.

Miller, W. T., Sutton, R. S., & Werbos, P. J. (1990). Neural networks for control. The MIT Press.
Moody, J. (1989). Fast learning in multi-resolution hierarchies_ In Touretzky, D., editor, Advances in Neural

Information Processing. Morgan Kaufmann.
Moody, J. & Darken, C. (1988). Learning with localized receptive fields. In Sejnowski, T., Touretzky, D., and

Hinton, G., editors, Connectionist Models Summer School, Carnegie Mellon University.
Moody, J. & Darken, C. (1989). Fast learning in networks of locally tuned units. Neural Computations,

1(2):281-294.
Musavi, M., Ahmed, W., Chan, K., Faris, K, & Hummels, D. (1992). On the training of radial basis function

classifiers. NeuralNetworks, 5:595-603.
Nuttin, M., Van Brussel, H., Baroglio, C., & Piola, R. (1994). Fuzzy controller synthesis in robotic assembly:

Procedure and experiments. In FUZZ-IEEE-94: Third IEEE International Conference on Fuzzy Systems, Worm
Congress on Computational Intelligence.

132

LEARNING CONTROLLERS FOR INDUSTRIAL ROBOTS 249

Nuttin, M., Van Brussel, H., Peirs, J., Soembagijo, A. S., & Sonck, S. (1995). Learning the peg-into-hole assembly
operation with a connectionist reinforcement technique. In Second International C1RP Workshop on Learning
in Intelligent Manufacturing Systems, pages 335-357, Budapest, Hungary.

Park, J. & Sandberg, W. (1993). Universal approximation using radial-basis functions. Neural Computation, 5.
Pazzani, M. & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine Learning, 9:57-94.
Peng, J. & Williams, R. (1992). Efficient learning and planning within the Dyna framework. In Proceedings of

the Second International ConJerence on Simulation of Adaptive Behavior, Honolulu, HI.
Poggio, T. & Girosi, E (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9): 1481-

1497.
Quinlan, J. (1993). Combining instance-based and model-based learning. In Proceedings of the 10 th machine

learning conference, pages 236-243, Amherst, MA.
Quinlan, R. (1990). Learning logical definitions from relations. Machine Learning, 5:239-266.
Rumelhart, D., l-Iinton, G., & Williams, R. (1985). Learning internal representations by error propagation.

Technical Report 8506, Institute for Cognitive Science, La Jolla: University of California, San Diego.
Rumelhart, D. E. & McClelland, J. L. (1986). ParalIelDistributedProcessing : Explorations in theMicrostructure

of Coginition, Parts 1 & 11. MIT Press, Cambridge, Massachusetts.
Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly. In Sleeman, D. and Edwards, P.,

editors, Machine Learning - Proceedings of the Ninth International Workshop (ML92), pages 385-393. Morgan
Kaufmann.

Sanger, "1-. (1991). A tree-structured adaptive network for function approximate in high-dimensional spaces. IEEE
Transactions on Neural Networks, 2(2):285-293.

Specht, D. (1988). Probabilistic neural networks for classification mapping, or associative memory. In IEEE
International Conference on Neural Networks, volume 1, pages 525-532.

Specht, D. (1990). Probabilistic neural networks. Neural Networks, 3:109-I 18.
Sutton, R. & Barto, A. (1987). A temporal-difference method of classical conditioning. In proceedings of the

Ninth Annual Conference of the Cognitive Science Society, pages 355-378, Seattle, WA. Lawrence Erlbaum.
Towell, G. & Shavlik, J. (1993). Extracting refined rules from knowledge-based neural networks. Machine

Learning, 13(1):71-101.
Towell, G., Shavlik, J., & Noordwier, M. (1990). Refinement of approximate domain theories by knowledge-

based neural networks. In Proceedings of the 8 th National Conference on Artificial Intelligence AAAI'90, pages
861-866.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989). Phoneme recognition using time-delay
neural networks. IEEE Transactions on acoustics, speech and signal processing, pages 328-339.

Wettschereck, D. & Dietterich, T. (1991). Improving the performance of radial basis function networks by learning
center locations. In Advances in Neural Information Processing Systems 4 (NIPS-4),

Weymaere, N. & Martens, J. (1991). A fast and robust learning algorithm for feedforward neural networks.
Neural Networks, 4.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, pages 229 -256.

Wilpon, J. & Rabiner, L. (1985). A modified k-means clustering algorithm for use in isolated work recognition.
IEEE transactions on acoustics, speech and signal processing, ASSP-33:587-594.

Yih, J. & Shieh, J. (1992). On the development of a fuzzy model-based controller for robotic manipulators. In
Proceedings of the 1EEE/RSJ Conference on Intelligent Robots and Systems, Raleigh, NC.

Zadeh, L. (1992). Knowledge representation in fuzzy logic. In Yager, R. and Zadeh, L., editors, An Introduction
to Fuzzy Logic Applications in Intelligent Systems, Kluwer Academic Publishers.

133

