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Abstract. We consider the computational complexity of learning by neural nets. We are interested in how hard 
it is to design appropriate neural net architectures and to train neural nets for general and specialized learning 
tasks. Our main result shows that the training problem for 2-cascade neural nets (which have only two non-input 
nodes, one of which is hidden) is ff/,(P-complete, which implies that finding an optimal net (in terms of the number 
of non-input units) that is consistent With a set of examples is also OUP-complete. This result also demonstrates 
a surprising gap between the computational complexities of one-node (perceptron) and two-node neural net train- 
ing problems, since the perceptron training problem can be solved in polynomial time by linear programming 
techniques. We conjecture that training a k-cascade neural net, which is a classical threshold network training 
problem, is also 9~00-complete, for each fixed k >_ 2. We also show that the problem of finding an optimal perceptron 
(in terms of the number of non-zero weights) consistent with a set of training examples is ~P-hard. 

Our neural net learning model encapsulates the idea of modular neural nets, which is a popular approach to 
overcoming the scaling problem in training neural nets. We investigate how much easier the training problem 
becomes if the class of concepts to be learned is known a priori and the net architecture is allowed to be suffi- 
ciently non-optimal. Finally, we classify several neural net optimization problems within the polynomial-time 
hierarchy. 
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1. Introduction 

Neural  nets are often used to learn functions, in either a supervised or  unsupervised  mode.  

They are enticing because  in some instances they are  self-programming, in that they can 

adjust their parameters  by using general  procedures  based solely on examples of  input- 

output  pairs. In this paper  we consider  the computat ional  complexi ty  of  learning by neural  

nets, bui lding upon the work  of  Judd (1987, 1988), B lum and Rives t  (1988), and Baum and 

Hauss ler  (1989). We are interested in how hard it is to design appropriate neural  net archi- 

tectures and to train neural  nets for general  and special ized learning tasks. 

In the next section we introduce our  neural  net  mode l  and related definitions. Our main 

result  in Sect ion 3 extends the work  of  Judd (1987, 1988) and B l u m  and Rivest  (1988) and 

further demonstra tes  the intractabili ty of  training non-modula r  neural  nets, as the p rob lem 

d imens ion  or  size gets large. We refer to this phenomenon  as the scaling problem. For  

Sect ions 4 and 5, we define a modular'(or hierarchical) neural net mode l  that encapsulates 

the idea of  incremental  design of  large nets based on smaller  subcomponent  nets. Each 

subcomponent  is trained separately and then f ixed whi le  higher- level  subcomponents  are 
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trained (see, for example, (Weibel, 1989), (Weibel & Hampshire, 1989), and (Hinton, 1989)). 
This modular approach can help alleviate the scaling problem. One of our goals in this 
paper is to determine to what extent the scaling problem is lessened. 

We define the size of a neural net or net architecture to be the number of non-input nodes. 
Perceptrons, for example, have size 1. Most of our results are independent of this particular 
definition of size. However, when relevant we also consider other size measures for neural 
nets, such as the height, the number of edges, the number of non-zero weights, and the 
number of bits in the representation. 

In Section 3 we present our main result that the training problem for a simple two-node 
completely unspecified net architecture with only one hidden unit, called a 2-cascade neural 
net, is ~(P-complete. Since the perceptron (one-node neural net) training problem can 
be solved in polynomial time by linear programming techniques, this result demonstrates 
a surprising gap between the computational complexities of one-node and two-node neural 
net training problems. We conjecture that the training of k-cascade neural nets, which is 
a well-known threshold network training problem (see, for example, (Dertouzos, 1965)), 
is also gL(P-complete, for each fixed k _> 2. We also show that the problem of finding 
an optimal perceptron (in terms of the number of non-zero weights) consistent with a set 
of training examples is 9Z(P-hard. 

In Section 4 we investigate how hard it is to train a modular neural net for a set of exam- 
ples when the neural net is constrained to be in some architecture for learning a particular 
concept class. For the case of learning isothetic (that is, axis-parallel) rectangles, we show 
that it is easier to train a neural net that is sufficiently non-optimal in size, so that there 
is some "play" in setting its parameters. In the process we introduce a general framework 
of Occam nets. In Section 5 we state several modular neural net optimization problems. 
In the appendix we show these problems to be 9Z(P-complete or ~(P-hard, and we classify 
them more precisely within the polynomial-time hierarchy. 

2. The neural net learning model 

In this paper, we restrict ourselves to feedforward neural nets of linear threshold elements. 
In particular, we are mainly concerned with neural nets for classification tasks. The inputs 
to the feedforward net will be from X n, where X is either {0, 1} or 9L The nets produce 
one binary output. 

Definition 1. A linear threshold unit fv = [~ ; 0] with input 2"is characterized by a weight 
vector ~ and a threshold 0: 

fv(~') = ( 4 1 
if ~ ' 2 " _ >  O; 

0 otherwise. 

For convenience, we identify the positive region defined byfv asfv and the negative region 

as fvv. 
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One of the main issues in neural net design is the problem of scaling: Is it feasible, within 
limited resources and time, to build and train ever larger neural nets? By "train" we refer 
to determining the weighs of the linear threshold elements. The results of Judd (1987) and 
Blum and Rivest (1988) and our results in Section 3 show for completely unspecified neural 
nets that scaling is intractable as the dimension and size get large. 

To overcome this problem of scaling, in the particular application of speech recognition, 
Weibel and Hampshire (1989) adopt the approach of modular and incremental design of 
large nets based on smaller subcomponent nets. The idea is to exploit the knowledge devel- 
oped by smaller, independently trained nets by fixing and incorporating these smaller net 
modules into larger superstructures. It is hoped that this modular approach could not only 
reduce training time but also lead to a more incremental and distributed approach to the 
construction of large-scale neural nets. Modular neural nets are gaining popularity in a 
variety of applications; more information appears in (Weibel, 1989), (Weibel & Hampshire, 
1989), and (Hinton, 1989). We encapsulate these ideas in the following modular (or hierar- 
chical) neural net learning model, which we use in Sections 4 and 5. 

Definition 2. A modular (feedforward) neural net architecture F is a directed ac~jclic graph 
G with n ordered designated input nodes and one output node. Nodes of G that are not 
input nor output nodes are called hidden units. Each non-input node v in G has indegree(v) 
inputs and is either associated with a linear threshold function fv with indegree(v) inputs 
or is left undefined (denoted by ± ). A neural net f is a neural net architecture with no 
undefined nodes. We identify f with the function it represents and Comp(F) with the set 
of functions computable by neural nets where each undefined node v in F is replaced by 
some linear threshold function fv. The complexities or sizes of f and F, which we denote 
]fl  and [El, are the numbers of non-input nodes in f and F, respectively. 

Definition 3. Training a net architecture with a set of training examples consists of deter- 
mining the weights of the undetermined linear threshold elements such that the function 
it computes is consistent with the training examples. 

The classical perceptron is a neural net of size 1; it has no hidden units. Our definition 
allows us to "hardwire" parts of the net architecture, which we use to investigate the com- 
putational complexities of modular neural net design and training problems. (Note that 
we elect not to allow partially defined nodes.) In this paper we shall focus mainly on the 
definition of size specified above. Other possible size measures include height, number 
of edges, number of non-zero weights, and number of bits in the representation. Except 
where noted, our results are independent of the particular size measure used. 

X n 
Let Dn = 2 , we define a concept class Cn c_ D n to be a non-empty set of concepts. 

Each individual concept c E Cn is a subset of domain X n. For each c E C~, we let size(c) 
denote the length of the encoding of c in some fixed encoding. We define Cn,~ to be the 
concept class of all concepts in C~ that have size at most s; hence, Cn = Us>_1 C~,s. A 
labeled example for a concept c is a pair (x, label), where x E X ~ and label is " + "  if 
x E c and " - "  i fx  ~ c; we call (x, +) apositive example and (x, - )  a negative example. 
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Definition 4. We call a neural net architecture F optimal if for all F '  such that Comp(F) 
c Comp(F'), we have IFI < IF'I. We also call a neural net architecture F optimal for 
a concept class Cn,s if Cn,s c Comp(F) and for all F '  such that Cn,s c Comp(F') we have 

IFI-< [F'[. 

3. Cascade neural nets and optimal perceptrons 

In this section we present our main result, concerning the difficulty of training k-cascade 
neural nets. We also investigate the computational complexity of optimizing the number 
of non-zero weights in a one-node neural net (that is, the well known perceptron) so that 
it is consistent with a set of training examples. 

Judd (1987, 1988) shows that determining whether a neural net architecture can be trained 
for a set of training examples is 9Z(P-complete. This is extended in Blum and Rivest (1988) 
to a simple two-layer three-node architecture with two hodden units. In this section we 
extend their result further to only two nodes by showing that the training problem is also 
9UP-complete for a 2-cascade neural net (with only one hidden unit). The node functions 
are initially completely unspecified• 

First we consider the training problem where the net architecture is allowed to be fully 
connected, and we want to minimize the number of non-input nodes. The following problem 
formalizes the problem at hand: 

OPTIMAL CONSISTENT NET 
Instance: A set of S of training examples and a positive integer K. 
Question: Is there a neural net f consistent with S such that Jfl -< K? 

This problem is clearly in 9Z(P. We show that this problem is 9UP-complete by showing 
9Z(P-completeness for the particular case K = 2 (2-CASCADE NEURAL NET TRAIN- 
ING), which we consider below• 

A k-cascade neural net (see Figure 1), where k > 2, has k - 1 hidden units N~, N2, 
• . . ,  Nk_ 1 and one output node Ark. All n inputs are boolean and are connected to nodes 
N~ . . . .  , N k. In addition, each Ni is connected of Ni+l; we designate the weight of this 
edge by gi. Each node has n + 1 inputs except for N~, which has only n inputs. We adopt 

x I Xl Xl 

X n 

Figure 1. Cascade neural net. 
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the convention that gi is the last weight to Ni+ I. Cascade neural nets are more powerful 
and economical in terms of their size (the number of non-input nodes) than the class of 
layered neural nets considered in Blum and Rivest (1988) (see also (Dertouzos, 1965)). 

Let us consider the following problem, for any fixed k > 2: 

k-CASCADE NEURAL NET TRAINING 
Instance: A set S = S + I,J S -  of training examples of n boolean inputs, where S ÷ is the 

set of positive examples and S -  is the set of negative examples. 
Question: Is there a k-cascade neural net f consistent with all training examples? 

We shall show that this problem is ~(P-complete for k = 2 by reducing the QUADRANT 
problem to it. The QUADRANT problem asks if the positive examples S + can be confined 
to a single quadrant, defined by the intersection of two halfspaces, with the negative exam- 
ples S -  confined to the other three quadrants. 

QUADRANT 
Instance: A set S = S + U S-  of training examples of n boolean inputs, where S ÷ is the 

set of positive examples and S -  is the set of negative examples. 
Question: Are there two halfspaces N~ and Nz such that S ÷ c N~ f3 Nz and S -  c 

Ni U N2? 

Theorem 1. (Blum & Rivest, 1988) QUADRANT is ~(P-complete. 

We use this to prove our main result: 

Theorem 2. 2-CASCADE NEURAL NET TRAINING is ~(P-complete. 

Proof Training a 2-cascade neural net is clearly in 9Z6'. To prove 9Z(P-hardness, we reduce 
QUADRANT to it. Given a set of training examples S = S + LI S -  for QUADRANT, 
we add two new dimensions and create the following set of augmented examples T = T + 
U T -  for training a 2-cascade neural net: 

T + = {x'00 [£ 'E  S +} O {£'11 ]Y'fi S}, 

T -  = {x-00 ]a?'fi S -}  U {2"01, k~10 l£ ' f i  S}. 

This is illustrated pictorially in Figure 2. The points x-'00 in the n-dimensional hypercube 
on the first n dimensions retain their former sign. 

The positive region induced by a 2-cascade net is bordered by a "zig-zag" of hyperplanes, 
in which the two outer (semi-infinite) hyperplanes are parallel. The basic idea of the proof 
is that the extra two dimensions of the examples in T force one of the semi-infinite hyper- 
planes to "miss" the n-dimensional hypercube, so that there is a 2-cascade neural net f 
consistent with T if and only if there is a quadrant solution to S. 

( = )  Suppose the quadrant solution to S is 

[~ e,] A [G; e:]. 
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Figure 2. Examples  used to show that 2 -CASCADE N E U R A L  NET T R A I N I N G  is 9~@-complete. 

We construct a 2-cascade neural net f consistent with T as follow: 

N1 = [~; - A - [0tl, - A - 10, l; 0,1, 

N2 = [/~ 2B, 2B, 3B - 02; 3B], 

whereA > ~" lail andB > ~" Ibil It is interesting to note that there is also a quadrant 
i = 1  i = l  ' 

solution to T: 

[~, 2A + 21011 ,  - A - 10,1;  0 ,1  A [~77 - n - 10 : l ,  JR + 2 1 0 : 1 ;  0 : ] .  

This is surprising on first glance, given the second-half of the proof, immediately below. 
( ~ )  Suppose the 2-cascade neural net f consistent with T is as follows: 

N~ = [g, A1, A2; 0~], 

N2 = [/~; B,, B2, gl; 02]. 

In the following, let 

NN,:O = [if, B1, B2; 02], 
2 

NN,: I  = [ff, B1, B2; 02 - gl]. 
2 

Case 1. Suppose g~ > 0. This implies that all examples in /v  N'=° are positive examples 
- -  ' ' 2  

and all examples not in Iv N'=I • .2 are negative examples. Also note that all positive examples 
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tvN2 =0 then belong to either N~ ~=° or to N1 n "21vU'=l" If  for all Y'~ S + we have £'00 ~ -.2 ' 

clearly S is linearly separable and has a trivial quadrant solution: 

[b202] A [/T 20z]. 

Otherwise, we claim for all Y'fi S + that 

x-'00 ~ N1 n N u' :1. 

/ v N ~ = 0  There exists at least one example Suppose there exists some 7~  S + such that 700  ~ ..2 " 

Y'~ S + such that £'00 E N1 n tvU~=l but x-'00 ¢ lV N'=° Since 700  ~ ~,U,=0 and since y-01 " ' 2  ' ' 2  " ~ ' 2  

and 37"10 are negative examples, we must have B~, B2 < 0 and 711 ~ /vN'=1 But 711 is 
a positive example, and so 711 ~ N~ n ~v N,=l From B~, Bz < 0, we have y-'O1, 710 " ' 2  " 

NN~=I Since y-*01 and 710 are negative examples, it follows that y'*01, 710 ~ NI and Al, 2 " 

A 2 > 0 .  
rq u'=° Since 2"11 is a ~-U,=0 and B,, B2 < 0, we have Y'll $ -,2 • From the fact that ~'00 ~ -.2 

positive example, we must have Y'll ~ N1 O ~,U,=l From B~, B: < 0, we know that ~?'01, 
iv u'=l and A~, A2 > 0, it follows that ~'01, Y'10 ~ N1. X'~10 ~ *'2/vN'=I'  Since ~ ' 006  N 1 n - , 2  

Thus, we have to conclude that x-'01, 2"10 E NI n N u,=l. But this implies that x-'01 and 
£~10 are positive examples, a contradiction to our supposition that there exists some 7~  S+ 
such that y'00 ~ 1v u'=°I This proves our claim and shows that the quadrant solution to S is • ' 2  " 

[~  0.] A [b; 02 -- g,l .  

Case 2. The case when gl < 0 can be proved similarly, except the trivial quadrant solu- 
tion is 

[/~ 0z - g,] A [ b ;  0 z - g,]. 

Otherwise we claim for all £ '~ S + that 

x-*00 ~ N1 O / v N ' = 0  

This shows that the quadrant solution to S is 

[--fi~ --01 + r/] A [/~i 02], 

where 0 < ~/ _< min~-ss+ {01 - ~Y'}. [] 

Corollary 1. The OPTIMAL CONSISTENT NETproblem is 9Z (P-complete, even if the inputs 
are boolean. 

Proof This result holds, even for the special case of  K = 2, as a consequence of Theo- 
rem 2. []  
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Blum and Rivest (1988) have shown that the problem of whether S + can be isolated by 
two parallel planes is also 9Z(P-complete. Since our proof can be modified to cover this 
restricted case, we have also proved the following theorem. 

Theorem 3. It is OL(P-complete to decide whether there is a restricted 2-cascade neural 
net f in which the weight vector ff of N2 is the negative of the weight vector ~ Of Nl, that 
is consistent with a set of training examples. 

Proof The key modification needed is as follows: Suppose the quadrant solution to S is 

1~ 0d A [ -a~  02]. 

Since the inputs are binary vectors, we may asume without loss of generality that 10,1, 
{0El < Gn lail. It is easy to see that the following restricted 2-cascade neural net is con- - -  i=1 

sistent with T." 

N1 = [~, -2A,  -2A;  01], 

Nz = [ - ~ ,  2A, 2A, 3A - 02; 3A], 

where A > En lail [] i=1 

We are hopeful that our reduction for 2-cascade neural nets can be extended to handle 
k-cascade neural nets, for each fixed k > 3, by adding new dimensions and creating an 
augmented training set in a similar manner. We make the following conjecture: 

Conjecture 1. Training a k-cascade neural net is 9Z(P-complete for each fixed k >_ 2. 

Theorem 2 shows that the OPTIMUM CONSISTENT NET problem is 9Z(P-complete, 
where the size of a net is defined to be the number of non-input nodes. We can show that 
it remains 9Z(P-complete for the case of perceptrons when the size measure is the number 
of non-zero weights: 

OPTIMAL CONSISTENT PERCEPTRON 
Instance: A set S of boolean training examples. 
Problem: Construct a perceptronf = [~; 0] such thatfis consistent with S and the number 

of non-zero components in ~ is minimized. 

Theorem 4. The OPTIMAL CONSISTENT PERCEPTRON problem is OUP-hard. 

Proof Haussler (1988) has shown the problem of finding the optimal monotone monomial 
consistent with a set of training examples is 9Z(P-complete, which by duality implies that 
the problem of finding the optimal monotone pure disjunction is also 9Z(P-complete. We 
shall abbreviate this latter problem as the OPTIMAL MONOTONE PURE DISJUNCTION 
problem and reduce it to the OPTIMAL CONSISTENT PERCEPTRON problem via a 
Turing reduction. 
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Let {Vl, vz . . . . .  v~} be the set of n boolean variables and let S be the training set. We 
want to know if there exists a monotone pure disjunction with at most K unnegated variables 
that is consistent with S. First we check if there is any monotone pure disjunction consis- 
tent with S, regardless of  its size. This can be easily done in polynomial time with the 
standard consistency algorithm (see, for example, (Vitter & Lin, 1988)). I f  the answer is 
"No," we return "No." Otherwise, let OptP be the searching algorithm for the OPTIMAL 
CONSISTENT PERCEPTRON problem, which takes a set S '  of training examples as input 
and outputs an optimal perceptronfconsistent  with S'. We run the following iterative deci- 
sion algorithm OptMPD, which calls OptP as subroutine, to determine whether (S, K) 
OPTIMAL MONOTONE PURE DISJUNCTION: 

Algorithm OptMPD 
Input: A set S of training examples and a positive integer K. 
Output: "Yes" or "No." 
begin 

s* ~- s u {(~, - ) ,  (6k ...... ~,,, - )} ;  
S ' ~  S*; 
[~; 0] '-- OptP(S'); 
while ~ contains any negative component do 

begin 
S' ,- MarkOff(S', ~);  
[~; O] , -  OptP(S') 

end; 
if NonZero(~) <_ K 

then return "Yes"; 
else return "No" 

end. 

In the above algorithm ~ ..... kp denotes the example all of whose components are 0, ex- 
cept those at indices kl . . . . .  k;, which are 1. Subroutine MarkOfftakes a set of examples 
S '  and a weight vector ~ as input and returns a new set of examples by zeroing out the 
components of each example corresponding to negative components in ~. Given weight 
vector ~, subroutine NonZero counts the number of non-zero weights in ~. We define 
I = {kl . . . . .  kp } to be the maximal set of indices such that for each kq E I there exists 
a negative example Vwith  ~q = 1. We call a perceptron positive if all its weights and 
threshold are non-negative. Algorithm OptMPD forces OptP to output an optimal positive 
perceptron by 

1. Including 0"as a negative example to force 0 > 0. This can be done since the concept 
class to be learned is monotone pure disjunctions. 

2. Including the binary n-vector Ok ...... .kp, as a negative example. This_ can be done since 
any monotone pure disjunction consistent with S has to classify Ok ...... kr, as a negative 
example. The reason for this inclusion will be clear below. 

3. Iteratively zeroing out the components of examples corresponding to negative weight 
components. This procedure preserves consistency, in that at the end of each iteration 
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the monotone pure disjunctions consistent with S remain consistent with the set of new 
examples, and vice versa. This follows because those example components corresponding 
the negative weight components are useful only for the identification of negative examples 
and cannot be included in any monotone pure disjunctions that are consistent with S. 

We claim that OptMPD returns "Yes" if and only if there exists a monotone pure dis- 
junction consistent with S* (and, therefore, consistent with S) with at most K unnegated 
variables. To see that this is true, we need the following lemma: 

Lenuna 1. Let f = [~, O] be any optimal positive perceptron consistent with S*. By optimal 
we mean that the number o f  non-zero components in ~ is minimum. Then for  each ~j > 
O, we have j ¢ L 

Proof (By contradiction.) Let J be the set of indices of non-zero weight components. Since 
we include ~ . . . .  kp as a negative example, for each positive example Y'there must exist 
j E J - I such 'thai ~j = 1. Thus, we may construct another p e r c e p t r o n f '  = [~, 0] consis- 
tent with S* as follows: Let W = Ei~l ~i- For all i ~ J - I, let ~/ = ~i + I4~ all other 
components of ~ a r e  0s. Therefore, f is not optimal. Contradiction. [] 

Continuation o f  the Proof o f  Theorem 4. Suppose that vi, + • • • + vie is a monotone pure 
disjunction consistent with S, where e < K. Then [~  . . . . . .  ie; 1] is a consistent positive per- 
ceptron. For the other direction, suppose t h a t f  = [~; 0] is an optimal positive perceptron 
consistent with S with exactly k < K non-zero weights, and let the set of indices of non- 
zero weights be J = {j~, . . . ,  Jk}. It is clear that g = vj, + . . .  + vjk is an optimal mono- 
tone pure disjunction consistent with S: First, g has to include all positive examples since 
0 > 0. Secondly, g also excludes all negative examples by Lemma 1. Finally, g has to 
be optimal; otherwise, f is not optimal, either. This proves our claim. 

Finally, note that OptMPD runs in polynomial time if OptP is a polynomial-time searching 
algorithm. Therefore, this is a polynomial-time reduction and the OPTIMAL CONSISTENT 
PERCEPTRON problem is ~(P-hard .  [] 

The results in this section show that the training problem is inherently difficult even 
for simple 2-node neural nets. Furthermore, the training problem for perceptrons is also 
computationally infeasible if the number of non-zero weights is to be minimized. In the 
next section we investigate in a theoretical way possible restrictions for making the training 
problem tractable. 

4. Neural nets and the VC dimension 

In typical real-world neural net design problems, we start with a set of training examples, 
choose (or guess) an appropriate net architecture, and then use some procedure (such as 
back propagation) to train the neural net (that is, to set the parameters of the net so that 
we can correctly classify as many examples as possible). It is shown (Baum & Haussler, 
1989) that if a large enough fraction of enough random examples (drawn independently 
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from an unknown distribution) can be loaded onto the neural net, then the net will "gener- 
alize" in Valiant's sense (Valiant, 1984) and probably answer future queries with low error. 
(By "loaded," we mean that the example is correctly classified by the fully specified neural 
net.) The learning framework is known as the probably approximately correct (or PAC) 
learning model. In the following we adopt the PAC-learning model of Valiant (1984) and 
Blumer et al. (1989) and investigate how the complexity of modular training is affected 
by restricting the problem's domain to learning a specific concept class. 

A central concept of PAC-learning framework is the Vapnik-Chervonenkis dimension (VC 
dimension) of concept classes. Intuitively, the VC dimension is a combinatorial measure 
of the expressive power (or richness) of a concept class. 

Definition 5. Let Cn,s ~ D,, be a concept class. Given a set of non-labeled examples 
S c X ", we denote by IIc,.s(S) the set of all subsets P c_ S such that there is some con- 
cept c ~ C,,s for which P c c and (S - P) c ~. If IIc,,,s(S) = 2 s, we say that S is shat- 
tered by C~,s. The Vapnik-Chervonenkis dimension (VC dimension) of C,,s is the cardinality 
of the largest finite set of examples that is shattered by C,,~; it is infinite if arbitrarily large 
sets can be shattered. 

We use log to denote the logarithm base 2 and In to denote the natural logarithm. The 
following corollary (Baum & Haussler, 1989) bounds the VC dimension of a net architecture: 

Corollary 2. Let F be a net architecture with s >- 2 non-input nodes and E edges, then 

VCdim(F) < 2(E + s) log(es), 

where e is the base o f  nautral logarithm. 

Let 3:s be a net architecture with s non-input nodes and with all possible edges; that 
is, the s non-input nodes are numbered from 1 to s, and each non-input node has inputs 
from the n input nodes and from all previous non-input nodes. Clearly, Comp(ffO = 

U Ifl-<s{f}' The following lemma bounds the VC dimension of ~s. 

Lemma 2. The VC dimension of  ~s can be bounded as follows: 

1. VCdim(~:o) <_ log n, 
2. VCdim(~l) = n + 1, 
3. VCdim(~s) < s(2n + s + 1) log(es), for  all s >_ 2. 

Proof Bounds 1 and 2 are straightforward. For bound 3, note that the number of edges 
in 5: s is ns + s(s - 1)/2. The proof then follows directly from Corollary 2. [~ 

The next lemma gives a general lower bound on the size of a net architecture that con- 
tains some concept class: 

Lemma 3. Let Cn,s be a concept class, where VCdim( Cn,s) > 2n, and let F be a net archi- 
tecture such that Cn, s c_ Comp(F). We have 
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IF' = f 2 I ~  VCdim(Cn's)/ logIVCdim(Cn's)l;  

Proof The proof follows simply from Lemma 2 and the fact that VCdim(~l~) >__ VCdim(F) 
>_ VCdim(Cn,,). [] 

It is not surprising that training is hard without any domain knowledge. In the following 
we investigate how much easier the training problem becomes when the net architecture 
is constrained for learning a particular concept class. In the problem statements of this 
section, Cn,s is an implicitly known concept class (such as the union of s isothetic (that 
is, axis-parallel) rectangles or symmetric boolean functions) and is not a part of the input. 

NET ARCHITECTURE TRAINING 
Instance: A set S of training examples for a concept from C~,s and a modular neural net 

architecture F for C~, s (that is, C,, s c Comp(F)). 
Question: Is there some f E Comp(F) such that f is consistent with S? 

One of the concept classes with wide application in both artificial intelligence and data- 
base is the class of the unions of isothetic rectangles (see, for example, (Haussler, 1988)). 
We show the following: 

Theorem 5. The NET ARCHITECTURE TRAINING problem is 9Z(P-complete if the concept 
class Cn, s = R s is the set of unions of s isothetic rectangles. 

Proof It is well known that it is 9Z(P-hard to decide if the minimum number of isothetic 
rectangles needed to cover all positive training examples in the plane is less than or equal 
to s (see (Masek, 1978)). To solve this problem, we construct a modular three-layer net 
architecture F as shown in Figure 3. The output node is hardwired to be the OR of the 
s second-layer hidden units, which are all ANDs. Each AND has inputs from 4 hidden 
units under it. Among these four hidden units, two have single inputs from x and the other 
two have single inputs from y. There exists a neural n e t f  E Comp(F) consistent with all 
training examples if and only if the minimum number of isothetic rectangles needed is 
less than or equal to s. []  

This theorem also gives a result similar to that in Judd (1987) for our modular model 
of net architecture. The reason why this problem is difficult is that some net architectures 
are harder to train than others. In practice, neural net researchers often design their nets 
and net architectures to be slightly nonoptimal so as to allow some "play" in constructing 
the weights during the training. In some cases, this approach makes the training problem 
tractable. This approach motivates the following notion of Occam nets: 

Def'mition 6. Let F °pt be an optimal net architecture for Cn,s. An (u, j ,  k)-Occam netfinder 
A for Cn,,, where 0 < ~ < 1 and j ,  k >__ 0, is a polynomial-time algorithm that maps 
each set of training examples S to some consistent Occam ne t f  E Comp(H,,s, lsl), where 
H~,~,ls I is a net architecture, such that VCdim(nn,s, lsl) < Is l=n j IF°ptI~. 
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x v y x y y 

Figure 3. Net architecture for the unions of s isothetic rectangles. 

By modifying the analysis of Blumer et al. (1989) we obtain the following theorem: 

Theorem 6. I f  there is an (c~, j ,  k)-Occam net finder A for C, ..... where 0 <_ e~ < 1 and 
j, k >_ O, and i f  the number S of  random examples satisfies 

f 4 218nJlF°Ptik ~ 1  l/(1-c0) I Si > max log ~,  ~ log 

where F °pt is an optimal net architecture for Cn,s, then A is a PAC-learning algorithm and 
the neural net f is its output hypothesis. That is, with probability at least 1 - 6, the neural 
net f will predict correctly at least a fraction 1 - c of  future random examples drawn from 
the same distribution. 

Proof The proof is a simple application of Theorem 3.2.1. in (Blumer et al., 1989). [~ 

The following lemma allows us to bound the VC dimension of an Occam net architecture 
in terms of the size measure of a concept class C,,.= instead of the size of the optimal net 
architecture containing C,,s: 

L e m m a  4. I f  IF°Pt I --- ~(s ~) for some {3 > O, then the upper bound on VCdim(Hn,s, lS~) 
in Definition 6 can be replaced by tS I~nJs ~, and IF°ptl~' in Theorem 6 can be replaced by s ~. 

The next theorem shows an example of Occam net finders: 

Theorem 7. There is an (~, j ,  k)-Occam net finder for the concept class C,,s = Rs of  the 
set of  unions of  s isothetic rectangles. 
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Proof There is a well-known simple greedy algorithm for Rs, which is optimal within a 
relative factor of In Is] + 1 (see, for example, (Blumer et al., 1989)). The output of the 
greedy algorithm can be easily transformed into a neural ne t f  ~ Comp(Hs, lsl), where Hs, lSl 
is a net architecture of size O(s log Is[) and with O(s log IsI) edges. From Corollary 2 
we have 

VCdim(Hs, lsl) = O((s log Isl)(log s + log log Isl)). 

Clearly, VCdim(Rs) = ~2(s). From Lemma 3, we have IF°P'I = ~2(~,/s/Mg s ). Thus, from 
Lemma 4 there is an (~, j ,  k)-Occam net finder for Rs. [] 

By Theorem 3.2.4 in (Blumer et al., 1989), we may generalize Theorem 7 and prove 
the following: 

Theorem 8. Let C be a concept class with finite VC dimension d, let Cs = { U ~-1 Ci I Ci (: C, 
1 < i < s}. I f  there exists apolynomial-time netfinderfor C, then there also exists an 
(~, j, k)-Occam net finder for Cs. 

Proof Since the VC dimension of C is finite, we may assume that the size of neural nets 
returned by the polynomial-time net finder is also finite. The union operation can be imple- 
mented with a single threshold element. The rest of the proof follows immediately from 
Theorem 3.2.4 in (Blumer et al., 1989). [] 

The results of this section suggest that it is sometimes easier to train non-optimal neural 
nets than optimal ones. This observation agrees with experimental results reported in 
(Rumelhart et al., 1986) that the training time can usually be reduced by increasing the 
number of hidden units. (In (Rumelhart et al., 1986) hidden units compute differentiable 
functions; in this paper we consider threshold functions.) 

5. Neural net optimization problems 

We show in this section the infeasibility of comparing the power of different modular neural 
net architectures or even just answering whether the function performed by one neural net 
can be realized by another modular neural net architecture. These results are interesting 
for the following reasons: 

1. Learning is impossible unless the function to be learned is realizable by the net architec- 
ture. This imposes a lower bound on the size of a net architecture. 

2. But as the size of the net architecture gets larger, the training problem gets more com- 
plex. The resulting computational constraints put an upper bound on architecture size. 

We formalize the related problems as follows. The first problem asks if the given neural 
net outputs anything other than 0. 

NON-ZERO NET 
Instance: A neural net f 
Question: Is f # 0? 
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The next problem asks if two given nets differ on some input? 

NET EQUIVALENCE 
Instance: Neural nets f~ and f~. 
Question: Is f~ # f2? 

OPTIMAL EQUIVALENT NET 
Instance: Neural net f and positive integer K. 
Question: Is there a neural net f '  such that f '  = f a n d  I f ' l  -< K? 

The next problem deals with determining if a neural net is optimal. 

NET MEMBERSHIP 
Instance: Neural net f and neural net architecture F. 
Question: Is f E Comp(F). 

The next problem asks if a given net architecture realizes some function that the other 
does not? 

NET ARCHITECTURE NONCONTAINMENT 
Instance: Neural net architectures F~ and Fz. 
Question: Is Comp(Fl) ff£ Comp(Fz)? 

The next problem asks if two given net architectures are not equivalent. 

NET ARCHITECTURE INEQUIVALENCE 
Instance: Neural net architectures FI and F2. 
Question: Is Comp(F1) ~ Comp(F2)? 

The next problem deals with determining if a given net architecture is optimal. 

OPTIMAL NET ARCHITECTURE 
Instance: Neural net architecture F and positive integer K. 
Question: Is there a neural net architecture F '  such that Comp(F') D Comp(F) and 

IF'[ < K? 

In the appendix we show that the above problems are all 9Z(P-complete of 9Z(P-hard, 
and we classify their computational complexities more precisely within the polynomial- 
time hierarchy. 

6. Conclusions 

Neural nets offer the potential of learning a wide variety of concepts in a simple, uniform 
way, To fully evaluate their potential, we must determine how difficult it is to construct 
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a neural net that learns a particular class of concepts as a function of the concept complex- 
ity, the size of the net architecture, and so on. Our results indicate that, without any domain- 
specific knowledge, the training problem is in general infeasible, even for concepts repre- 
sentable by a very simple 2-node neural net with only one hidden unit. On the other hand, 
if the concept class to be learned is known a priori and the net architecture is appropriately 
sized and properly interconnected, sometimes the training problem can be much easier 
(perhaps by a specialized learning algorithm). 

Back propagation (Rumelhart et al., 1986; Hinton, 1989) is a method for self-programming 
neural nets with differentiable node functions. Experiments by Rumelhart et al. (1986) show 
that back propagation works better given non-optimal rather than optimal net architectures. 
It would be interesting to extend our model and show this property theoretically. 

Acknowledgments 

Support was provided in part by an NSF Presidential Young Investigator Award CCR-8906419 
with matching funds from IBM, by NSF research grant DCR-84036D, and by ONR grant 
N00014-83-K-0146, ARPA Order No. 6320, Amendment 1. An earlier and shortened version 
of this research appeared in Proceedings of the 2nd Annual ACM Workshop on Computa- 
tional Learning Theory, Santa Cruz, CA, July-August 1989, published by Morgan Kaufman 
Publishers, San Mateo, CA. We thank the referees for several helpful comments and 
suggestions. 

Appendix 

The problems defined in Section 5 are all 9Z(P-hard. An interesting theoretical goal is to 
classify these OZ6~-hard problems in the polynomial-time hierarchy (Stockmeyer, 1977; Garey 
& Johnson, 1979): 

and fo rk  > 0, 

II~+l = co-0Z6'(~P), 

AP+I = 6~(r~). 

The class P(A) consists of all problems that can be solved in P with an oracle for A. Prob- 
lems at each level of the hierarchy are at least as hard as (and are generally believed to 
be harder than) those at the preceding level. A natural complete set for rY is the set Bk 
of true boolean formulas with k alternating quantifiers. 

The computational complexities of the problems in Section 5 are summarized in the follow- 
ing theorem: 
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Theorem 9. The problems defined in Section 5 can be classified as follows: 

1. The NON-ZERO NETprob lem is 9Z(P-complete. 
2. The NET  INEQUIVALENCE problem is 9Z(P-complete. 
3. The OPTIMAL EQUIVALENT NET problem is in E p and is ~(P-hard. 
4. The NET  MEMBERSHIP problem is ~P-complete. 
5. N E T  ARCHITECTURE NONCONTAINMENT is in ZP and is EP-hard. 
6. The NET  ARCHITECTURE INEQUIVALENCE problem is in r~P and is ~P-hard. 
Z The OPTIMAL NET ARCHITECTURE problem is in IIP3 and is 9Z(P-hard. 

We shall use the following theorem from Stockmeyer and Meyer (1973) and Wrathall 
(1977) to establish the upper bounds for the Theorem 9: 

Theorem 10. Let L c p * be a language. For any k >_ 1, L E EP i f  and only i f  there exist 
polynomials Pl . . . . .  Pk and a polynomial time recognizable relation R of  dimension k + 1 
over P* such that for  all x E I'* we have x E L i f  and only g 

(3y,)(Vy2) . . .  (QYk)[(x, y, . . . . .  Yk) E R], 

where l Yil < pi(Ixl) and Q is " 3 "  i f k  is odd and " ¥ "  i l k  is even. Dually, for  any k > 1, 
L E IIP~ i f  and only i f  we have x E L i f  and only i f  

(vy0(3yz) . . .  (Qyk)[(x, y, . . . .  , Yk) E Rl,  

where lYil <- pi(}xl) and Q is " v "  is k is odd and "3 " is k is even. 

Proof o f  Theorem 9. 

1. The NON-ZERO NET problem is clearly in 9Z(P. To prove completeness, we reduce 
SATISFIABILITY to this problem. Given a boolean formula 4', we construct a neural 
net f4, simulating 4~. Clearly, ~b is satisfiable if  and only if f ,  is a non-zero net. 

2. The NET INEQUIVALENCE problem is ~(P-complete  since it contains the NON- 
ZERO NET problem as a special case. 

3. The upper bound for the OPTIMAL EQUIVALENT NET problem follows from the 
fact that (f, K) E OPTIMAL EQUIVALENT NET if and only if 

( 3 f ' ) ( ¥ y ) [ I f ' l  -< K a n d f ' ( £ ' )  = f (£ ) ] .  

The 9Z(P-hardness is obtained by reducing NON-ZERO NET to this problem. Give an 
instancefof  NON-ZERO NET, we construct a neural net z V f  where z is a new variable. 
N o w f  ~ 0 if and only if 

(z v f ,  O) ~ OPTIMAL EQUIVALENT NET. 
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4. The upper bound for the NET MEMBERSHIP problem follows from the fact that 
f ~ Comp(F) if and only if 

(3 f '  E Comp(F))(¥Y')[f'(2") = f(2*)]. 

To establish the lower bound, we reduce B2 QBF SATISFIABILITY to this problem. 
Given an instance of B2 formula (32")(qy')B(~, y'), we construct a net architecture F B 
as shown in Figure 4. Now the given B2 QBF formula is satisfiable if and only if 
1 E Comp(FB). This result does not depend on the particular size measure used. 

5. The upper bound for the NET ARCHITECTURE NONCONTAINMENT problem fol- 
lows from the fact that Comp(FO 9~ Comp(F2) if and only if 

(3f~ E Comp(FO)(vf2 ~ Comp(Fz))(~Y')[f~(~') ¢ f2(Y')l. 

We reduce the NET MEMBERSHIP problem, which is ~P-complete, to this problem. 
This is easy to see since f E F if and only if it is not the case that f ~; F. 

6. The upper bound for the NET ARCHITECTURE INEQUIVALENCE problem follows 
from the fact that Comp(FO ~ Comp(F2) if and only if 

Comp(FO ~ Comp(F2) or Comp(F2) 9~ Comp(FO. 

We reduce the NET ARCHITECTURE NONCONTAINMENT problem, which is P'P2- 
hard, to this problem. We can construct a net architecture that computes exactly Comp(Fl) 
U Comp(F2) by the construction illustrated in Figure 5. The proof follows from the 
fact that Comp(FO ~ Comp(Fz) if and only if Comp(FO U Comp(F2) ~ Comp(Fz). 

Neural Net Simulating 

Figure 4. Net architecture for the NET MEMBERSHIP problem. 
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/ 

FI 

l 

! F2 

Figure 5. Neural net architecture for F~ U F2. Note that the constant 1 can be implemented as x + £. 

7. The upper bound for the OPTIMAL NET ARCHITECTURE problem is established 
by the fact that (F, K) E OPTIMAL NET ARCHITECTURE if and only if 

(¥f  6 Comp(F))(3 f '  E Comp(~YK))(VY~)[f (U) = f'(2")], 

where 5: K is defined as in Section 4. This problem is 9Zff'-hard since it contains the 
OPTIMAL EQUIVALENT NET problem, which is ~(P-hard as shown above, as a 
special case. This result is also independent of the particular size measure used. 
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