
Machine Learning, 6, 211-230 (199l)
© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Complexity Results on Learning by

JYH-HAN LIN
Department of Computer Science, Brown University, Providence, RI 02912-1910

JEFFREY SCOTT VITTER
Department of Computer Science, Brown University Providence, RI 02912-1910

Editor: David Haussler

Neural Nets

(JHL@CS.BROWN.EDU)

(JSV@CS.BROWN.EDU)

Abstract. We consider the computational complexity of learning by neural nets. We are interested in how hard
it is to design appropriate neural net architectures and to train neural nets for general and specialized learning
tasks. Our main result shows that the training problem for 2-cascade neural nets (which have only two non-input
nodes, one of which is hidden) is ff/,(P-complete, which implies that finding an optimal net (in terms of the number
of non-input units) that is consistent With a set of examples is also OUP-complete. This result also demonstrates
a surprising gap between the computational complexities of one-node (perceptron) and two-node neural net train-
ing problems, since the perceptron training problem can be solved in polynomial time by linear programming
techniques. We conjecture that training a k-cascade neural net, which is a classical threshold network training
problem, is also 9~00-complete, for each fixed k >_ 2. We also show that the problem of finding an optimal perceptron
(in terms of the number of non-zero weights) consistent with a set of training examples is ~P-hard.

Our neural net learning model encapsulates the idea of modular neural nets, which is a popular approach to
overcoming the scaling problem in training neural nets. We investigate how much easier the training problem
becomes if the class of concepts to be learned is known a priori and the net architecture is allowed to be suffi-
ciently non-optimal. Finally, we classify several neural net optimization problems within the polynomial-time
hierarchy.

Keywords. Neural nets, perceptrons, cascade neural nets, scaling, modular neural nets, learning from examples,
concept learning, theoretical limitation

1. Introduction

Neural nets are often used to learn functions, in either a supervised or unsupervised mode.

They are enticing because in some instances they are self-programming, in that they can

adjust their parameters by using general procedures based solely on examples of input-

output pairs. In this paper we consider the computat ional complexi ty of learning by neural

nets, bui lding upon the work of Judd (1987, 1988), B lum and Rives t (1988), and Baum and

Hauss ler (1989). We are interested in how hard it is to design appropriate neural net archi-

tectures and to train neural nets for general and special ized learning tasks.

In the next section we introduce our neural net mode l and related definitions. Our main

result in Sect ion 3 extends the work of Judd (1987, 1988) and B l u m and Rivest (1988) and

further demonstra tes the intractabili ty of training non-modula r neural nets, as the p rob lem

d imens ion or size gets large. We refer to this phenomenon as the scaling problem. For

Sect ions 4 and 5, we define a modular'(or hierarchical) neural net mode l that encapsulates

the idea of incremental design of large nets based on smaller subcomponent nets. Each

subcomponent is trained separately and then f ixed whi le higher- level subcomponents are

212 J.-H. LIN AND J.S. VITTER

trained (see, for example, (Weibel, 1989), (Weibel & Hampshire, 1989), and (Hinton, 1989)).
This modular approach can help alleviate the scaling problem. One of our goals in this
paper is to determine to what extent the scaling problem is lessened.

We define the size of a neural net or net architecture to be the number of non-input nodes.
Perceptrons, for example, have size 1. Most of our results are independent of this particular
definition of size. However, when relevant we also consider other size measures for neural
nets, such as the height, the number of edges, the number of non-zero weights, and the
number of bits in the representation.

In Section 3 we present our main result that the training problem for a simple two-node
completely unspecified net architecture with only one hidden unit, called a 2-cascade neural
net, is ~(P-complete. Since the perceptron (one-node neural net) training problem can
be solved in polynomial time by linear programming techniques, this result demonstrates
a surprising gap between the computational complexities of one-node and two-node neural
net training problems. We conjecture that the training of k-cascade neural nets, which is
a well-known threshold network training problem (see, for example, (Dertouzos, 1965)),
is also gL(P-complete, for each fixed k _> 2. We also show that the problem of finding
an optimal perceptron (in terms of the number of non-zero weights) consistent with a set
of training examples is 9Z(P-hard.

In Section 4 we investigate how hard it is to train a modular neural net for a set of exam-
ples when the neural net is constrained to be in some architecture for learning a particular
concept class. For the case of learning isothetic (that is, axis-parallel) rectangles, we show
that it is easier to train a neural net that is sufficiently non-optimal in size, so that there
is some "play" in setting its parameters. In the process we introduce a general framework
of Occam nets. In Section 5 we state several modular neural net optimization problems.
In the appendix we show these problems to be 9Z(P-complete or ~(P-hard, and we classify
them more precisely within the polynomial-time hierarchy.

2. The neural net learning model

In this paper, we restrict ourselves to feedforward neural nets of linear threshold elements.
In particular, we are mainly concerned with neural nets for classification tasks. The inputs
to the feedforward net will be from X n, where X is either {0, 1} or 9L The nets produce
one binary output.

Definition 1. A linear threshold unit fv = [~ ; 0] with input 2"is characterized by a weight
vector ~ and a threshold 0:

fv(~') = (4 1
if ~ ' 2 " _ > O;

0 otherwise.

For convenience, we identify the positive region defined byfv asfv and the negative region

as fvv.

LEARNING BY NEURAL NETS 213

One of the main issues in neural net design is the problem of scaling: Is it feasible, within
limited resources and time, to build and train ever larger neural nets? By "train" we refer
to determining the weighs of the linear threshold elements. The results of Judd (1987) and
Blum and Rivest (1988) and our results in Section 3 show for completely unspecified neural
nets that scaling is intractable as the dimension and size get large.

To overcome this problem of scaling, in the particular application of speech recognition,
Weibel and Hampshire (1989) adopt the approach of modular and incremental design of
large nets based on smaller subcomponent nets. The idea is to exploit the knowledge devel-
oped by smaller, independently trained nets by fixing and incorporating these smaller net
modules into larger superstructures. It is hoped that this modular approach could not only
reduce training time but also lead to a more incremental and distributed approach to the
construction of large-scale neural nets. Modular neural nets are gaining popularity in a
variety of applications; more information appears in (Weibel, 1989), (Weibel & Hampshire,
1989), and (Hinton, 1989). We encapsulate these ideas in the following modular (or hierar-
chical) neural net learning model, which we use in Sections 4 and 5.

Definition 2. A modular (feedforward) neural net architecture F is a directed ac~jclic graph
G with n ordered designated input nodes and one output node. Nodes of G that are not
input nor output nodes are called hidden units. Each non-input node v in G has indegree(v)
inputs and is either associated with a linear threshold function fv with indegree(v) inputs
or is left undefined (denoted by ±). A neural net f is a neural net architecture with no
undefined nodes. We identify f with the function it represents and Comp(F) with the set
of functions computable by neural nets where each undefined node v in F is replaced by
some linear threshold function fv. The complexities or sizes of f and F, which we denote
]fl and [El, are the numbers of non-input nodes in f and F, respectively.

Definition 3. Training a net architecture with a set of training examples consists of deter-
mining the weights of the undetermined linear threshold elements such that the function
it computes is consistent with the training examples.

The classical perceptron is a neural net of size 1; it has no hidden units. Our definition
allows us to "hardwire" parts of the net architecture, which we use to investigate the com-
putational complexities of modular neural net design and training problems. (Note that
we elect not to allow partially defined nodes.) In this paper we shall focus mainly on the
definition of size specified above. Other possible size measures include height, number
of edges, number of non-zero weights, and number of bits in the representation. Except
where noted, our results are independent of the particular size measure used.

X n
Let Dn = 2 , we define a concept class Cn c_ D n to be a non-empty set of concepts.

Each individual concept c E Cn is a subset of domain X n. For each c E C~, we let size(c)
denote the length of the encoding of c in some fixed encoding. We define Cn,~ to be the
concept class of all concepts in C~ that have size at most s; hence, Cn = Us>_1 C~,s. A
labeled example for a concept c is a pair (x, label), where x E X ~ and label is " + " if
x E c and " - " i fx ~ c; we call (x, +) apositive example and (x, -) a negative example.

214 J.-H. LIN AND J.S. VITTER

Definition 4. We call a neural net architecture F optimal if for all F ' such that Comp(F)
c Comp(F'), we have IFI < IF'I. We also call a neural net architecture F optimal for
a concept class Cn,s if Cn,s c Comp(F) and for all F ' such that Cn,s c Comp(F') we have

IFI-< [F'[.

3. Cascade neural nets and optimal perceptrons

In this section we present our main result, concerning the difficulty of training k-cascade
neural nets. We also investigate the computational complexity of optimizing the number
of non-zero weights in a one-node neural net (that is, the well known perceptron) so that
it is consistent with a set of training examples.

Judd (1987, 1988) shows that determining whether a neural net architecture can be trained
for a set of training examples is 9Z(P-complete. This is extended in Blum and Rivest (1988)
to a simple two-layer three-node architecture with two hodden units. In this section we
extend their result further to only two nodes by showing that the training problem is also
9UP-complete for a 2-cascade neural net (with only one hidden unit). The node functions
are initially completely unspecified•

First we consider the training problem where the net architecture is allowed to be fully
connected, and we want to minimize the number of non-input nodes. The following problem
formalizes the problem at hand:

OPTIMAL CONSISTENT NET
Instance: A set of S of training examples and a positive integer K.
Question: Is there a neural net f consistent with S such that Jfl -< K?

This problem is clearly in 9Z(P. We show that this problem is 9UP-complete by showing
9Z(P-completeness for the particular case K = 2 (2-CASCADE NEURAL NET TRAIN-
ING), which we consider below•

A k-cascade neural net (see Figure 1), where k > 2, has k - 1 hidden units N~, N2,
• . . , Nk_ 1 and one output node Ark. All n inputs are boolean and are connected to nodes
N~ , N k. In addition, each Ni is connected of Ni+l; we designate the weight of this
edge by gi. Each node has n + 1 inputs except for N~, which has only n inputs. We adopt

x I Xl Xl

X n

Figure 1. Cascade neural net.

LEARNING BY NEURAL NETS 215

the convention that gi is the last weight to Ni+ I. Cascade neural nets are more powerful
and economical in terms of their size (the number of non-input nodes) than the class of
layered neural nets considered in Blum and Rivest (1988) (see also (Dertouzos, 1965)).

Let us consider the following problem, for any fixed k > 2:

k-CASCADE NEURAL NET TRAINING
Instance: A set S = S + I,J S - of training examples of n boolean inputs, where S ÷ is the

set of positive examples and S - is the set of negative examples.
Question: Is there a k-cascade neural net f consistent with all training examples?

We shall show that this problem is ~(P-complete for k = 2 by reducing the QUADRANT
problem to it. The QUADRANT problem asks if the positive examples S + can be confined
to a single quadrant, defined by the intersection of two halfspaces, with the negative exam-
ples S - confined to the other three quadrants.

QUADRANT
Instance: A set S = S + U S- of training examples of n boolean inputs, where S ÷ is the

set of positive examples and S - is the set of negative examples.
Question: Are there two halfspaces N~ and Nz such that S ÷ c N~ f3 Nz and S - c

Ni U N2?

Theorem 1. (Blum & Rivest, 1988) QUADRANT is ~(P-complete.

We use this to prove our main result:

Theorem 2. 2-CASCADE NEURAL NET TRAINING is ~(P-complete.

Proof Training a 2-cascade neural net is clearly in 9Z6'. To prove 9Z(P-hardness, we reduce
QUADRANT to it. Given a set of training examples S = S + LI S - for QUADRANT,
we add two new dimensions and create the following set of augmented examples T = T +
U T - for training a 2-cascade neural net:

T + = {x'00 [£ 'E S +} O {£'11]Y'fi S},

T - = {x-00]a?'fi S -} U {2"01, k~10 l£ ' f i S}.

This is illustrated pictorially in Figure 2. The points x-'00 in the n-dimensional hypercube
on the first n dimensions retain their former sign.

The positive region induced by a 2-cascade net is bordered by a "zig-zag" of hyperplanes,
in which the two outer (semi-infinite) hyperplanes are parallel. The basic idea of the proof
is that the extra two dimensions of the examples in T force one of the semi-infinite hyper-
planes to "miss" the n-dimensional hypercube, so that there is a 2-cascade neural net f
consistent with T if and only if there is a quadrant solution to S.

(=) Suppose the quadrant solution to S is

[~ e,] A [G; e:].

216 J.-H. LIN A N D J.S. VITTER

f
/

/ .

+

@

~00

~ .~11

~10

Figure 2. Examples used to show that 2 -CASCADE N E U R A L NET T R A I N I N G is 9~@-complete.

We construct a 2-cascade neural net f consistent with T as follow:

N1 = [~; - A - [0tl, - A - 10, l; 0,1,

N2 = [/~ 2B, 2B, 3B - 02; 3B],

whereA > ~" lail andB > ~" Ibil It is interesting to note that there is also a quadrant
i = 1 i = l '

solution to T:

[~, 2A + 21011 , - A - 10,1; 0 ,1 A [~77 - n - 10 : l , JR + 2 1 0 : 1 ; 0 :] .

This is surprising on first glance, given the second-half of the proof, immediately below.
(~) Suppose the 2-cascade neural net f consistent with T is as follows:

N~ = [g, A1, A2; 0~],

N2 = [/~; B,, B2, gl; 02].

In the following, let

NN,:O = [if, B1, B2; 02],
2

NN,: I = [ff, B1, B2; 02 - gl].
2

Case 1. Suppose g~ > 0. This implies that all examples in /v N'=° are positive examples
- - ' ' 2

and all examples not in Iv N'=I • .2 are negative examples. Also note that all positive examples

LEARNING BY NEURAL NETS 217

tvN2 =0 then belong to either N~ ~=° or to N1 n "21vU'=l" If for all Y'~ S + we have £'00 ~ -.2 '

clearly S is linearly separable and has a trivial quadrant solution:

[b202] A [/T 20z].

Otherwise, we claim for all Y'fi S + that

x-'00 ~ N1 n N u' :1.

/ v N ~ = 0 There exists at least one example Suppose there exists some 7~ S + such that 700 ~ ..2 "

Y'~ S + such that £'00 E N1 n tvU~=l but x-'00 ¢ lV N'=° Since 700 ~ ~,U,=0 and since y-01 " ' 2 ' ' 2 " ~ ' 2

and 37"10 are negative examples, we must have B~, B2 < 0 and 711 ~ /vN'=1 But 711 is
a positive example, and so 711 ~ N~ n ~v N,=l From B~, Bz < 0, we have y-'O1, 710 " ' 2 "

NN~=I Since y-*01 and 710 are negative examples, it follows that y'*01, 710 ~ NI and Al, 2 "

A 2 > 0 .
rq u'=° Since 2"11 is a ~-U,=0 and B,, B2 < 0, we have Y'll $ -,2 • From the fact that ~'00 ~ -.2

positive example, we must have Y'll ~ N1 O ~,U,=l From B~, B: < 0, we know that ~?'01,
iv u'=l and A~, A2 > 0, it follows that ~'01, Y'10 ~ N1. X'~10 ~ *'2/vN'=I' Since ~ ' 006 N 1 n - , 2

Thus, we have to conclude that x-'01, 2"10 E NI n N u,=l. But this implies that x-'01 and
£~10 are positive examples, a contradiction to our supposition that there exists some 7~ S+
such that y'00 ~ 1v u'=°I This proves our claim and shows that the quadrant solution to S is • ' 2 "

[~ 0.] A [b; 02 -- g,l .

Case 2. The case when gl < 0 can be proved similarly, except the trivial quadrant solu-
tion is

[/~ 0z - g,] A [b ; 0 z - g,].

Otherwise we claim for all £ '~ S + that

x-*00 ~ N1 O / v N ' = 0

This shows that the quadrant solution to S is

[--fi~ --01 + r/] A [/~i 02],

where 0 < ~/ _< min~-ss+ {01 - ~Y'}. []

Corollary 1. The OPTIMAL CONSISTENT NETproblem is 9Z (P-complete, even if the inputs
are boolean.

Proof This result holds, even for the special case of K = 2, as a consequence of Theo-
rem 2. []

218 J.-H. L I N A N D J.S. V I T T E R

Blum and Rivest (1988) have shown that the problem of whether S + can be isolated by
two parallel planes is also 9Z(P-complete. Since our proof can be modified to cover this
restricted case, we have also proved the following theorem.

Theorem 3. It is OL(P-complete to decide whether there is a restricted 2-cascade neural
net f in which the weight vector ff of N2 is the negative of the weight vector ~ Of Nl, that
is consistent with a set of training examples.

Proof The key modification needed is as follows: Suppose the quadrant solution to S is

1~ 0d A [-a~ 02].

Since the inputs are binary vectors, we may asume without loss of generality that 10,1,
{0El < Gn lail. It is easy to see that the following restricted 2-cascade neural net is con- - - i=1

sistent with T."

N1 = [~, -2A, -2A; 01],

Nz = [- ~ , 2A, 2A, 3A - 02; 3A],

where A > En lail [] i=1

We are hopeful that our reduction for 2-cascade neural nets can be extended to handle
k-cascade neural nets, for each fixed k > 3, by adding new dimensions and creating an
augmented training set in a similar manner. We make the following conjecture:

Conjecture 1. Training a k-cascade neural net is 9Z(P-complete for each fixed k >_ 2.

Theorem 2 shows that the OPTIMUM CONSISTENT NET problem is 9Z(P-complete,
where the size of a net is defined to be the number of non-input nodes. We can show that
it remains 9Z(P-complete for the case of perceptrons when the size measure is the number
of non-zero weights:

OPTIMAL CONSISTENT PERCEPTRON
Instance: A set S of boolean training examples.
Problem: Construct a perceptronf = [~; 0] such thatfis consistent with S and the number

of non-zero components in ~ is minimized.

Theorem 4. The OPTIMAL CONSISTENT PERCEPTRON problem is OUP-hard.

Proof Haussler (1988) has shown the problem of finding the optimal monotone monomial
consistent with a set of training examples is 9Z(P-complete, which by duality implies that
the problem of finding the optimal monotone pure disjunction is also 9Z(P-complete. We
shall abbreviate this latter problem as the OPTIMAL MONOTONE PURE DISJUNCTION
problem and reduce it to the OPTIMAL CONSISTENT PERCEPTRON problem via a
Turing reduction.

LEARNING BY NEURAL NETS 219

Let {Vl, vz v~} be the set of n boolean variables and let S be the training set. We
want to know if there exists a monotone pure disjunction with at most K unnegated variables
that is consistent with S. First we check if there is any monotone pure disjunction consis-
tent with S, regardless of its size. This can be easily done in polynomial time with the
standard consistency algorithm (see, for example, (Vitter & Lin, 1988)). I f the answer is
"No," we return "No." Otherwise, let OptP be the searching algorithm for the OPTIMAL
CONSISTENT PERCEPTRON problem, which takes a set S ' of training examples as input
and outputs an optimal perceptronfconsistent with S'. We run the following iterative deci-
sion algorithm OptMPD, which calls OptP as subroutine, to determine whether (S, K)
OPTIMAL MONOTONE PURE DISJUNCTION:

Algorithm OptMPD
Input: A set S of training examples and a positive integer K.
Output: "Yes" or "No."
begin

s* ~- s u {(~, -) , (6k ~,,, -)} ;
S ' ~ S*;
[~; 0] '-- OptP(S');
while ~ contains any negative component do

begin
S' ,- MarkOff(S', ~);
[~; O] , - OptP(S')

end;
if NonZero(~) <_ K

then return "Yes";
else return "No"

end.

In the above algorithm ~ kp denotes the example all of whose components are 0, ex-
cept those at indices kl k;, which are 1. Subroutine MarkOfftakes a set of examples
S ' and a weight vector ~ as input and returns a new set of examples by zeroing out the
components of each example corresponding to negative components in ~. Given weight
vector ~, subroutine NonZero counts the number of non-zero weights in ~. We define
I = {kl kp } to be the maximal set of indices such that for each kq E I there exists
a negative example Vwith ~q = 1. We call a perceptron positive if all its weights and
threshold are non-negative. Algorithm OptMPD forces OptP to output an optimal positive
perceptron by

1. Including 0"as a negative example to force 0 > 0. This can be done since the concept
class to be learned is monotone pure disjunctions.

2. Including the binary n-vector Okkp, as a negative example. This_ can be done since
any monotone pure disjunction consistent with S has to classify Ok kr, as a negative
example. The reason for this inclusion will be clear below.

3. Iteratively zeroing out the components of examples corresponding to negative weight
components. This procedure preserves consistency, in that at the end of each iteration

220 J.-H. LIN AND J.S. VITTER

the monotone pure disjunctions consistent with S remain consistent with the set of new
examples, and vice versa. This follows because those example components corresponding
the negative weight components are useful only for the identification of negative examples
and cannot be included in any monotone pure disjunctions that are consistent with S.

We claim that OptMPD returns "Yes" if and only if there exists a monotone pure dis-
junction consistent with S* (and, therefore, consistent with S) with at most K unnegated
variables. To see that this is true, we need the following lemma:

Lenuna 1. Let f = [~, O] be any optimal positive perceptron consistent with S*. By optimal
we mean that the number o f non-zero components in ~ is minimum. Then for each ~j >
O, we have j ¢ L

Proof (By contradiction.) Let J be the set of indices of non-zero weight components. Since
we include ~ kp as a negative example, for each positive example Y'there must exist
j E J - I such 'thai ~j = 1. Thus, we may construct another p e r c e p t r o n f ' = [~, 0] consis-
tent with S* as follows: Let W = Ei~l ~i- For all i ~ J - I, let ~/ = ~i + I4~ all other
components of ~ a r e 0s. Therefore, f is not optimal. Contradiction. []

Continuation o f the Proof o f Theorem 4. Suppose that vi, + • • • + vie is a monotone pure
disjunction consistent with S, where e < K. Then [~ ie; 1] is a consistent positive per-
ceptron. For the other direction, suppose t h a t f = [~; 0] is an optimal positive perceptron
consistent with S with exactly k < K non-zero weights, and let the set of indices of non-
zero weights be J = {j~, . . . , Jk}. It is clear that g = vj, + . . . + vjk is an optimal mono-
tone pure disjunction consistent with S: First, g has to include all positive examples since
0 > 0. Secondly, g also excludes all negative examples by Lemma 1. Finally, g has to
be optimal; otherwise, f is not optimal, either. This proves our claim.

Finally, note that OptMPD runs in polynomial time if OptP is a polynomial-time searching
algorithm. Therefore, this is a polynomial-time reduction and the OPTIMAL CONSISTENT
PERCEPTRON problem is ~(P-hard . []

The results in this section show that the training problem is inherently difficult even
for simple 2-node neural nets. Furthermore, the training problem for perceptrons is also
computationally infeasible if the number of non-zero weights is to be minimized. In the
next section we investigate in a theoretical way possible restrictions for making the training
problem tractable.

4. Neural nets and the VC dimension

In typical real-world neural net design problems, we start with a set of training examples,
choose (or guess) an appropriate net architecture, and then use some procedure (such as
back propagation) to train the neural net (that is, to set the parameters of the net so that
we can correctly classify as many examples as possible). It is shown (Baum & Haussler,
1989) that if a large enough fraction of enough random examples (drawn independently

LEARNING BY NEURAL NETS 221

from an unknown distribution) can be loaded onto the neural net, then the net will "gener-
alize" in Valiant's sense (Valiant, 1984) and probably answer future queries with low error.
(By "loaded," we mean that the example is correctly classified by the fully specified neural
net.) The learning framework is known as the probably approximately correct (or PAC)
learning model. In the following we adopt the PAC-learning model of Valiant (1984) and
Blumer et al. (1989) and investigate how the complexity of modular training is affected
by restricting the problem's domain to learning a specific concept class.

A central concept of PAC-learning framework is the Vapnik-Chervonenkis dimension (VC
dimension) of concept classes. Intuitively, the VC dimension is a combinatorial measure
of the expressive power (or richness) of a concept class.

Definition 5. Let Cn,s ~ D,, be a concept class. Given a set of non-labeled examples
S c X ", we denote by IIc,.s(S) the set of all subsets P c_ S such that there is some con-
cept c ~ C,,s for which P c c and (S - P) c ~. If IIc,,,s(S) = 2 s, we say that S is shat-
tered by C~,s. The Vapnik-Chervonenkis dimension (VC dimension) of C,,s is the cardinality
of the largest finite set of examples that is shattered by C,,~; it is infinite if arbitrarily large
sets can be shattered.

We use log to denote the logarithm base 2 and In to denote the natural logarithm. The
following corollary (Baum & Haussler, 1989) bounds the VC dimension of a net architecture:

Corollary 2. Let F be a net architecture with s >- 2 non-input nodes and E edges, then

VCdim(F) < 2(E + s) log(es),

where e is the base o f nautral logarithm.

Let 3:s be a net architecture with s non-input nodes and with all possible edges; that
is, the s non-input nodes are numbered from 1 to s, and each non-input node has inputs
from the n input nodes and from all previous non-input nodes. Clearly, Comp(ffO =

U Ifl-<s{f}' The following lemma bounds the VC dimension of ~s.

Lemma 2. The VC dimension of ~s can be bounded as follows:

1. VCdim(~:o) <_ log n,
2. VCdim(~l) = n + 1,
3. VCdim(~s) < s(2n + s + 1) log(es), for all s >_ 2.

Proof Bounds 1 and 2 are straightforward. For bound 3, note that the number of edges
in 5: s is ns + s(s - 1)/2. The proof then follows directly from Corollary 2. [~

The next lemma gives a general lower bound on the size of a net architecture that con-
tains some concept class:

Lemma 3. Let Cn,s be a concept class, where VCdim(Cn,s) > 2n, and let F be a net archi-
tecture such that Cn, s c_ Comp(F). We have

222 J.-H. LIN AND J.S. VITTER

IF' = f 2 I ~ VCdim(Cn's)/ logIVCdim(Cn's)l;

Proof The proof follows simply from Lemma 2 and the fact that VCdim(~l~) >__ VCdim(F)
>_ VCdim(Cn,,). []

It is not surprising that training is hard without any domain knowledge. In the following
we investigate how much easier the training problem becomes when the net architecture
is constrained for learning a particular concept class. In the problem statements of this
section, Cn,s is an implicitly known concept class (such as the union of s isothetic (that
is, axis-parallel) rectangles or symmetric boolean functions) and is not a part of the input.

NET ARCHITECTURE TRAINING
Instance: A set S of training examples for a concept from C~,s and a modular neural net

architecture F for C~, s (that is, C,, s c Comp(F)).
Question: Is there some f E Comp(F) such that f is consistent with S?

One of the concept classes with wide application in both artificial intelligence and data-
base is the class of the unions of isothetic rectangles (see, for example, (Haussler, 1988)).
We show the following:

Theorem 5. The NET ARCHITECTURE TRAINING problem is 9Z(P-complete if the concept
class Cn, s = R s is the set of unions of s isothetic rectangles.

Proof It is well known that it is 9Z(P-hard to decide if the minimum number of isothetic
rectangles needed to cover all positive training examples in the plane is less than or equal
to s (see (Masek, 1978)). To solve this problem, we construct a modular three-layer net
architecture F as shown in Figure 3. The output node is hardwired to be the OR of the
s second-layer hidden units, which are all ANDs. Each AND has inputs from 4 hidden
units under it. Among these four hidden units, two have single inputs from x and the other
two have single inputs from y. There exists a neural n e t f E Comp(F) consistent with all
training examples if and only if the minimum number of isothetic rectangles needed is
less than or equal to s. []

This theorem also gives a result similar to that in Judd (1987) for our modular model
of net architecture. The reason why this problem is difficult is that some net architectures
are harder to train than others. In practice, neural net researchers often design their nets
and net architectures to be slightly nonoptimal so as to allow some "play" in constructing
the weights during the training. In some cases, this approach makes the training problem
tractable. This approach motivates the following notion of Occam nets:

Def'mition 6. Let F °pt be an optimal net architecture for Cn,s. An (u, j , k)-Occam netfinder
A for Cn,,, where 0 < ~ < 1 and j , k >__ 0, is a polynomial-time algorithm that maps
each set of training examples S to some consistent Occam ne t f E Comp(H,,s, lsl), where
H~,~,ls I is a net architecture, such that VCdim(nn,s, lsl) < Is l=n j IF°ptI~.

LEARNING BY NEURAL NETS 223

x v y x y y

Figure 3. Net architecture for the unions of s isothetic rectangles.

By modifying the analysis of Blumer et al. (1989) we obtain the following theorem:

Theorem 6. I f there is an (c~, j , k)-Occam net finder A for C, where 0 <_ e~ < 1 and
j, k >_ O, and i f the number S of random examples satisfies

f 4 218nJlF°Ptik ~ 1 l/(1-c0) I Si > max log ~, ~ log

where F °pt is an optimal net architecture for Cn,s, then A is a PAC-learning algorithm and
the neural net f is its output hypothesis. That is, with probability at least 1 - 6, the neural
net f will predict correctly at least a fraction 1 - c of future random examples drawn from
the same distribution.

Proof The proof is a simple application of Theorem 3.2.1. in (Blumer et al., 1989). [~

The following lemma allows us to bound the VC dimension of an Occam net architecture
in terms of the size measure of a concept class C,,.= instead of the size of the optimal net
architecture containing C,,s:

L e m m a 4. I f IF°Pt I --- ~(s ~) for some {3 > O, then the upper bound on VCdim(Hn,s, lS~)
in Definition 6 can be replaced by tS I~nJs ~, and IF°ptl~' in Theorem 6 can be replaced by s ~.

The next theorem shows an example of Occam net finders:

Theorem 7. There is an (~, j , k)-Occam net finder for the concept class C,,s = Rs of the
set of unions of s isothetic rectangles.

224 J.-H. LIN AND J.S. VITTER

Proof There is a well-known simple greedy algorithm for Rs, which is optimal within a
relative factor of In Is] + 1 (see, for example, (Blumer et al., 1989)). The output of the
greedy algorithm can be easily transformed into a neural ne t f ~ Comp(Hs, lsl), where Hs, lSl
is a net architecture of size O(s log Is[) and with O(s log IsI) edges. From Corollary 2
we have

VCdim(Hs, lsl) = O((s log Isl)(log s + log log Isl)).

Clearly, VCdim(Rs) = ~2(s). From Lemma 3, we have IF°P'I = ~2(~,/s/Mg s). Thus, from
Lemma 4 there is an (~, j , k)-Occam net finder for Rs. []

By Theorem 3.2.4 in (Blumer et al., 1989), we may generalize Theorem 7 and prove
the following:

Theorem 8. Let C be a concept class with finite VC dimension d, let Cs = { U ~-1 Ci I Ci (: C,
1 < i < s}. I f there exists apolynomial-time netfinderfor C, then there also exists an
(~, j, k)-Occam net finder for Cs.

Proof Since the VC dimension of C is finite, we may assume that the size of neural nets
returned by the polynomial-time net finder is also finite. The union operation can be imple-
mented with a single threshold element. The rest of the proof follows immediately from
Theorem 3.2.4 in (Blumer et al., 1989). []

The results of this section suggest that it is sometimes easier to train non-optimal neural
nets than optimal ones. This observation agrees with experimental results reported in
(Rumelhart et al., 1986) that the training time can usually be reduced by increasing the
number of hidden units. (In (Rumelhart et al., 1986) hidden units compute differentiable
functions; in this paper we consider threshold functions.)

5. Neural net optimization problems

We show in this section the infeasibility of comparing the power of different modular neural
net architectures or even just answering whether the function performed by one neural net
can be realized by another modular neural net architecture. These results are interesting
for the following reasons:

1. Learning is impossible unless the function to be learned is realizable by the net architec-
ture. This imposes a lower bound on the size of a net architecture.

2. But as the size of the net architecture gets larger, the training problem gets more com-
plex. The resulting computational constraints put an upper bound on architecture size.

We formalize the related problems as follows. The first problem asks if the given neural
net outputs anything other than 0.

NON-ZERO NET
Instance: A neural net f
Question: Is f # 0?

LEARNING BY NEURAL NETS 225

The next problem asks if two given nets differ on some input?

NET EQUIVALENCE
Instance: Neural nets f~ and f~.
Question: Is f~ # f2?

OPTIMAL EQUIVALENT NET
Instance: Neural net f and positive integer K.
Question: Is there a neural net f ' such that f ' = f a n d I f ' l -< K?

The next problem deals with determining if a neural net is optimal.

NET MEMBERSHIP
Instance: Neural net f and neural net architecture F.
Question: Is f E Comp(F).

The next problem asks if a given net architecture realizes some function that the other
does not?

NET ARCHITECTURE NONCONTAINMENT
Instance: Neural net architectures F~ and Fz.
Question: Is Comp(Fl) ff£ Comp(Fz)?

The next problem asks if two given net architectures are not equivalent.

NET ARCHITECTURE INEQUIVALENCE
Instance: Neural net architectures FI and F2.
Question: Is Comp(F1) ~ Comp(F2)?

The next problem deals with determining if a given net architecture is optimal.

OPTIMAL NET ARCHITECTURE
Instance: Neural net architecture F and positive integer K.
Question: Is there a neural net architecture F ' such that Comp(F') D Comp(F) and

IF'[< K?

In the appendix we show that the above problems are all 9Z(P-complete of 9Z(P-hard,
and we classify their computational complexities more precisely within the polynomial-
time hierarchy.

6. Conclusions

Neural nets offer the potential of learning a wide variety of concepts in a simple, uniform
way, To fully evaluate their potential, we must determine how difficult it is to construct

226 J.-H. LIN AND J.S. VITTER

a neural net that learns a particular class of concepts as a function of the concept complex-
ity, the size of the net architecture, and so on. Our results indicate that, without any domain-
specific knowledge, the training problem is in general infeasible, even for concepts repre-
sentable by a very simple 2-node neural net with only one hidden unit. On the other hand,
if the concept class to be learned is known a priori and the net architecture is appropriately
sized and properly interconnected, sometimes the training problem can be much easier
(perhaps by a specialized learning algorithm).

Back propagation (Rumelhart et al., 1986; Hinton, 1989) is a method for self-programming
neural nets with differentiable node functions. Experiments by Rumelhart et al. (1986) show
that back propagation works better given non-optimal rather than optimal net architectures.
It would be interesting to extend our model and show this property theoretically.

Acknowledgments

Support was provided in part by an NSF Presidential Young Investigator Award CCR-8906419
with matching funds from IBM, by NSF research grant DCR-84036D, and by ONR grant
N00014-83-K-0146, ARPA Order No. 6320, Amendment 1. An earlier and shortened version
of this research appeared in Proceedings of the 2nd Annual ACM Workshop on Computa-
tional Learning Theory, Santa Cruz, CA, July-August 1989, published by Morgan Kaufman
Publishers, San Mateo, CA. We thank the referees for several helpful comments and
suggestions.

Appendix

The problems defined in Section 5 are all 9Z(P-hard. An interesting theoretical goal is to
classify these OZ6~-hard problems in the polynomial-time hierarchy (Stockmeyer, 1977; Garey
& Johnson, 1979):

and fo rk > 0,

II~+l = co-0Z6'(~P),

AP+I = 6~(r~).

The class P(A) consists of all problems that can be solved in P with an oracle for A. Prob-
lems at each level of the hierarchy are at least as hard as (and are generally believed to
be harder than) those at the preceding level. A natural complete set for rY is the set Bk
of true boolean formulas with k alternating quantifiers.

The computational complexities of the problems in Section 5 are summarized in the follow-
ing theorem:

LEARNING BY NEURAL NETS 227

Theorem 9. The problems defined in Section 5 can be classified as follows:

1. The NON-ZERO NETprob lem is 9Z(P-complete.
2. The NET INEQUIVALENCE problem is 9Z(P-complete.
3. The OPTIMAL EQUIVALENT NET problem is in E p and is ~(P-hard.
4. The NET MEMBERSHIP problem is ~P-complete.
5. N E T ARCHITECTURE NONCONTAINMENT is in ZP and is EP-hard.
6. The NET ARCHITECTURE INEQUIVALENCE problem is in r~P and is ~P-hard.
Z The OPTIMAL NET ARCHITECTURE problem is in IIP3 and is 9Z(P-hard.

We shall use the following theorem from Stockmeyer and Meyer (1973) and Wrathall
(1977) to establish the upper bounds for the Theorem 9:

Theorem 10. Let L c p * be a language. For any k >_ 1, L E EP i f and only i f there exist
polynomials Pl Pk and a polynomial time recognizable relation R of dimension k + 1
over P* such that for all x E I'* we have x E L i f and only g

(3y,)(Vy2) . . . (QYk)[(x, y, Yk) E R],

where l Yil < pi(Ixl) and Q is " 3 " i f k is odd and " ¥ " i l k is even. Dually, for any k > 1,
L E IIP~ i f and only i f we have x E L i f and only i f

(vy0(3yz) . . . (Qyk)[(x, y, , Yk) E Rl,

where lYil <- pi(}xl) and Q is " v " is k is odd and "3 " is k is even.

Proof o f Theorem 9.

1. The NON-ZERO NET problem is clearly in 9Z(P. To prove completeness, we reduce
SATISFIABILITY to this problem. Given a boolean formula 4', we construct a neural
net f4, simulating 4~. Clearly, ~b is satisfiable if and only if f , is a non-zero net.

2. The NET INEQUIVALENCE problem is ~(P-complete since it contains the NON-
ZERO NET problem as a special case.

3. The upper bound for the OPTIMAL EQUIVALENT NET problem follows from the
fact that (f, K) E OPTIMAL EQUIVALENT NET if and only if

(3 f ') (¥ y) [I f ' l -< K a n d f ' (£ ') = f (£)] .

The 9Z(P-hardness is obtained by reducing NON-ZERO NET to this problem. Give an
instancefof NON-ZERO NET, we construct a neural net z V f where z is a new variable.
N o w f ~ 0 if and only if

(z v f , O) ~ OPTIMAL EQUIVALENT NET.

228 J.-H. LIN AND J.S. VITTER

4. The upper bound for the NET MEMBERSHIP problem follows from the fact that
f ~ Comp(F) if and only if

(3 f ' E Comp(F))(¥Y')[f'(2") = f(2*)].

To establish the lower bound, we reduce B2 QBF SATISFIABILITY to this problem.
Given an instance of B2 formula (32")(qy')B(~, y'), we construct a net architecture F B
as shown in Figure 4. Now the given B2 QBF formula is satisfiable if and only if
1 E Comp(FB). This result does not depend on the particular size measure used.

5. The upper bound for the NET ARCHITECTURE NONCONTAINMENT problem fol-
lows from the fact that Comp(FO 9~ Comp(F2) if and only if

(3f~ E Comp(FO)(vf2 ~ Comp(Fz))(~Y')[f~(~') ¢ f2(Y')l.

We reduce the NET MEMBERSHIP problem, which is ~P-complete, to this problem.
This is easy to see since f E F if and only if it is not the case that f ~; F.

6. The upper bound for the NET ARCHITECTURE INEQUIVALENCE problem follows
from the fact that Comp(FO ~ Comp(F2) if and only if

Comp(FO ~ Comp(F2) or Comp(F2) 9~ Comp(FO.

We reduce the NET ARCHITECTURE NONCONTAINMENT problem, which is P'P2-
hard, to this problem. We can construct a net architecture that computes exactly Comp(Fl)
U Comp(F2) by the construction illustrated in Figure 5. The proof follows from the
fact that Comp(FO ~ Comp(Fz) if and only if Comp(FO U Comp(F2) ~ Comp(Fz).

Neural Net Simulating

Figure 4. Net architecture for the NET MEMBERSHIP problem.

LEARNING BY NEURAL NETS 229

/

FI

l

! F2

Figure 5. Neural net architecture for F~ U F2. Note that the constant 1 can be implemented as x + £.

7. The upper bound for the OPTIMAL NET ARCHITECTURE problem is established
by the fact that (F, K) E OPTIMAL NET ARCHITECTURE if and only if

(¥f 6 Comp(F))(3 f ' E Comp(~YK))(VY~)[f (U) = f'(2")],

where 5: K is defined as in Section 4. This problem is 9Zff'-hard since it contains the
OPTIMAL EQUIVALENT NET problem, which is ~(P-hard as shown above, as a
special case. This result is also independent of the particular size measure used.

References

Baum, E., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1, 151-160.
Blum, A., & Rivest, R.L. (1988). Training a 3-node neural network is ~CP-complete. Proceedings of the First

ACM Workshop on the Computational Learning Theo~ (pp. 9-18). Cambridge, MA.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis

dimension. Journal of the Association for Computing Machinery, 36, 929-965.
Dertouzos, M.L. (1965). Threshold logic: A synthesis approach. Cambridge, MA: MIT Press.
Garey, M.R., & Johnson, D.S. (1979). Computers and intractability: A guide to the theory of g~ (P-completeness.

San Francisco, CA: W.H. Freeman and Co.
Haussler, D. (1988), Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial

Intelligence, 36, 177-221.
Hinton, G.E. (1989). Connectionist learning procedures. Artificial Intelligence, 40, 185-234.
Judd, J.S. (1987). Complexity of connectionist learning with various node functions. (COINS Technical Report

No. 87-60). University of Massachusetts.
Judd, J.S. (1988). On the complexity of loading shallow neural networks. Journal of Complexity, 4, 177-192.
Masek, W.J. (1978). Some 0UP-complete set cover problems. MIT Laboratory for Computer Science, unpublished

manuscript.

230 J.-H. LIN AND J.S. VITTER

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by error propagation.
In D.E, Rumelhart & J.E. McClelland (Eds.), Parallel distributed processing. Cambridge, MA: MIT Press.

Stockmeyer, L.J. (1977). The polynomial-time hierarchy. Theoretical Computer Science, 3, 1-22.
Stockmeyer, L.J., & Meyer, A.R. (1973). Word problems requiring exponential time: Preliminary report. Proceed-

ings of the Fifth Annual Symposium on the Theory of Computing (pp. 1-9).
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.
Weibel, A. (1989). Modular construction of time-delay neural networks for speech recognition. Neural Computa-

tion, I, 39-46.
Weibe|, A., & Hampshire, J. (1989). Building blocks for speech. Byte, August, 235-242,
Wrathall, C. (1977). Complete sets and the polynomial-time hierarchy. Theoretical Computer Science, 3, 23-33.

