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Abstract. In executing classical plans in the real world, small discrepancies between a planner's internal 
representations and the real world are unavoidable. These can conspire to cause real-world failures even though 
the planner is sound and, therefore, "proves" that a sequence of actions achieves the goal. Permissive planning, 
a machine learning extension to classical planning, is one response to this difficulty. This paper describes the 
permissive planning approach and presents GRASPER, a permissive planning robotic system that/earns to robustly 
pick up novel objects. 
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1. Introduct ion 

For some time technical difficulties have prevented the field of planning from delivering on 
its early promise. Increasingly it has become accepted that domain-independent classical 
planning, in which one finds a sequence of actions which provably achieves a goal when 
applied to a problem's initial state is at best quixotic. The death knell for the approach 
was sounded by Chapman (Chapman, 1987) who showed that with some assumptions 
(which are rather reasonable in real-world domains), the general classical planning prob- 
lem is prohibitively difficult. One new approach, known generally as reactivity, has made 
great strides to circumvent the obstacles of classical planning (Agre & Chapman, 1987, 
Firby, 1987, Schoppers, 1987, Suchman, 1987). Classical planning demands that the plan- 
ner know and model the effects of its actions. For any sequence of actions a classical 
planner must be able to judge accurately their cumulative changes to a state. This ability 
to project states through operators may seem modest at first but the failure of classical 
planning can be viewed as traceable to this task. A central tenet of pure reactive activity 
is to do no projection. The "planner" (or better the "agent") makes no attempt to antic- 
ipate how the world will look after an action is executed. Instead, an action is selected 
based entirely upon the agent's sensor-supplied knowledge of the current world state. Af- 
ter the execution of an action, the world changes in some (possibly complex) way. The 
next action is selected in the same manner, based upon the updated sensor values. In 
a way, a purely reactive system employs the world itself to model the effects of actions 
at the expense of gedanken backtracking. The method of selecting actions, and the de- 
mands such a mechanism places upon its sensors, are the subject of much current research 
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(Agre & Chapman, 1987, Hammond, Converse, Marks, 1990, Brooks, 1987). In any case, 
the resulting system relies on its sensor abilities to drive action selection. 

Models of reactivity, for all their recent popularity, are only one approach to the problems 
faced by classical planning. In this paper we introduce another. In some ways it is the 
dual of the reactive approach. Our approach, called permissive planning, like the reactive 
approach, gives up the notion of a provably correct plan. However, the concept of projection 
remains. Indeed, it is, if anything, more central than before. 

In most real-world domains it is impossible to describe the world correctly and completely. 
It follows that internal system representations of the world must, at best, be approximate. 
Such approximate representations of world attributes are called data approximations. They 
may arise from imperfect sensors, or incomplete inferencing. We introduce the concept of 
permissiveness of a plan as a measure of how faithfully the plan's preconditions must reflect 
the real world in order for the plan to accomplish its goals. One plan is more permissive 
than another if its representations can be more approximate while continuing to adequately 
achieve its goals. We do not propose to quantify this notion of permissiveness. Instead, we 
employ a machine learning approach which enhances permissiveness of acquired planning 
concepts. 

The approach involves acquiring and refining generalized plan schemata which achieve 
often-occurring general goals and sub-goals. Acquisition is through rather standard 
explanation-based learning (Serge, 1988, Mitchell, Keller & Kedar-Cabelli, 1986, DeJong 
& Mooney, 1986, Mitchell, Mahadevan & Steinberg, 1985). However, the refinement 
process is unique. 

To drive refinement, the system constantly monitors its sensors during plan execution. 
When sensor readings fall outside of anticipated bounds, execution ceases and the plan 
is judged to have failed. The failure must be due to a data approximation; if there were 
no mismatch between internal representations and the real world, the plan would have 
the classical planning property of provable correctness. The plan's failure is diagnosed. 
Ideally, only a small subset of the system's data approximations could underlie the monitored 
observations. The system conjectures which of its internal expressions might account for 
the observations. Next, the system uses qualitative knowledge of the plan's constituent 
operators. The small conjectured error is symbolically propagated through the plan to 
plan parameters. The plan parameters are adjusted so as to make the planning schema less 
sensitive to the diagnosed discrepancy with the world. If the process is successful, the refined 
schema is uniformly more permissive than the original, which it replaces. Thus, through 
interactions with the world, the system's library of planning schemata becomes increasingly 
permissive, reflecting a tolerance of the particular discrepancies that the training problems 
illustrate. This, in turn, results in a more reliable projection process. Notice that there is 
no improvement of the projection process at the level of individual operators. Performance 
improvement comes at the level of plan schemata whose parameters are adjusted to make 
them more tolerant of real-world uncertainties in conceptually similar future problems. 
Adjustment is neither purely analytical nor purely empirical. Improvement is achieved 
through an interaction between qualitative background knowledge and empirical evidence 
derived from the particular real-world problems encountered. 
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The notion of permissive planning is not tied to any particular domain. It is a domain- 
independent notion that is, nonetheless, not universally applicable. There are characteristics 
of domains, and problem distributions within domains, that indicate or counter-indicate 
the use of permissive planning. Later, the requirements of permissive planning will be 
made more formal. Here we give an intuitive account of characteristics needed to support 
permissive planning. An application that does not respect these characteristics is unlikely 
to benefit from permissive planning. 

For permissive planning to help, internal representations must be reasonable approxima- 
tions to the world. By this we mean that there must be some metric for representational 
faithfulness, and that along this metric, large deviations of the world from the system's 
internal representations are less likely than small deviations. 

Second, some planning choices must be subject to continuous real-valued constraints or 
preferences. These constraints and preferences are called parameters of the plan schema. 
They might be thresholds indicating bounds on acceptable values, or actual real-valued 
arguments to domain operators. These parameters are tuned to achieve permissiveness. 

Finally, the planner must be supplied with information on how each operator's precondi- 
tions and arguments qualitatively change its effects. This information is used to regress the 
diagnosed out-of-bounds approximations of failed plans through the planning structure to 
parameters. Such propagation determines how parameters may be adjusted so as to decrease 
the likelihood of similar future failures. 

Clearly, many domains do not respect these constraints. However, robotic manipulation 
domains form an important class in which the above characteristics are naturally enforced. 
Consider the data approximation constraint. A typical expression in a robotics domain 
may refer to real-world measurements. Object positions and dimensions, for example, 
require some representation for metric quantities. An example might be something like 
(HEIGHT-IN-INCHES BLOCK3 2.2). Such an expression is naturally interpreted as an 
approximation to the world. Indeed, expressions such as this one are useless under a standard 
semantics. The conditions of truth require that the height of the world object denoted by 
BLOCK3 be exactly 2.2 inches. Technically, no deviation whatsoever is permitted. If the 
height of BLOCK3 is off by only 10 .4o inches, the expression is false - j u s t  as false as if 
it were off by 5 inches or 50 inches. Clearly, such an interpretation cannot be tolerated; the 
required accuracy is beyond the numerical representational capabilities of most computers. 
Another nail is driven into the coffin for standard semantics by real-world constraints. 
Actual surfaces are not perfectly smooth. Since the top and bottom of BLOCK3 most 
likely vary by more than 10 -40 inches, the "height" of a real-world object, using a standard 
semantics, is not even a well-defined relation. In fact, no working system adopts a strict 
standard semantic interpretation for expressions such as the one above. There are several 
alternatives which will be discussed later. For now, it is sufficient to notice that expressions 
such as (HEIGHT-IN-INCHES BLOCK3 2.2) are extremely common in robotic domains 
and can be easily interpreted as satisfying our informal definition of an approximation: the 
metric for faithfulness is the real-valued height measure, and, presumably, if a reasonable 
system describes the world using the expression (HEIGHT-IN- INCHES BLOCK3 2.2) 
it is more likely the case that BLOCK3 is 2.2001 inches high than 7.2 inches high. It is 



124 S.W. BENNETT AND G.F. DEJONG 

essential that the expression not saddle the system with the claim that BLOCK3 is precisely 
2.2 inches high. 

The second condition for permissive planning requires that continuous real-valued param- 
eters exist in the system's general plans. Geometric considerations in robotic manipulation 
domains insure that this condition is met. As an example, consider a robot manipulator 
that wishes to move its arm past BLOCK3, which in turn rests on the table. Some path 
must be adopted for the move. From the geometrical constraints there is a minimum height 
threshold for the path. Since the arm must not collide with anything (in particular with 
BLOCK3), it must be raised more than 2.2 inches above the table. This height threshold is 
one of the plan parameters. Any value greater than 2.2 inches would seem to be an adequate 
bound on the parameter for the specific plan. However, it is easy to see that if 2.2 inches 
is adequate, so is 2.3 inches, or 5.0 inches, etc. Thus, the plan supports the parameter 
as a continuous real-valued quantity. Notice, that once the specific plan of reaching over 
BLOCK3 is generalized by EBL, the resulting plan schema parameterizes the world object 
BLOCK3 to some variable, say, ?x and the value 2.2 to ?3' where (HEIGHT-IN-INCHES 
?x ?y) is believed, and the threshold parameter to ?z where ?z is equivalent to (+ ?y c) for 
the tight bound, or equivalent to (+ ?y E 0.1), for the second bound above, or equivalent to 
(+ ?y e 2.8), for the third bound above. The value of ~ insures that the bound is not equaled 
and can be made arbitrarily small in a perfect world. As will become clear, in permissive 
planning, e may be set identically to zero or left out entirely. 

The final condition for permissive planning requires qualitative information specifying 
how the effects of domain operators relate to their preconditions and arguments.1 This con- 
straint, too, can be naturally supported in robotic manipulation domains. Consider again the 
plan of moving the robot arm past BLOCK3. The plan involves moving the arm vertically to 
the height ?z and then moving horizontally past the obstacle. The required qualitative infor- 
mation is that the height of the robot arm (the effect of MOVE-VERTICALLY) increases 
as its argument increases and decreases as its argument decreases. With this rather simple 
information the generalized plan schema for moving over an obstacle can be successfully 
tuned resulting in a more permissive plan schema. 

To illustrate, suppose the plan schema for moving past an obstacle is acquired from a 
successful specific example of moving past BLOCK3. To have been successful, reality 
must not have interfered with the system's approximations. Suppose BLOCK3 is in reality 
2.14962 inches high. The naive specific plan simply moves the arm to the minimum thresh- 
old (2.2 inches, the believed height of BLOCK3) successfully missing the obstacle by about 
a twentieth of an inch. Since it was successful, a schema might be generalized for later use. 
This involves variablizing the constants in standard EGGS (DeJong & Mooney, 1986) or 
EBG (Mitchell, Keller & Kedar-Cabelli, 1986) fashion. Suppose now that we wish to reach 
past another obstacle, say BLOCK7 which we believe is 5.5 inches high, but is in reality 5.6 
inches high. The plan fails when an unexpected force is encountered during the horizontal 
move action. The failure must be diagnosed to a set of likely offending approximations. 
For the example, we will assume that diagnosis uniquely identifies (HEIGHT-IN-INCHES 
BLOCK7 5.5) as the offending representation, conjecturing that its height is greater than 
represented. This might be done from the fact that the unexpected force is perpendicular 
to the direction of motion, and BLOCK7 is believed to be the only object in the vicinity 
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of the arm at the time of collision. The result of the diagnosis is a symbolic expression 
A representing that the block is too high for the plan to succeed. Let p ( A )  represent the 
probability that the general obstacle is too high. We do not attempt to assign an actual 
numerical probability to this expression; it is treated purely symbolically. If it is decided 
that the system must not tolerate the failure, then p ( A ) ,  whatever its value, is greater than 
the allowable threshold. The generalized plan must be adjusted to reduce p ( A ) ,  or the 
planning concept must be discarded. The next step is to qualitatively regress p ( A )  through 
the plan to parameters that unambiguously, in a qualitative sense, reduce p ( A ) .  If no such 
parameters can be found, the general planning concept must be discarded. According to the 
plan, the parameter ?z above is identified as one whose increase uniformly reduces p ( A ) .  
That is, as one moves "excessively" higher over an obstacle of uncertain height, one is less 
likely to collide with it. If  there is no conflicting bound on ?z it is adjusted upward, and the 
refined plan replaces the original. Thus, in the future similar planning episodes the robot 
system will raise its hand higher than it believes necessary when passing over obstacles. 
The permissiveness of the plan has been increased. Increasing ?z to decrease p ( A )  may 
increase the probability of some other failure not encountered in the refining experience. 
Managing and exploiting tradeoffs in the context of a particular problem distributions is 
what permissive planning is all about. 

From a different point of view, permissive planning amounts to blaming the plan for 
execution failures, even when in reality the representations, not the plan, are at fault. This 
is a novel approach to planning which results in a different, rather strange semantics for 
the system's representations. Current research includes working out a more formal account 
of the semantics for representations in permissive plans. Straightforward interpretations of 
the expressions as probabilistic seem not to be sufficient. Nor are interpretations that view 
the expressions as fuzzy or as having uncertainty or error bounds. The difficulty lies in 
an inability to interpret an expression in isolation. An expression "correctly" describes a 
world if it adequately supports the permissive plans that make use of it. Thus, an expression 
cannot be interpreted as true or not true of a world without knowing the expression's 
context including the system's planning schemata, their permissiveness', and the other 
representations that are believed. 

We now return to the popular alternatives to uncertainty in robotics, alternatives to a stan- 
dard semantics for expressions such as (HEIGHT-IN-INCHES BLOCK3 2.2). Inability 
to precisely describe the world has always been a difficult problem in robotics domains. 
There are three common approaches. The first most obvious approach is to select represen- 
tations that are, in a sense, good enough. This is the traditional AI notion of a micro-world. 
In the most straightforward version, the system implementor takes on the responsibility 
for insuring that no problems will result from necessarily imprecise descriptions of the 
domain. In general, this requires the implementor to characterize in some detail all of the 
future processing that will be expected of the system. Often he must anticipate all of the 
planning examples that the system will be asked to solve. If the physical robot system is 
not up to the accuracy that the examples require, the implementor must build a better vision 
system or purchase a more precise, more reproducible robot manipulator. This approach 
has enjoyed frightening popularity. While it is most often used in systems which research 
phenomena other than uncertainty, the implementors seldom more than tacitly acknowl- 
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edge the semantic implications. When employed by practical systems the approach results 
in an ultimately-doomed quest for increasingly exacting (and expensive) hardware. The 
great irony of industrial automation, where this approach is nearly universal, is that the 
mechanical positioning capabilities of robots must far exceed the humans that they replace. 
The characteristic brittleness and inflexibility of industrial robotics is a consequence of the 
semantically-rooted constraint that the implementor anticipate all future applications 

The second approach involves monitoring and/or manipulating explicit representations of 
uncertainty (Zadeh, 1965, Brooks, 1982, Lozano-Perez, MAson & Taylor, 1984, 
Erdmann, 1986, Davis, 1986, Hutchinson & Kak, 1990). In a pure and unsimplified 
form this approach adequately models any knowable theory of uncertainties; it preserves 
the classical planning ideal of a provably correct plan. Unfortunately, a high computational 
price is incurred. A general ability to project states including objects with explicit general 
error bounds is necessarily no less difficult than if the objects are known precisely. Many 
systems incorporate simplifications, typically assuming that uncertainties are constant, in- 
dependent of context, or otherwise constrained. This buys some efficiency at the price of 
generality. But the efficiency is never greater than if the objects had zero uncertainty so 
that the Chapman intractability results still apply. 

Finally, spatial uncertainties in robotics may be dealt with by guaranteeing a conser- 
vative approach to inferencing. In a sense, a kind of worst (or sufficiently bad) case 
representation is assumed for objects. The approach, which seems only used for prob- 
lems of path planning, includes techniques like quantizing the space (Wong & Fu, 1985, 
Zhu & Latombe, 1990, Malkin & Addanki, 1990) and imagining a repulsive potential field 
around obstacles (Khatib, 1986, Hwang, 1988). Interestingly, the approach can be more 
efficient than the zero uncertainty case. Since object boundaries are not guaranteed to be 
the tightest possible, they can be selected to be both conservative and simplifying. This 
benefit does not come for free. In different guises completeness or correctness can be sac- 
rificed. In a sense, this is the closest of the popular approaches to the research reported in 
this paper. In a sense we also adopt a conservative representation, although the uncertainty 
tolerance is due to plan characteristics rather than explicit representations. This shift sup- 
ports a context-sensitive conservatism which supports reasoning about general manipulation 
problems rather than only path planning in a static world. 

2. Learning Increasingly Permissive Plans 

This section defines a framework for permissive planning and describes an algorithm which, 
based on execution failures, incrementally increases plan permissiveness so as to decrease 
the likelihood of those failures. First, data approximations are defined. They provide 
the internal representations employed during planning. Because data approximations are 
approximations to the world, plan execution failures which may result can be linked to some 
set of these data approximations. Next, we define plan parameters. These parameters may 
be tuned to increase the permissiveness of the plan. The remainder of this section discusses 
the plan generation, execution, and refinement process for permissive plans. 
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2.1. Data Approximations 

Data approximations are representations for approximate continuously valued data about 
the state of the world. They can either be external or internal. External data approximations 
are used to represent the uncertainty of data in the world. Internal data approximations are 
used to simplify complex sets of data to make reasoning more tractable. First, let us consider 
external data approximations. 

2.I.1. External Data Approximations 

An external data approximation involves a set of quantities for which the system is given 
approximate values typically via imperfect sensors. Let QE be a vector {ql, q2, q3, -.., % } of 
quantity variables and AE be a vector of their corresponding approximate values 
{al, a2, aa, ..., an}. Every qi exists along a continuous dimension D(qi). We adopt the 
following model for external data approximations. For each quantity qi there is a measur- 
able value knowable to the system denoted M y  (qi). There is also an actual world value not 
knowable to the system denoted Av(qi) .  For a sensor to yield a valid approximation we 
require that P ( M v ( q i )  = a~lAv(q~) = t) is monotonic in [t - a i [ .  In other words, given 
the actual value of t  of a sensed quantity q~(Av (q~) = t), the likelihood of measuring value 
al is greater than measuring value a2 in just those cases that al is closer to t than is a2. 
More precisely: 

Vin-_lP(Mv(qi) = a l )  > P ( M v ( q i )  = a 2 )  ¢ = ~  l a l  - t] < la2 - E I (1) 

In the case of external data approximations, the value vector AE is the best information the 
system has about the values of the quantity variables QE. The only way to improve this 
information is to interact with the world. For purposes of planning with the data represented 
by the approximations, the system behaves as if QE = AE. The qualitative definition of a 
data approximation is never employed during planning, only when analyzing failures. 

For instance, suppose one is using a tape measure to measure the length of a piece of wood. 
The reading obtained fits the criteria for an external data approximation. The quantity q~ 
being measured is the length of the wood and a~ is its measured approximate value. The 
quantity qi exists along the continuous dimension D(qi) of length. It is reasonable to believe 
that the error between the measured and true value is likely to be small. Thc only way better 
information can be obtained is through further interaction with the world: obtaining and 
using a better measuring device, measuring more times and averaging the results, etc... 

In robotics, external data approximations can be used to represent values read from 
sensors, which are inherently uncertain. For instance, the position of a block, as sensed by 
a visual system, would be represented with an external data approximation. 

2.1.2. Internal Data Approximations 

With an internal data approximation, the system chooses the values Af of the quantity 
variables Qr with a data approximation procedure. This is often motivated by the need 

11 
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to simplify the representation so reasoning can be performed more efficiently. Internal 
data approximations can he adjusted through the system's reasoning alone. One can think 
of  internal data approximations as being like external data approximations except that the 
actual value of  the variable represents the optimal setting as defined by a system utility 
function. ~ The measured value for a quantity corresponds to the value chosen by the system 
in an attempt to maximize utility. 

Recall our earlier tape measure example. Suppose that we would like to use the mea- 
surements we are making to decide how much wood is needed for a project. We might 
consider rounding up to the nearest inch in making the measurements. This makes it easier 
to compute the wood needed at the cost of  possibly requesting too much. On top of the 
external data approximation, due to the uncertainty of the measurement, we have added an 
additional internal approximation to permit easier planning of the wood requirements. 

In robotics, geometric object models are examples of internal data approximations. A 
simplified geometric representation can be far more efficient to reason about than the com- 
plex raw data returned by a vision system. However, in seeking a simplified representation, 
accuracy is sacrificed. The system has thus introduced further uncertainty. 

2.2. Plan Parameters 

Permissive plans employ continuous numeric parameters which can be tuned to affect plan 
permissiveness. It is important that these parameters depend on the context in which the plan 
is applied. Suppose we have a parameter which specifies the height which a manipulator 
must be above the workspace to safely navigate without collisions. The possible settings for 
this parameter are a function of  the highest object in the workspace. Therefore, it depends 
on context. This means a generalized plan schemata must choose its parameter values at 
plan application time. 

Parameters are chosen based on a quality function maintained in the schemata which 
indicates the current "best" parameter choices for the context in which the schemata is 
being applied. The quality function is represented by a collection of  preferences which 
qualitatively describe the behavior of  the function over a set of intervals. 

Let Qp be the set of  plan parameters and Ap be the set of  their respective values. 
Every qi C Qp is defined along a continuous dimension D(qi). Let there be a low bound 
Lzo~(D(qi), C) and a high bound Lhigh(D(qi), C) on the values which qi may assume 
along dimension D(qi) in context C. A context is a partial world state specification. Figure 
1 gives a pictorial representation for the dimension D(qi). The plan's parameter values Ap  
must also be dependent on context. The system chooses A p  based on a set of  preferences 
P(q~, C) for each qi in context C. 

A preference p E P(qi,C) is a 3-tuple < Vlo~(C),Vhigh(C),r > where Vlow(C) 
and Vmah(C) form an interval dependent on context, and r C{increasing, decreasing, 
constant} is a relation describing the behavior of a quality function FQ,q~,C in that interval. 
Additionally: 

Lzo..(D(qi), C) < I~o,.(C) < Vhigh(C) ~ Lhigh(D(qi), C) (2) 

P(q~, C) is inconsistent ¢ ~  3p~,pj such that 

12 
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t T 
Llow(D(ql), C) qi = ai Lhigh(D(ql), C) 

lower limit plan parameter's upper limit 
current value 

Figure 1. A Graphic Representation of Dimension D(qi) 

one possible FQ.qi.C 
both satisfying 

preferences 

Llo..(D(qi), C) glow, l(C ) ~ Vhieh.l(C) = VIo,,.2(C ) ~ ghigh,2(C ) L~igh(D(qi), C) 
\ \ upper limit lower limit ~ \ 

P(qi, C) = {{W/ow,l(C), Vhigh4(C),increasing),(V,o,,.,(C), Vhig~.,(C),decreasing}} 

Figure 2. A Graphic Representation of Two Consistent Preferences Comprising A Quality Function 

Pi = < Vil(C), Vih(C),r~ > E P(qi, C) A 
pj  = < > • P(qi,  c )  A 

r i ¢  r j  A 

(Vi t (C)<Vjz(C)<V~h(C)V)  
v z(c) < < V h(C) 

Figure 2 shows two consistent preferences comprising a quality function. An incompletely 
specified preference is one which has an undetermined value for Viol(C) or Vmgh(C)- If  
incompletely specified preferences are used, as they are in our GRASPER implementation 
discussed in Section 3, the system must provide a procedure for assigning values to the 
undetermined VZow (C) ' s  and Vmgh (C) 's .  The procedure should attempt to find assignments 
such that the resulting set of  preferences is consistent as defined above. 

The overall quality function FQ determines the choice made by the plan for Ap. FQ,q~,c 
is only specified in terms of  the qualitative behavior of  its regions as defined by the pref- 
erences P(qi, C). A plan parameter qi may not be able to take on all values ai, where 
Ltm.(D(qi), C) < ai <_ Lhigh(D(qi), C), in a given context C. We therefore represent 
the set of values qi can take on in context C as R(qi, C). Let MAX(FO,q.C, X) be a set 
of  potential maxima for the function FO,q~,c applied to the set of  values X. For x E X,  

13 



130 S.W. B E N N E T T  AND G,F. DEJONG 

Lzow(D(qi,C)) <_ x <_ Lmgh(D(qi), C) because the function is only defined over that 
interval. With only qualitative information about the quality function only potential max- 
ima can be identified. The plan must choose a value for ai C MAX(FQ,q~,C, X). Several 
strategies are possible. The GRASPER implementation chooses the value closest to the 
current setting for q~. In general, the plan chooses a value for one or more parameters 
qi E ~/IAX(FQ,q~,C, R(qi, C)). 

We assume limited interactions between plan parameters. L~ow, Lhigh ,  and all Vzozv's 
and Vhigh'S axe dependent on context and may be a function of other plan parameters, 
We enforce that they must maintain their relative ordering under any possible valuation 
of the other plan parameters. In general: given an ordered, consistent set of preferences 
{Pl(qi, C), P2(qi, C), ..., P,~(qi, C)} where each 

Pj(q~, C) = < Y}o~,j(C), Vmgh,j(C), vetj > then: 

VC[(k < l) ~ [ Llo~(D(qi), C) <_ Vlo~,k(C) <_ Vmah,k(C) <_ Vlo~j(C) (3) 

< Vmgh,,(C) <_ Lhigh(D(qi), C)]] 

2.3. Planning with Data Approximations 

Constructing a plan for a specific goal making use of data approximations is the same 
as with traditional planning techniques. The data approximations permit a simplified 
model of the world, simplifying the reasoning involved. No explicit reasoning about 
the fact that data approximations were employed takes place during plan construction 
or application. Generalized plan schemata can be constructed using the EGGS algo- 
rithm (Mooney & Bennett, 1986). The choice of parameter values for the generalized plan 
schemata, however, will remain dependent on the context in which the generalized plan is 
applied. 

The price for approximation of the world is the increased potential for failure due to 
discrepancies. However, the strength of the permissive planning approach is in the ability 
to tune plan parameters to succeed in spite of these discrepancies. To achieve this we 
require that the system have an ability to recognize failures and to tune plan parameters 
so as to reduce the likelihood of encountered failures. The next two subsections discuss 
these requirements. First, we define expectations which are constructed during the planning 
process and allow failures to be recognized during execution. Next, we discuss how plans 
are refined so as to become increasingly permissive. 

2.4. Expectations 

We are interested in improving plan performance with respect to the real world. Failures 
occur when feedback from the real world contradicts the prediction of the simplified model 
which employs data approximations. Expectations are predictions of the simplified model 
for an action in terms of conditions which can be efficiently monitored in the world. In 
order to detect execution failures, all actions carried out in the world must be monitored. 
The important parts of a monitor are illustrated in Figure 3. First, the monitor must specify 

14 
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(MONITOR <actions> <expectations> <temainations> <support>) 

1 . _ _ _ . ,  I I ]. 
[ A s e t o f p r i m i t i v e a c t i o n s t o l  I I [ . . . . .  " . 1 An Explanat ion supporting I 
I beexecu ted  concurrently I I [ I theexpecta t i0ns  I 
~- . . . . . . . . . .  -J I I ~- . . . . . . . . . .  -J 

J.~ 1 f . . . . .  
An expression referencing bui l t - in  system I I An expression referencing bud t -m  system predicates and I 

I predicates, sensor values, and sensor trace features I Isensor values which  defines the termination condition for I 
I which defines successful execution I I the set of  actions I 
t J i . . .  J 

Figure 3. Syntax  for Moni tored  Act ions  

Positiq 

" ,  P o s i t i o n  B 
"'-,...., 

Figure 4. An Action for  which  Expecta t ions  Are  Specified 

the set of concurrent primitive actions to be carried out. Next, a set of constraints on the 
readings for sensors must be provided which define expected operation of the actions. A 
set of  terminations is also provided in terms of  sensor values which define termination of  
the actions. If  the terminations are satisfied and none of  the expectations were violated, the 
actions have succeeded. Lastly, there must exist a justification for the expectations in terms 
of  the simplified model. As part of the planning process, all actions must have a justified 
set of  expectations. 

For instance, suppose that the robotic manipulator shown in Figure 4 is to be moved 
from position A to position B along some trajectory. The move is composed of a set of 
primitive joint moves for the manipulator which are to take place in a coordinated fashion. 
These form the set of concurrent primitive actions. The expectation is that the manipulator 
strikes nothing during the movement. This could be confirmed by force sensors on the 
manipulator. If  none of  the force sensors read sufficiently high to indicate the presence of 
an external force then it is assumed that the manipulator struck nothing during the move. 
The termination for the action set is position B as specified by the readings of  a set of joint 
encoders on the manipulator's joints. The support for the expectations involves reasoning 
about the spatial occupancy of nearby objects in the simplified model. The expectation of  
sensing no external forces during the move could not be satisfied if the space occupied by 
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the stack of blocks in Figure 4 intersected the space occupied by the manipulator during the 
trajectory. 

2.5. Refining Failing Plans for Increased Permissiveness 

Failures are defined by expectation violations. These occur when the supporting proof for 
an expectation is valid in the model but is contradicted by real-world experience. That 
difference triggers the first phase of failure recovery: generating a qualitative explanation 
of how to tune plan parameters to reduce the chance of the failure in the future. 

2.5.1. Qualitative Tuning Explanations 

In order to diminish the chance uncertainty-related failures, it is necessary to decide which 
plan parameters to tune and how to tune them. In our model, failures can always be 
attributed to poor data approximations. In order to devise a strategy for tuning parameters 
so as to decrease the likelihood of a failure, it is necessary to reason about the relationships 
which exist between data approximate quantities, the failing expectations, and tunable plan 
parameters. 

We employ a qualitative model of  the relationship between continuous quantities. 3 Let 
Q+ (a, b) signify that the magnitude of quantity b positively influences the magnitude of  
quantity a. Similarly, Q_ (a, b) means the magnitude of quantity b inversely influences the 
maenitude of quantity a. That is, if a -- f(b) the minimum we must know to create such a 
relation is the sign of -~b" If  a = f(b) and ~ > 0 then Q+(a, b) holds. If  a -- f(b) and 

°-L < 0 then Q_ (a, b) holds. 
Ob 

Quantitative predicates employed by the system have one of two basic intents. Either 
they are calculation predicates, whose purpose is to compute some value (e.g. a predicate 
for subtraction), or they are test predicates, which are designed to fail for certain sets of 
inputs (e.g. a predicate for performing a less-than comparison). There is no way to vary 
the probability of success of a calculation predicate since they always succeed. A test 
predicate's probability of success, is sensitive to the probability distribution of its argument 
quantities. In the diagram below, the less-than test on the right has 

(< a b)? probabil i ty  (< a b)? 

a higher probability of succeeding given the illustrated probability distributions for its 
arguments than the one on the left. While probability distributions are difficult to define 
and work with, recall the simpler qualitative view of the probability distribution defined for 
data approximations in Section 2.1.1: probability density decreases monotonically as one 
moves either higher or lower away from the central value. Therefore, if we can tune one of 
the arguments to a test predicate we can affect its chance of success. Let DA(q) signify that 
q is a data approximate quantity. Now let us introduce the notation PQ+ (p, q) to express 
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that the magnitude of the quantity q directly influences the magnitude of the probability of 
success of test predicate p. Similarly, PQ_ (p, q) indicates that the magnitude of quantity 
q negatively influences the magnitude of the probability of success of test predicate p. This 
provides a mechanism for connecting the probability of a predicate being satisfied with the 
magnitude of a quantity. The rule below is one of several which follow from our definition 
for data approximations: 

PQ_(a < b,a) ~ DA(q),Q+(b,q). (4) 

The rule states: if q is a data approximate quantity and hence uncertain and directly in- 
fluences the magnitude of a quantity b, the likelihood of a < b succeeding is inversely 
proportional to the magnitude of a. Let PP(q) indicate that the quantity q is a plan parame- 
ter and hence is tunable. Let PS T (p) signify that the probability of success of predicate p 
is increasing. Let QT (q) signify that quantity q is increasing. Therefore we could use the 
following rules to increase the probability of a predicate p give than q is a plan parameter: 

PST (P) ~ PQ+ (P, q), QT (q). (5) 

Q~(q) ~ PP(.q). (6) 

The second rule above asserts that we can increase plan parameters to achieve goals (because 
they are tunable). 

It must also be possible to propagate the qualitative probabilities of predicates. Let 
ANT(pl,  p2) indicate that P2 is an antecedent of a rule for which Pl is a consequent. One 
sound rule for propagation of qualitative probabilities across rules can then be expressed: 

PQ+(Pl,q) ~ ANT(pl,p2),PQ+(pz, q),Vx[[ANT(pl,x) A x  ¢P2] (7) 

 PQ_ q)] 

The general rules required to construct a qualitative tuning explanation fall into four cate- 
gories: 

general qualitative inference rules- inference rules necessary to reason about increasing 
and decreasing quantities 

Example: 

QT (x) Q+(x, v), @ (v). (8) 

qualitative predicate definitions - rules providing qualitative definitions for system 
predicates relating quantities 

Example: 

Q + ( x , y ) ~ [ x = y + z ] .  because(x=f(y) )A = 1 > 0  (9) 
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approximation definition rules - rules defining the behavior of test predicates using 
data-approximate quantities 

Example: 

PQ+(a < b,b) ~ DA(q),Q+(a,q).  (10) 

qualitative probability rules - rules about the propagation of qualitative probabilities 

Example: Rule 7 above. 

The qualitative tuning explanation is a sound proof of how to positively influence the 
probability of success of the predicate which supported the failing expectations. The pro- 
cedure for constructing the tuning explanation and tuning the plan parameters as a result is 
as follows: 

1. Compute the set P of generalized preconditions and effects for the plan justification 
structure using the EGGS or EBG algorithms. 

2. Take all generalized variables which are quantitative arguments to every predicatep E _19 
as quantity variables for the qualitative reasoning process. 

3. Find all qualitative influences among these quantity variables. This is possible since, if 
two plan quantities are related, we know the exact functional relationship. 

4. Construct a proof based on the qualitative rules discussed above for how to unambigu- 
ously qualitatively increase the probability of success of the predicate supporting the 
expectations to the failed action. 

5. Collect the set of quantity increases and decreases justified by the fact that plan 
parameters PP(q) are tunable. This amounts to finding applications of the rules: 
Ql(q) ~ PP(q) and Q~(q) ~ PP(q). 

6. For each of the tunable plan parameters in the set collected above, add a new prefer- 
ence to the set of preferences for that parameter. This preference will be incomplete, 
specifying as one of it bounds a general expression for the point at which the failure 
occurred and as its relation increasing or decreasing as given in step 5. The other bound 
will be realized in conjunction with the neighboring preferences. 

Next, we give an illustration of step 6 for adding preferences and updating the associated 
quality function. The overall refinement procedure is demonstrated in more detail with 
regard to the GRASPER implementation in Section 3. 

2.5.2. Tuning Plan Parameters: An Example 

The actual tuning of a plan parameter qi is based on the addition of new preferences to the 
set P(qi, C). Consider the situation depicted in Figure 5. The goal is to grasp Block2, 
a relatively flat intricately shaped piece. The workspace also contains Blockl, a bigger 
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Figure 5. The Gripper In Its Initial Configuration 

Current Preferences Preferences Realized As Quality Function 

<?,? , cons tan t>  
a = L~o~(D(qo~)) ,b  = L~,gh(D(qow)) 

<a,b,cot~Mant> 
a b 

Figure 6. Initial Preference Set and Quality Function for the Opening Width Plan Parameter 

block which is fairly close to Block2. The only grasping faces on Block2 which can lead 
to a successful grasp require that one of the gripper fingers be inserted between Blockl 
and Block2. The system's plan for accomplishing the grasping goal involves selecting a 
grasping site, moving to a position above the center of the grasping site, orienting to the 
correct angle for the grasp, opening the gripper to surround the object, moving the gripper 
down to the table to surround the object, closing the gripper on the object, and lifting the 
object. Although many parameters are involved in this plan, our example focuses on the 
parameter for determining proper opening width. The initial preference for the opening- 
width parameter is shown in Figure 6. In our example we will assume that the initial 
preference is always for a constant function over the range of the bounds on the parameter. 
This makes sense in that initially no preferences would imply that all settings (within the 
bounds) of values for the parameter are equally good. Once the first preference is learned 
by the system, the initial default preference is removed. The flat quality function defined by 
the default preference has a continuous range of potential maxima which exist between the 
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Figure  7. The Gripper Collides With Block2 As It Moves Down To Surround It 

Current Preferences Preferences Realized As Quality Function 

<a,?,increasing> 
a = Llo,~(D(qo,,)),b = Lh,~,(D(qo,,.)) 

<a,b,increasing> 
a b 

Figure  8. Preferences and Quality Function for Opening Width After Collision Failure with Block2 

bounds. In our example, the system will select one closest to the current opening width of 
the gripper. One could have been picked randomly as well but this method has the additional 
benefit of resulting in less gripper movement. The gripper was initially in a closed position 
so the nearest setting for the opening-width parameter is one exactly equal to the width of 
Block2 at the grasping site. The bound a in Figure 6 corresponds with this width. 

The plan is executed and fails with an unexpected collision when moving down to surround 
Block2. Figure 7 shows the situation at the time of failure. The collision occurred near 
Block2 and at a point lower than the height of Blockl. The qualitative tuning explanation 
therefore indicates that increasing the opening width for surrounding Block2 causes the 
fingers to be farther from Block2 at that point in the grasp operation and decreases the 
likelihood of a collision failure with Block2. The collision occurred at point a, a bound on 
the quality function shown in Figure 6. The tuning explanation suggests that at that point, 
increasing the parameter is desirable. A new preference is therefore added to the opening- 
width parameter. Figure 8 shows the new preference and resulting quality function. The 
algorithm for realizing preferences now assigns the increasing preference to extend over 
the complete interval because no additional preferences are present. The plan is now more 
permissive in that the move-down-to-surround portion of the plan should function in spite 
of errors associated with the data approximations to Block2. However, the system has only 
learned one of the preferences that are important in this situation. The plan is now applied 
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Figure 9. The Gripper Collides With Blockl As It Moves Down To Surround Block2 

Current Preferences Preferences Realized As Quality Function 

<a, ?,increasing> 
<?,b,decreasing> 

a = Lio,,.(D(qo,,.)),b = Lhigh(D(qow)) 

c--(a+b)/2 
<a,c,increasing> 
<c,b,decreasing> 

. 

a c b 

Figure lO. The Preferences and Quality Function for the Opening Width Parameter After a Collision with Blockl 

again to grasping Block2. The value for the opening-width parameter is now chosen to be 
the maximum possible opening width prior to striking Blockl. This is the upper bound b 
for the opening-width parameter which corresponds to the only potential maximum of the 
new quality function shown in Figure 8. 

The plan is executed and fails once again. This time the failure occurs near Blockl and 
at the height of Blockl as shown in Figure 9. The qualitative tuning explanation indicates 
that decreasing the value of the opening width would decrease the chance of a collision 
with Blockl. As a result, another preference is added indicating that lesser values are to be 
preferred than b, the point at which the failure occurred. The new set of preferences form a 
new quality function shown in Figure 10. In order to concretely realize the two incomplete 
preferences, a third general point c must be created between the bounds a and b. Here, 
the algorithm creates a general expression for c by taking the midpoint between the values 
returned by the expressions for a and b, the nearest set of bounds. As a result, the system now 
has increased the plan permissiveness with respect to errors in the representations for both 
Blockl and Block2. The failures encountered in this example were with the specific part 
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Figure 11. A Successful Surround Operation is Achieved in the Plan 

of the plan that moves down to surround the object. It is the permissiveness of this portion 
of the plan that was increased by tuning the opening-width parameter. Other aspects of the 
plan which lead to problems will be tuned as well by other encountered failures. The point 
c now forms the only potential maximum of the new quality function for the opening-width 
parameter. Consequently, in applying the new plan, a midpoint between the two extremes 
is chosen for the opening-width parameter. This leads to the successful surround operation 
in the plan illustrated in Figure 11. 

3. The GRASPER System 

In order to demonstrate and test our approach we chose a complex real-world domain where 
uncertainty plays a role: robotic grasping. The goal in this domain is to learn plans which 
control a robotic manipulator to successfully grasp objects in its workspace. In fact, planning 
of grasps for arbitrarily shaped objects is still an open problem in robotics. Uncertainty is one 
primary difficulty in this domain. Sensors don't return precise information. Visual sensors 
seeking to identify or help represent the objects are very sensitive to placement of the light 
source. For example, an observer blocking some of the light may actually be effecting visual 
sensing of the objects. Force sensors used on the manipulator also are subject to errors so 
that the precise position which the manipulator first contacts an object is not known exactly. 
The robotic manipulator also cannot be completely precise in its movement. Intractability 
also plays a significant role in this domain. The system must represent the world in order to 
construct plans for carrying out its actions. For example, in using visual sensors to model 
an object or in recognizing objects and retrieving a pre-stored model, that model exists at 
some resolution. The greater the resolution, the more information that must be considered 
in planning to grasp the object. Therefore, in order to allow plans to be constructed in a 
reasonable amount of time, object models must be simplified. As discussed in the previous 
section, this amounts to introducing some error in return for planning efficiency. Altogether, 
the robotic grasping domain provides a challenging testbed for learning techniques. 
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Figure 12. GRASPER Experimental Setup 
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Figure 12 shows the laboratory setup. The current implementation of the architecture is 
called GRASPER and is written in Common Lisp running on an IBM RTI25. GRASPER 
is interfaced with a frame grabber connected to a camera mounted over the workspace. The 
camera produces bitmaps from which object contours are extracted by the system. The 
system also controls an RTX scara-type robotic manipulator. The RTX has encoders on all 
of its joint motors and the capability to control many parameters of the motor controllers 
including motor current. This gives the system a rudimentary capability of detecting colli- 
sions with the RTX gripper. If enough current (force) is applied to the motor to overcome 
friction of the joint and the position encoder indicates no movement, an obstacle has been 
encountered. This type of sensing gives feedback during execution of a plan when the 
camera's view of the workspace would otherwise be obscured. This precise control of the 
manipulator is ideal for carrying out monitored actions in the world. 

Our current goal for the GRASPER system in the robotics grasping domain is to success- 
fully grasp the plastic pieces from puzzles designed for young children. Since the pieces 
are relatively flat and of fairly uniform thickness, an overhead camera is used to sense 
piece contours. The GRASPER system could be applied to arbitrary three-dimensional 
objects as well given sufficient sensing hardware to recognize or model the objects in 3D. 
These pieces have interesting shapes and are large enough, yet challenging, to grasp. The 
goal is to demonstrate improving performance at the grasping task over time in response 
to failures. Some of the failures the current implementation learns to overcome, when 
using isolated grasp targets, include learning to open wider to avoid stubbing the fingers 
on objects, and learning to prefer more parallel grasping faces to prevent unstable grasps. 
Detailed examples of these two failures follow later in this section. 

3.1. System Architecture 

The system is organized as illustrated in Figure 13. There are three modes of operation. 
Input to the system is through the planning/explanation-based learning component shown in 
Figure 14. In the simplest mode, a goal is presented to the system which already corresponds 
to a plan in the knowledge-base whose preconditions are satisfied in the current state of the 
world. In this case, that plan is passed directly to the executive to be carried out. Secondly, 
a goal could be presented to the system which doesn't correspond to any known plans. In 
this case, an explanation is generated for how the goal can be achieved in the current state, 
the explanation is then generalized and packaged into a general plan which is then saved 
and passed on for execution. Lastly, a goal and observed action sequence can be given to 
the planning/EBL component which then generates the explanation from both the goal and 
the observed actions. This is the preferred mode of operation of explanation-based learning 
systems because it can make explanation construction an easier task. In this last mode, the 
explanation is then generalized, packaged into a plan, saved, and the plan is passed on to 
the executive. 

The executive instantiates the execution sequence associated with the plan with the ap- 
propriate bindings obtained from evaluation of the plan's preconditions in the current state. 
These actions will be monitored, having sensor expectations associated with them that de- 
fine success or failure. Should a failure occur, as defined by the expectations, the plan 
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C World Data ~ Q . ~ _ a i n  Rules/General P~lans's's~ 
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Figure 13. Approximation Architecture 
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Figure 14. Approximate Explanation-based Learning 
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(MONITOR (MOVE~3RIPPER ?GRIPPER32878 CLOSE 20 64 20 POSITION) ~ Close Gripper Until Termination Met 
(AND (FINAL-FORCE GRIPPER ?GFFORCE32731) 

(> ?GFFORCE32731 50) Final force should exceed 50 units and final 
(FINAL-POSITION GRIPPER ?GFPOS32732) position should be such that the gripper 
(> ?GFPOS32732 1)) didn't close on itself (otherwise failure). 

(OR (AND (POSITION GRIPPER ?GPOS32733) 
(PRINT (LIST (QUOTE POSITION) ?GPOS32733)) 
(QUAL= ?GPOS32733 0)) Terminate action i f  the gripper closes on 

(AND (FORCE GRIPPER ?GFORCE 132734) ~ s e l f  or i f  the force exceeds 60 units 
(PRINT (LIST (QUOTE FORCE) ?GFORCEI32734)) 
(> ?GFORCE132734 60))) 

(STABLE~3RASP ?GRIPPER32878 ?OBJECT32870 ((RELATIVE-FACE ?NAME132744 ?XI32762 
?Y132763 ?REF-ANGLE32779 ?LENI32748) (RELATIVE-FACE ?NAME232749 ?X232764 ?Y232765 ?REF- 
ANGLE32824 ?LEN232753)))) 

Justification for the expectations is that a stable 
grasp has been planned by the system. 

Figure 15. An E x a m p l e  o f  a M o n i t o r e d  A c t i o n  

refinement module is called to increase plan permissiveness appropriately. If  no errors 
occur, the system is ready for the next goal or goal/observation pair. 

3.2. Execution & Monitoring for Robotics 

In order for the system to improve its approximations when they don't  perform well in the 
world, the system must have a monitoring capability. It is important that the system be able 
to represent what actions are to be carried out, what the expected outcome of those actions is, 
why that outcome is expected, and when the specified actions should be terminated. In the 
robotic grasping domain, the set of actions to be monitored are a set of motor commands 
to the manipulator. These may occur as individual motor moves as with a command to 
move the arm up the column in the case of our SCARA-type manipulator. A group of 
simultaneously applied motor commands may also be monitored. For instance, in moving 
the manipulator while grasping an object, force has to be continually applied to squeeze 
the object while the other joint moves are being can:ied out. In this case, expectations may 
apply both to whether the object is sensed between the fingers and whether an external force 
is sensed by the arm during the motion. Figure 15 gives a concrete example of a monitor 
employed for closing the robotic gripper on an object. The single action specified is for the 
gripper to begin closing from its current position. The expectation is that the final force of 
the gripper on the object exceed 50 units and that the gripper not close on itself. The action 
terminates when the gripper exerts a force greater than 60 units on the object or the gripper 
closes on itself. The expectation of feeling the object between the fingers with force greater 
than 50 units is justified by an explanation for why the planned grasp is stable (so the object 
will not slip away as force is applied). The specification of expectations as well as their 
justification facilitates the parameter tuning process. 

The expectations and terminations are specified in DNF form and may reference predicates 
known to the system as well as sensors available on the manipulator. For actual execution 
on the robot, the sequence of monitored actions specified by a plan is compiled into a 
Common Lisp program for rapidly checking the sensors while the actions proceed. Many 
tradeoffs exist in the monitoring process. For instance, since sensors take time to read, the 

26 



REAL-WORLD ROBOTICS: LEARNING TO PLAN FOR ROBUST EXECUTION 143 

Vision ~a~a H~¢~ Explored: 3~ 
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A p p r o x i ~ t e d  O b j e c ~  

0~ '  576 

. . . . . . . . .  " 

O~j a¢4.: OBJECT4543 

Figure 16. System Status Display During Grasp of Object4543 

faster the actions are carried out, the smaller is the number of sensors readings which can 
be obtained. Furthermore, one can read more types of sensors during execution but each 
will have a lesser number of readings because of the time constraint. However, because of 
the permissive planning approach the plans become less sensitive to sensor error. 

3.3. Detailed Examples of Learning Episodes 

This section details two learning episodes with GRASPER. The first highlights diagnosis 
of a failure to surround the piece and the second a failure to choose the best grasping site. 

3.3.1. Example 1 

Figure 16 shows the system's status display during a grasping task. First, the system uses 
the camera to acquire contour information about objects in the workspace. These contours 
are shown in the upper left corner of the figure. Next, the contours are approximated with 
n-gons (internal data approximations) which result in (n2-n)/2 possible unique grasping face 
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Solid black line segments show 
data approximation of contour \ 

\ \  

Photo of Actual Object 
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Arrows illustrate planned 
finger positions. 

/ 

Figure 17. Grasp Target and Planned Finger Positions 

pairs. These approximated object contours appear in the upper right quadrant of Figure 16. 
The algorithm chooses the value of n such that an approximation to the object is possible 
within a certain error threshold. The data approximated object representations as well as 
the current information about the state of the robot manipulator are asserted in the initial 
situation. The target object is then selected and an explanation is generated for how to 
achieve a grasp of the target. Figure 17 highlights the selected target object. The heavy 
line indicates the data approximation to the object contour while the lighter pixels show the 
actual sensed object contour points. The arrows indicate the positions of the leading edges 
of the fingers for the grasp position given by the produced explanation. The explanation 
for achieving grasp-object involves a total of about 300 n~)des with a maximum depth of 
10 levels. 

Parameters are implemented by rules" which choose their value dependent on context. 
When new preferences are added for a parameter, the associated rules are updated so as 
to choose potential maxima of the new quality function. Generalized plans refer to the 
consequents of the rules which choose parameter values. In this case, initially there were 
no preferences for the plan's opening width parameter other than it be a legal value between 
the width of the target object and the minimum of the maximum gripper opening and the 
distance to the nearest object. One of the initial rules for the opening width parameter 
is shown in Figure 18. This rule pertains to the case where the gripper is currently open 
less than the minimum opening to satisfy the surround goal in the plan. It then chooses the 
minimum opening which satisfies the goal because this is the closest potential maxima of the 
(initially flat) quality function. The rule therefore affects the separation of the arrows shown 
in Figure 17. After the explanation was generated, and its associated operator sequence 
executed, the monitored action shown in Figure 19 encounters a violation of the expected 
sensor readings. Figures 20 and 21 show traces of force and position, respectively, plotted 
against time (in seconds) into the overall operator sequence. 

The original explanation for the no-gripper-collision-object goal indicated in the above 
monitored action is now suspect due to the violated expectations. A sketch of the specific 
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Figure 18. One of the Initial Parameter Rules For Opening Width 
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t I 

Figure 19. The Failing Monitored Action 

Zed force vs. time 

3 0 . 0 0 - -  

0 
r r  

.... / /! \ 
-°-/ I \/ 
~°'°°- X ./" 

I 
,.oo i( 

i 
I0.00 12.00 14.00 1£.00 18.00 

E l a p s e d  T i m e  S i n c e  S tar t  o f  E x e c u t i o n  ( S e c o n d s )  

\ 
\ 

I T h e  fo rce  r a m p s  up  s h a r p l y  ] 
I to  a value of over 30 units. I 
t - . _ _ _  I 

Figure 20. Zed Force vs. Time into Action Sequence 

29 



146 S.W. B E N N E T T  AND G.F. DEJONG 
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At the same t ime the force 
l is increasing rapidly the 
I arm is still 10 m m  above the 
I table. An  unexpected ob- 
I 
I struction has  been encoun-  
I tered and the expectations 
I are violated. 
) 

/ 
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/ 
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\ 
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Elapsed Time Since Start of  Execut ion (Seconds) 

Figure 21. Zed Position vs. Time into Action Sequence 

NO-GRIPPER~2OLL1SION-OBJECT GRIPPER1 289.62 267.53 -12.70 38.89 OBJECT4543) 

(LEFT-FINGER-OF GRIPPER 1 FINGER 1) 

(NON-INTERSECTING-GRIPPER-FINGER-4)BJECT GRIPPER1 FINGER1 289.62 267.53 -12.70 38.89 
OBJECT4543) 

Subproof for translating finger to appropriate opening width (6facts, 8 built-ins) 

Subproof for counter-rotating object center for clipping against finger (8 buih-ins) 

Subproof for calculating extents and checking for overlap (7 built-ins) 

(RIGHT-FINGER-OF GRIPPER1 FINGER2) 

(NON-INTERSECTING-GRtPPER-FINGER-43BJECT GRIPPER1 FINGER2 289.62 267.53 -12.70 38.89 
OBJECT4543) 

Subproof for translating finger to appropriate opening width (6 facts, 8 built-ins) 

SHARED Subproof for counter-rotating object center for clipping against finger (8 built-ins) 

Subproof Jbr calculating extents and checking for overlap (7 built-ins) 

Figure 22. Explanation Specific to Failure 

explanation is shown in Figure 22. This explanation for why no external force should have 
been sensed during the downward move of the gripper is the starting point for developing 
the qualitative tuning explanation. Data approximate quantities and tunable parameters 
employed in the plan support proof(explanation) are identified and asserted as such. A proof 
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(P5 INC NGC) 

(PQ- NGC TEST492) (DECREASE TEST492) 

(ANTECEDENT-OF NGC (<= TEST492 MIN490)) Subproof showing that for all 
I antecedents ANT of NGC that WIDTH504) 

(PQ~ (<= TEST492 MIN490) TEST492) (NOT (PQ+ ANT TEST492)) 

(APPROX-QUANTITY OBX511) (Q+ MIN490 OBX511) (TUNING-QUANTITY WIDTH504 INCREASING) 

(QRELATION (POSITION OBJECT505 OBX511 OBY512)) (TUNABLE WIDTH504) 

(DATA APPROXIMATION (POSITION OBJECT505 OBX511 OB Y512) OBX511) 

Where NGC represents the failing predicate: [ 

I (NOq3RIPPER-COLLISION-OBJECT GRIPPER499 X501 Y502 ANGLE503 WIDTH504 OB- I 
I ~ECTS05~ I I 1 

Figure 23. A Qualitative Tuning Explanation 

is then constructed for increasing the probability of success of the no-gripper-collision- 
object goal. Figure 23 shows the qualitative explanation for how opening the gripper 
(increasing the opening-width tunable parameter) positively influences the probability that 
there will be no collision between the first gripper finger and the object. Table 1 gives the 
semantics for the predicates employed in the explanation. The topmost left-hand subtree 
establishes that decreasing the quantity TEST492 can positively influence the probability 
of success of the the probability of the no-gripper-collision predicate. This is because 
decreasing the quantity TEST492 can increase the probability of the predicate (< TEST492 
MIN490) which is an antecedent of a rule supporting the no-gripper-collision predicate 
and all of the other antecedents to that rule can be shown as non-decreasing with respect to 
decreasing TEST492. 4 The probability of success of the predicate (< TEST492 MIN490) 
increases when TEST492 is decreased because MIN490 is influenced by a data approximate 
quantity. The right subtree of the proof establishes that the quantity TEST492 can be 
decreased because it is influenced inversely by a tunable parameter WIDTH504 which can 
be increased. The parameter WIDTH504 is the opening width parameter for the gripper. 

The qualitative tuning explanation indicates that the chosen-opening-width parameter 
should be tuned. An increasing preference will be posted at the minimum opening width 
chosen in the failure. Figure 24 illustrates the shape of the chosen-opening-width param- 
eter's quality function before (left) and after (right) tuning has occurred. After parameter 
tuning, the rules associated with parameter are updated Afterwards, the rule associated with 
this parameter reads a shown in Figure 25. This rule prefers selection of the peak of the 
newly re-calculated quality function which corresponds to opening as wide as the current 
situation permits. When the new more permissive plan is applied the resulting gripper finger 
positions are as illustrated in Figure 26. 
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(PS-INC ?pred) the magnitude of the probability of success of ?pred is increas- 
ing 

( A N T E C E D E N T ~ F  ?pred I ?pred2) ?pred2 is an antecedent of ?predl in the rule being analyzed 

(PQ- ?pred ?quant) the magnitude of the quantity ?quant negatively influences the magnitude of the 
probabili~, of success of predicate ?pred 

(PQ+ ?pred ?quant) the magnitude of the quantity ?quant positively influences the magnitude of the 
probability of success of predicate ?pred 

(DECREASE ?quant) the magnitude of the quantity ?quant is decreasing 

(APPROX-QUANTITY ?quant) ?qant is a data approximate quantity 

(Q+ ?q I ?q2) the magnitude of quantity ?q2 positively influences the magnitude of quantity ?ql 

(Q- ?ql ?q2) the magnitude of quantity ?q2 negatively influences the magnitude of quantity ?ql 

(TUNING-QUANTITY ?a ?b) plan parameter ?a is tuned according to the relation ?b 

(QRELATION ?pred) ?pred is one of the predicates employed in the plan support structure (and 
employs continuous quantities which can be modelled qualitatively) 

(DATA-APPROXIMATION ?pred ?arg) the argument ?arg of the predicate ?pred is known to be a 
data approximate quantity 

(TUNABLE ?quant) the magnitude of quanti~ ?quant is a tunable plan parameter 

Table 1. Predicates Employed in the Tuning Explanation 

Chosen-Opening-Width (Initial) Chosen-Opening-Width (After Tuning) 
1 [- 1 "It- quality function 1 ~ " 1  "1- quality functior 

/ '  
- -- . . . . .  - 1 - - - - ' - I  posted preference: - - -  -- 1 / width of target object I 

rain(distance to nearest object, prefers greater min(distance to nearest object, 
than target object max-opening-width) max-opening-width) 

Figure 24. The Chosen-Opening-Width Parameter Quality Function After Learning New Preference 
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INTRA-RULE: R4611 
FORM: 

(CHOSEN-OPENING-WIDTH ?GRIPPER ?X ?Y ?ANGLE ?OBJECT ?RETURN) 
ANTS: 

(GRIPPER-PERP-WIDTH ?GRIPPER ?SPAN) 
(DISTANCE-TO-CLOSEST-OBJECT ?OBJECT ?X ?Y ?ANGLE ?SPAN ?RADIUS) 
(GRIPPER-FINGER-PARALLEL-WIDTH ?GRIPPER ?PSPAN) 
(DIF ?RADIUS ?PSPAN ?NRADIUS) 
(MAX-GRIPPER-OPENING ?GRIPPER ?MAX-OPEN) 
(MIN ?NRADIUS ?MAX-OPEN ?RETURN) <- -  peak chosen here 
(MIN-SPAN-FOR-OBJECT ?OBJECT ?X ?Y ?ANGLE ?SPAN ?LEFT ?RIGHT) 
(SUM ?LEFT ?RIGHT ?MIN) 
(<= ?MIN ?RETURN) <- -  must be wider than object 

CONS: 
PARAMETER: CHOSEN-OPENING-WIDTH 

Figure 25. Rule Supporting Opening-Width Parameter After Tuning 

Solid black line segments show 
data approximation of contour 

\ 
\ 

\ 

Lighter gray points are actual 
/ object contour points 

/ 

Arrows illustrate planned 
finger positions 

/ 

Figure 26. A Successful Wide Grasp 
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Nc.d~ F.xplorcd: 9fl 

Q 
% 

P a r a ~ t e r  Name: CONTACT-ANGLE-CON~AIgT 

hFp~xi~od O b j e c t ~  

0 B J ~ I  

Object: OBJ E . ~ 9 3  

\ 
Figure 27. System Status Display During Grasp of Object5593 

3.3.2. Example 2 

Next, after the system has learned to open widely when grasping objects, a second ob- 
ject is presented for grasping. Figure 27 shows the system status display while initially 
planning the grasp for this object. Figure 28 highlights the selected target object. The 
dark line indicates the polygonal object approximation and the light colored pixels show 
the sensed object contour points. The arrows illustrate the planned positions for the fin- 
gers in the generated grasping plan. Notice, that the fingers are well clear of the object 
due to the tuned opening-width parameter learned in the first example. Generally, the 
opening-width parameter is the first one to be tuned because striking the objects while 
attempting to surround them is a fairly common error. However, the parameter regard- 
ing acceptable angles between contact faces still has only the initial default preference. 
The angle between chosen faces must be greater than 0 (parallel) and less than the an- 
gle at which slipping occurs according to the friction coefficient between the gripper and 
faces being grasped. All angles fitting these criteria are treated as equally good. Con- 
sequently, the two faces chosen for this grasp should be acceptable given the specified 
friction coefficient. The rule on which the contact-angle-constraint parameter is based is: 
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Solid black line segments show ~ '  Arrows illustrate planned 
data approximation of contour finger positions 

,% 

Phol 

J 
,ighter gray points are cam- 
era-sensed contour points \ 

Figure 28. Grasp Target and Planned Finger Positions 

M O N I T O R (  Move-Gripper(Gripper 1,Closed), "~ 

X (Width(Gripperl)  > 1)~ 

(Force(Gripperl) > 6 0 ~  

Stable-Grasp(Gripperl,. . .) ) 
/ / . . . .  F Justification 

/ .  . . L . . . . .  J ]closure force o.[60 units terminates close 

gripper closes on something (at least lmm wide) 

.[ Primitive action: move gripper 11 
In "closed" direction k I 

{ Expectation expreggion I I 
1 -[ Termination expression I 

Figure 29. The Failing Monitored Action 

INTRA-RULE: R5482 
FORM: 

(QUALITY--CONTACT-ANGLE~2ONSTRA1NT ?GRIPPER ?CALC~2A ?RETURN) 
ANTS: 

(QUALITY-CHECK CONTACT-_AN _ ~ N S T R A I N T  (?GRIPPER ?CALC-CA) ?RETURN) 
PARAMETER: 

C O N T A C T - A N G L E ~ C O N S T R A I ~  rule to return a rating of 

r ~ 1  ~ the quality of the contact 
initially fiat quality function for I / / I angle between two 

t h e  contact-angle-constrain', -'q' 5 ~ I potential grasping f a c e s  

parameter rates all contact I I 
angles equally t J 

This rule references a built-in predicate QUALITY-CHECK which returns a rating of the 
specified contact angle based on the current quality function for that parameter. The rating 
is used in choosing from among several candidate contact angles and is therefore only good 
in relation to other contact angles with respect to the same quality function. After the ex- 
planation is generated, and its associated operator sequence executed, the monitored action 
shown in Figure 29 encounters a violation of the expected sensor readings. The traces in 
Figure 30 and Figure 3 l show, respectively, plots of gripper force and gripper position with 
time (in seconds) into the overall execution sequence. 
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G r i p p e r  f o r c e  v s .  t i m e  

• t 5 .  OO 

4 0 .  O0 

35. UO 

30.00 

~ 25.U0 

Q.~ 2 0 . 0 0  

1.-~. I00 

1 0 , U 0 - -  

5 . 0 0 - -  
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2 2 .  O0 

,/ 
-  heforceincre es 

again as the gripper 
] contacts itself. I 
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/ 
/ / , 

/ , 
/ 

._ 1__ "t ~2(  j d ; - T h e  force increases ~ .. , 
] i quicklyandpeaksjust i [ The then ] 
--~ after initial contact ~ 
- -  with the object. .[.l ~ ' ~  dropss /as the 1 

t L object  slips aw_.ay_ J 

1 
24  • O0 26 .  O0 2 8 .  O0 

Figure 30. Gripper Force vs. Time into Action Sequence 

The original explanation for the stable-grasp goal indicated in the above monitored action 
is now suspect due to the violated expectations. A sketch of the specific explanation is 
shown in Figure 32. This explanation for why a stable grasp should have been achieved 
is the starting point for developing the qualitative tuning explanation. Data-approximate 
quantities and tunable parameters employed in the plan support proof are identified and 
asserted as such. A proof is then constructed for increasing the probability of success of the 
stable-grasp goal. Figure 33 shows the qualitative explanation for how preferring a smaller 
contact angle positively influences the probability that a stable grasp will be achieved. Table 
1 gives the semantics for the predicates employed in the explanation. The topmost left-hand 
subtree establishes that as the quantity A747 is decreased the probability of success of a 
stable grasp is increased. This is true because the predicate (< A747 FANGLE635) is an 
antecedent of the rule supporting the stable grasp, the probability of success of (< A747 
FANGLE635) is influenced negatively by the magnitude of A747, and none of the other 
antecedents to the rule are influenced positively by the same quantity. The probability of 
success of (< A747 FANGLE635) is influenced negatively by A747 because FANGLE636 
is influenced by a data-approximate quantity FRIC634, the friction coefficient between the 
object faces and gripper. The topmost right-hand subtree shows that the quantity A747 is 
a tunable parameter which can be decreased. 

The qualitative tuning explanation indicates that smaller contact angles should be preferred 
in choosing grasping faces. Figure 34 illustrates the shape of the contact-angle-constraint 
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, ; - J  
/ The rate of change i 
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/ i the object ps 
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2 2 . 0 0  24.100 ~ . .00  2 8 . 0 0  30.1)0 

Elapsed Time Since Start o f  Execution (Seconds) 

Figure 31. Gripper Position (Width) vs. Time into Action Sequence 

(STABLE-GRASP GRIPPER1 OBJECT5593 ((RELATIVE-FACE FACE5594-12.6-19.3 177.61 24_02) 
(RELATIVE-FACE FACE5596 23.4 17.7 311.01 30.48))) 

ONTACT-ANGLE ((RELATIVE-FACE FACE5594 -12.6 -19.3 177.61 24.02) 
(RELATIVE-FACE FACE5596 23.4 17.7 311.01 30.48)) 41.83) 

Subproof of19 Built-ins 

(MATERIAL GRIPPER1 SMOOTH-PLASTIC) 

(MATERIAL OBJECT494 SMOOTH-PLASTIC) 

(FRICTION-COEFFICIENT SMOOTH-PLASTIC SMOOTH-PLASTIC 1) 

(DEGATAN1 1 45.0) 

(<= 41.83 45.0) 

Figure 32. Explanation Specific to Failure 

3 7  



154 S . W .  B E N N E T T  A N D  G . F .  D E J O N G  

(PS-INC SG) 

(DECREASE A747) 

(ANTECEDENT~)F SG (<= A747 FANGLE635)) Subproof showing that for all 
I antecedents ANT of SG that 

(PQ- (<= A747 FANGLE635) A747) (NOT (PQ+ ANT A747)) 

(APPROX-QUANTITY FRIC634) (Q+ FANGLE635 FRIC634) (TUNING-QUANTITY A747 DECREASING) 

I 
(QRELATION (FRICTION--COEFFICIENT MATERIAL805 MATERIAL806 FRIC634)) (TUNABLE A747) 

(DATA-APPROXIMATION (FRICTION-COEFFICIENT MATERIAL805 MATERIAL806 FR1C634) FRIC634) 

r 
I Where SG represents the failing predicate: ] 

[ (STABLE~3RASP GRIPPER276623 OBJECT276629 ((RELATIVE,-FACE NAMEI276637 X1276655 [ 
I Y1276656 REF-ANGLE276672 LENI276641) (RELATIVE--FACE NAME2276642 X2276657 Y2276658 I 
[ REF-ANGLE276711 LEN2276646))))) I 
[. .1 

Figure 33. A Qualitative Tuning Explanation 

Contact-Angle-Constraint (Initial) Contact-Angle-Constraint (After Tuning) 
1 f I ~ quality function r " " - ' - ~  4 . -  quality function 1 

r, I., I . , :  
-1-- - -  _1 parallel faces - -  ~ -J  parallel faces are ideal L -1 

faces at maximum angle for the initial friction posted preference 
coefficient (in the example, friction coefficient to prefer smaller 
of t and 45 degrees) contact angles 

Figure 34. The Contact-Angle-Constraint Parameter Before and After Tuning 

parameter's quality function before (left) and after (right) tuning has occurred. After pa- 
rameter tuning, the rule which uses the parameter to rate contact faces (shown earlier) will 
take advantage of the new contact-angle-constraint parameter's quality function and choose 
a grasp position such that the two faces to be contacted are closest to parallel. Figure 35 
shows the new more permissive plan as applied to the same object. In this case, the most 
parallel faces were preferred over those picked in the earlier application of  the plan. 

4. Empirical Results 

The GRASPER system was given the task of achieving equilibrium grasps on the 12 smooth 
plastic pieces of a children's puzzle. Figure 36 shows the gripper and several of the pieces 
employed in these experiments. A random ordering and set of  orientations was selected for 
presentation of the pieces. Target pieces were also placed in isolation from other objects. 
That is, the workspace never had pieces near enough to the grasp target to impinge on 
the decision made for grasping the target. The first run was performed with parameter 
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Solid black line segments show 
data approximation of contour\ ~ \  

",, \ 
\ 

\ 

Arrows illustrate planned 
finger positions 

Lighter gray points are actual / / 
object contour points 

Figure 35. Successful Grasp Employing Tuned Parameter Constraining Contact Angle 

Figure 36. Gripper and Pieces 
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LFinger stubbing failure 
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3 4 5 6 7 8 9 10 11 12 Ver t i ca l  s l i p p i n g  f a i l u r e  

Trials Without Tuning 

I l 
atthls ti . . . . .  knowledg-ff"l 

FS L ~. - -  .J  

i 2 3 4 5 6 7 8 9 i0  I I  12 

Trials With Tuning 

Figure 3Z Comparison of Tuning to Non-tuning in Grasping the Pieces of a Puzzle 

Figure 38. An Instance of a Finger Stubbing Failure 

tuning turned off. The results are illustrated in Figure 37. Failures observed during this 
run included finger stubbing failures (see Figure 38) where a gripper finger struck the top 
of the object while moving down to surround it and lateral slipping failures (see Figure 
39) where, as the grippers were closed, the object slipped out of grasp, sliding along the 
table surface. In the system's initial approximate representation for the world, the choice 
of grasping faces is constrained only by the gripper being able to open wide enough to 
surround them and that an equilibrium grasp is realizable with the current gripper-object 
friction coefficient (initially 1 here). Since a friction coefficient of 1 is likely to be high 
for these materials, the choice of contact faces is likely to be under-constrained initially, 
resulting in slipping failures. The choice of opening width is the minimum deviation from 
the current opening width (initially 0 here) which satisfies the approximate model of the 
grasp. Due to uncertainties in the world, this approximate opening width may often result 
in stubbing failures. Therefore, the error rate of our initial approximate plan was high 
resulting in 9 finger stubbing failures and 1 lateral slipping failure in 12 trials. 
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Figure 39_ An Instance of a Horizontal Slipping Failure 

In our second run, parameter tuning was turned on. An initial stubbing failure on trial 
1 led to a tuning of the chosen-opening-width parameter which determines how far to 
open for the selected grasping faces. Since the generated qualitative tuning explanation 
illustrated that opening wider would decrease the chance of this type of a failure, the system 
tuned the parameter to choose the largest opening width possible (constrained only by the 
maximum gripper opening and possible collisions with nearby objects). In the case of 
isolated grasp targets, opening to the maximum gripper width is preferred. In trials 2 and 3, 
finger stubbing failures didn't occur as they had previously because the opening width was 
greater than the object width for that orientation. Vertical slipping failures, which the current 
implementation does not currently have knowledge about, did occur. The system had to 
be told that a vertical slipping failure had OCCUlTed instead of the lateral slipping failure it 
thought had occurred. This is because, without further knowledge about vertical slipping 
failures and a means for detecting them, they look in other ways (the force vs. position profile 
of the gripper closing) like a lateral slipping failure. Preventing vertical slipping failures 
involves knowing shape information along the height dimension of the object, which we 
plan to give in the future using a model-based vision approach. In trial 5, a lateral slipping 
failure is seen and the qualitative tuning explanation suggests decreasing the contact angle 
between selected grasping surface through tuning the contact-angle-constraint parameter. 
This is tuned to prefer smaller contact angles. A single tuning for the finger stubbing and 
lateral slipping failures was sufficient to eliminate those failures with isolated grasp targets. 

5. Conclusions & Future Work 

In the work discussed here, an assumption is made about limited interactions between plane 
parameters. We plan to eliminate this assumption by extending the method to learn about 
interactions between parameters. The illustration shows a view from above of two objects in 
the robot's workspace. The black rectangles are the gripper fingers as seen from above. The 
goal is to grasp object 1. The fingers are positioned along the pair of faces chosen for this 
grasp. Factors like the angle between the fingers and faces and friction coefficient will be 
the same no matter where the gripper contacts the object along that particular pair of faces. 
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Figure 40. An Example of a Parameter Interaction: Lateral Position and Opening Width in the Robotic Grasping 
Domain 

T T 
L;ow(D(qow), C) qow = aow Lhig~(D(qow), C) 

lower limit opening width upper limit 

T parameter value l 

minimum of  maximum opening width and width such 
width such that fingers just  surround that a finger just  touches the next nearest occupied 
object 1 at the chosen lateral position space along the current lateral position 

Figure 41. A Graphic Representation of Limits on Opening Width 

However, the lateral position along the pair of faces affects the choice of opening width both 
because of the changing width of object 1 as one moves laterally and because of the nearby 
object 2. The upper and lower bounds on the opening width parameter depend on the lateral 
position parameter. These are illustrated in Figure 41. Suppose that the plan constructed by 
the system chooses a value for the lateral position parameter prior to choosing a value for 
opening width. Under the limited interaction assumption made currently this assumes that 
a lateral position is chosen such that Lto~(D(qo~,), C) < Lh~gh(D(qo~), C) and therefore 
a possible opening width is guaranteed. For a planner to guarantee this assumption requires 
exhaustively reasoning about all interacting parameters, an expensive process. It makes 
sense to learn incrementally about interactions which lead to failures. Instead of spending 
the time to guarantee no interactions, our initial plan could choose a lateral position without 
regard to opening width. Now suppose a lateral position was chosen such that the width of 
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object 1 at that point was wider than the maximum opening width of the gripper. In order 
to prevent trouble with the interaction, the constraint on opening width would be imposed 
on the choice of lateral position. The savings of an incremental approach to management 
of interactions is based on the assumption that many interactions, although theoretically 
possible are not likely to arise in practice. For instance, suppose all the objects in the 
workspace tend to have a maximum dimension well within the maximum opening width of 
the gripper and are well separated from nearby objects. In this case, the lateral position vs. 
opening width interaction is not likely to be a factor. 

Another interesting area for study is the possibility of relaxing the conditions for genera- 
tion of a qualitative tuning explanation. Guaranteeing soundness of such explanations can 
be costly. The requirements for generating qualitative proportionalities (Q+ and Q_) could 
be relaxed to permit transitivity of influences. For example, from Q+ (a, b) and Q+ (b, c) we 
could conclude Q+ (a, e). Although such rules can make qualitative proportionalities easier 
to derive, they can introduce ambiguities. That is, it may be possible to show both Q+ (a, b) 
and Q_ (a, b). Qualitative tuning explanations (QTEs) would then be more heuristic than 
guaranteed methods of demonstrating a way to increase the probability of success of the 
failed predicates. However, such heuristic QTEs could be produced very quickly. The 
value of these heuristic QTEs would be tested empirically. Further heuristic QTEs could 
be produced if initial ones fail in practice. This approach is very much in the flavor of 
plausible EBL (DeJong, 1989). 

The current approach assumes that every failure is worth preventing. This is not necessar- 
ily true. If we had reason to believe that a failure encountered was very unlikely, it may not 
be in our interest to attempt to tune parameters to prevent it. First, tuning parameters does 
require some effort which may outweigh the possible gain in tuning the unlikely failure. 
Second, tuning parameters to prevent the failure may involve some cost in terms of the 
modified plan. For instance, the parameter tuning may incur extra motion of a manipulator 
which results in slower execution of the overall plan. One possible strategy for deciding 
what failures are worth tuning is to empirically perform initial testing in the domain to dis- 
cover what failures occur most frequently. Another approach is to develop a weak theory 
of errors which can be used to justify which failures are worth tuning. 

When a newly learned preference is inconsistent with the existing preferences for some 
plan parameter, it becomes necessary to distinguish the context in which the conflicting 
preference occurred from the current context. We call this context  splitting. A new set of 
preferences can then be created with the new preference added and the conflicting prefer- 
ence removed which is applicable to the current context (as distinguished from the context 
attached to the original set). One method of distinguishing contexts is to ask the user 
(Rosenbloom, Laird & Newell, 1987). We would like to have the system make the dis- 
tinction using its domain knowledge. The knowledge is available all along but, without 
experience in the world, the system has insufficient experience to conclude which dis- 
tinctions are important. In our framework, inconsistent preferences trigger the process of 
context splitting. 
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Notes 

1. While experiments have not been performed with incorrect qualitative theories it seems that the technique 
would work in spite of some types of erroneous qualitative theories while it would result in poor performance 
with others. 

2. For a model of the different aspects of utility for a plan to be executed in uncertain, complex domains see 
(Bennett, 1989). 

3. Q+•Q-•andtheass•ciatedinferenceru•esab•utincreasinganddecreasingq•antitiesareusedasinQua•itative 
Process Theory (Forbus, 1984). 

4. The subproof supporting the expectations is packaged into a single general rule prior to generation of the 
qualitative tuning explanation. 
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