
Machine Learning 3: 101-120, 1988
@ 1988 Kluwer Academic Publishers Manufactured in The Netherlands

Genetic Algorithms in Noisy Environments

J. MICHAEL FITZPATRICK (JMF@VUSE.VANDERBILT.EDU)

JOHN J. GREFENSTETTE t (GREFENSTETTE@VUSE.VANDERBILT.EDU)

Computer Science Department, Vanderbilt University, Nashville, Tennessee 37235

(Received: December 23, 1987)

(Revised: May 17, 1988)

Keywords : Learning in noisy environments, genetic algorithms, image registration.

Abs t r ac t . Genetic algorithms are adaptive Search techniques which have been used
to learn high-performance knowledge structures in reactive environments that pro-
vide information in the form of payoff. In general, payoff can be viewed as a noisy
function of the structure being evaluated, and the learning task can be viewed as
an optimization problem in a noisy environment. Previous studies have shown that
genetic algorithms can perform effectively in the presence of noise. This work ex-
plores in detail the tradeoffs between the amount of effort spent on evaluating each
structure and the number of structures evaluated during a given iteration of the ge-
netic algorithm. Theoretical analysis shows that, in some cases, more efficient search
results from less accurate evaluations. Further evidence is provided by a case study
in which genetic algorithms are used to obtain good registrations of digital images.

1. I n t r o d u c t i o n

In approaches to machine learning that use genetic algorithms, success de-
pends on the ability to search efficiently for high-performance knowledge struc-
tures despite the presense of considerable amounts of noise in the evaluation
process. In the approach taken in the systems LS-1 (Smith, 1983) and LS-
2 (Schaffer & Grefenstette, 1985), genetic operators are applied to entire
production-system programs, based on estimates of each program's overall
performance in the task domain. In general, exhaustive evaluations of each
candidate program is infeasible. For example, in one series of experiments
in which LS-1 learned to play draw poker, each product iomsystem program
was evaluated by playing a certain number of hands against a fixed opponent.
Given that the hands were generated randomly, this procedure can be viewed
as sampling from the performance space of all hands that could be played
by the program under evaluation. Consequently, the evaluation process was
necessarily noisy.

Likewise, in the classifier-system approach to learning with genetic algo-
r i thms (Holland, Holyoak, Nisbett, ~; Thagard, 1986; Wilson, 1987), genetic

tAuthor's current address: Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory, Washington, DC 20375-5000, U.S.A.

102 J.M. FITZPATRICK AND J. J. GREFENSTETTE

operators are applied to individual rules (classifiers) based on noisy estimates
of each rule's utility (or strength). Wilson (1987) has described BOOLE, a sys-
tem that learned to solve difficult Boolean functions from payoff information.
Each iteration through BOOLE's performance cycles produced an updated es-
timate for the strength of selected classifiers. Genetic operators, invoked at
varying intervals between performance cycles, acted on the basis of the cur-
rent strength assigned to classifiers. Again, each performance cycle can be
viewed as a sample from the performance space of the current set of classi-
fiers. This paper addresses the performance of genetic algorithms in the kind
of noisy environments that typically confront systems that learn from payoff
information.

The issue of efficient search in noisy environments has implications for ap-
plications of genetic algorithms beyond machine learning, as well. Although
successful pilot studies of genetic algorithms have been completed in a vari-
ety of domains, including image processing, combinatorial optimization, gas
pipeline control systems, VLSI layout, communication network design, and
machine learning (Davis, 1987; Grefenstette, in press), one hindrance to the
widespread application of genetic algorithms to large practical problems is
that they generally require the evaluation of thousands of candidate solutions.
In large, complex search spaces (e.g., high-dimensional, discontinuous spaces
with many local optima) genetic algorithms exhibit an impressive improve-
ment over both various forms of random search and local search techniques
(De Jong, 1975). Nevertheless, if the evaluation of each candidate solution
is computationally expensive, genetic algorithms may not provide a feasible
approach. For many problems of practical interest, it is possible to evaluate
individual candidate solutions approximately using statistical sampling tech-
niques. In this paper we adopt this general formulation of the problem and
investigate the use of genetic algorithms to optimize black-box functions for
which approximate function values can be obtained by sampling methods.

In a previous paper (Grefenstette & Fitzpatrick, 1985), we investigated some
aspects of the performance of genetic algorithms when candidate solutions are
evaluated approximately. In particular, we established that improved perfor-
mance could result from decreasing the effort applied to accurate function
evaluations and increasing the number of iterations of the genetic algorithm,
while keeping the size of the current candidate set, or population, fixed. This
paper considers the effects of varying both the population size and the sampling
effort.

The principles of genetic algorithms are presented in the next two sections.
Section 4 presents a theoretical analysis of the effects of approximate function
evaluations on the search heuristic embodied by genetic algorithms. Section
5 describes experiments that explore the efficiency of genetic algorithms with
approximate function evaluations. Section 6 describes an application of these
techniques to an image-processing problem: the registration of two digital im-
ages. There we define image difference to be the mean of the absolute difference
between image intensities at corresponding points in two images. We show that
genetic algorithms can be used to search a space of image transformations in
order to minimize image differences.

NOISY ENVIRONMENTS 103

Table 1. A genetic algorithm.

procedure genetic algorithm
begin

t=O;
initialize P(t);
evaluate P(t);
while (not termination condition) do
begin

t = t + l ;
select P(t) from P (t - 1);
recombine P(t);
evaluate P(t);

end
end.

2. A review of genetic algorithms

Genetic algorithms are adaptive generate-and-test procedures derived from
principles of natural population genetics. This section presents a high-level
description of one formulation of genetic algorithms. Detailed descriptions are
given by Holland (1975), Grefenstette (1986), and Goldberg (1988). A skeleton
of a simple genetic algorithm is shown in Table 1.

During iteration t, the genetic algorithm maintains a population P(t) of
structures {x~, x~ , . . . , X~v } chosen from the domain of the objective function f .
The initial population P(0) is usually chosen at random. The population size N
remains fixed for the duration of the search. Each structure x~ is evaluated by
computing f(x~). Often, the term trial is used for each such evaluation. This
provides a measure of fitness of the evaluated structure for the given problem.
When each structure in the population has been evaluated, a new population of
structures is formed in two steps. First, structures in the current population
are selected to reproduce on the basis of their relative fitness. That is~ the
selection algorithm chooses structures for replication by a stochastic procedure
that ensures that the expected number of offspring associated with a given
structure x} is f(x~)/p(P, t), where f(a:~) is the observed performance of x{ and
#(P, t) is the average performance of all structures in the population. That is,
structures that perform well may be chosen several times for replication and
structures that perform poorly may not be chosen at all. In the absence of
any other mechanisms, this selective pressure would cause the best-performing
structures in the initial population to occupy a larger and larger proportion of
the population over time.

Next the selected structures are recombined using idealized genetic opera-
tors to form a new set of structures for evaluation. One of the most impor-
tant genetic operators is crossover, which combines the features of two parent
structures to form two similar offspring. Crossover operates by swapping cor-
responding segments of a string or list representation of the parents. For ex-
ample, if the parents are represented by five-item lists, say x{ = (ai bi e, di ei)

104 J. M. FITZPATRICK AND J. J. GREFENSTETTE

t = (aj bj cj dj ej), then crossing the segments between the second and x j
and the fifth components would produce the offspring (ai bi ej dj ei) and
(aj bj ci di ej). Specific decisions define a range of alternative implementa-
tions, including whether both resulting structures are to be entered into the
population, whether the parents are to be retained, and which other structures,
if any, are to be purged.

In generating new structures for testing, the crossover operator draws only
on the information present in the structures of the current population. If spe-
cific information is missing, due to storage limitations or loss incurred during
the selection process of a previous iteration, then crossover is unable to produce
new structures that contain it. A mutation operator that arbitrarily alters one
or more components of a selected structure provides the means for introducing
new information into the population. However, in contrast to the early com-
putational models of evolutionary processes (Fogel, Owens, & Walsh, 1966),
mutation functions solely as a background operator within a genetic algorithm
(i.e., its probability of application is kept very low). Its presence ensures that
all points in the search space can be reached.

3. I m p l i c i t p a r a l l e l i s m o f g e n e t i c a l g o r i t h m s

The power of the adaptive search strategies described above does not lie in
the testing of individual structures; rather, it resides in the efficient exploita-
tion of the wealth of information that the testing of structures provides with
regard to the interactions among the components of these structures. Specific
configurations of component values observed to contribute to good performance
(e.g., values of a specific pair of list items in the example above) are preserved
and propagated through the structures in the population in a highly parallel
fashion. The development of successful small configurations, in turn, forms
the basis for subsequent exploitation of larger and larger such configurations.
Intuitively, one can view these structural configurations as the regularities in
the space that emerge as individual structures are generated and tested. Once
encountered, they serve as building blocks in the generation of new structures.

More specifically, let H be a hyperplane in the search space. Suppose that
the elements of the five-item lists above are allowed to take only the values 0
or 1. Then the search space is a five-dimensional binary space. For example,
the hyperplane denoted by H = 0 # # # 1 consists of all structures that have
a 0 in position one and a 1 in position five. Let M(H, t) denote the number
of structures in P(t) that are also members of H. Holland (1975) has shown
that the result of selection alone (in the absence of genetic operators) is a new
distribution of hyperplanes that obeys the formula

M(H, t + l) - #(H,#(p, ~ M(H, t), (1)

where #(H, t) is the average fitness of the structures that are in both P(t) and
in H, and p(P, t) is the average fitness of all structures in P(t). Equation (1)
says that the nmnber of trials allocated to an above-average hyperplane H
grows exponentially over time. The crucial observation is that (1) applies

NOISY ENVIRONMENTS 105

to each hyperplane H that is represented in population P. The following
proposition shows that a large number of distinct hyperplanes are allocated
trials according to (1).

P r o p o s i t i o n (Holland, 1980). Consider a population P of N random binary
structures of length L. For most practical 'values of N and L, at leact N a
hyperplanes are allocated trials according to (1).

Proof . See Goldberg (1985). Appendix A presents an alternative proof.

For example, if N = 128 and L = 64 we can expect that at least ten million
distinct hyperplanes are each represented by at least eight structures in P.
The number of structures representing each of these ten million hyperplanes
will vary according to (1).

That is, genetic algorithms actually search the space of all feature combi-
nations, quickly identifying and exploiting combinations associated with high
performance. The ability to perform such a search by evaluating completely
specified candidate solutions is called the implicit parallelism of genetic algo-
rithms.

Of course, achieving the above exploration rate with respect to a given
hyperplane H is dependent on the specific configuration of component val-
ues that defines the hyperplane passing unchanged from parent to offspring.
Hence, it is necessary to examine the disruptive effects of the genetic opera-
tors. The crossover operator will disrupt a given structural configuration if
the selected crossover point falls between two or more of the configuration's
component values. The probability of this occurring is directly proportional
to the length of the smallest sequence of components containing the configu-
ration, or the defining segment of the corresponding hyperplane. For exam-
pie, the probability of disruption by crossover associated with the hyperplane
H = # # . . . # 1 # 0 1 # . ,. # # is no more than 3 / (L - 1), where L is the length
of the structure representation. Thus, crossover tends to preserve the allo-
cation rate in (1) with respect to hyperplanes whose defining segments are
small relative to L, and tends to be disruptive with respect to hyperplanes
having large defining segments. However, as structures belonging to specific,
high-performance hyperplanes with small defining segments begin to dominate
the population over time, the remaining population structures become more
similar, and hence crossover has a less disruptive effect on the rate at which
hyperplanes are allocated trials. The umtation operator has a negligible effect
on the allocation rates, given its background role in the search.

Further theoretical properties of genetic algorithms have been extensively
analyzed (De Jong, 1975; Holland, 1975; Goldberg, 1988). It is clear that ge-
netic algorithms make much more extensive use of the information provided
by the evaluation of candidates than most other heuristic search methods. For
example, a hill-climbing algorithm tests several structures and keeps the most
promising one. In the process, hill climbing discards a vast amount of infor-
mation concerning the combinations of features present in the unsuccessflfl
structures. In genetic algorithms, on the other hand, combinations of features
in unsuccessful structures may still be passed along to other more successful
structures. To summarize, the power of a genetic algorithm derives from its

106 J.M. FITZPATRICK AND J. J. GREFENSTETTE

ability to exploit, in a near-optimal fashion (Holland, 1975), information about
the utility of a large number of structural configurations without the compu-
tational burden of explicit calculation and storage. This leads to a focused
exploration of the search space wherein attention is concentrated in regions
that contain structures of above average utility. Nonetheless, the population
is widely distributed over the space, insulating the search from susceptibility
to stagnation at a local optimum.

4. Genetic algorithms with approximate evaluations

In this section we analyze the impact of approximate evaluations on the
heuristic embodied in genetic algorithms. This topic is motivated in part by
the desire to apply genetic algorithms to problems whose candidate solutions
can be evaluated by statistical methods. This approach is also motivated by
the work of De Jong (1975), who included a noisy function as part of his
experimental study of genetic algorithms, but did not specifically study the
implications for using approximate evaluations on their efficiency. Our main
question is the following: given a fixed amount of computation time, is it
better to devote substantial effort to getting highly accurate evaluations or to
obtain quick, rough evaluations and allow the genetic algorithm to consider
many more candidate solutions per iteration? We assume that the evaluation
of each structure by the genetic algorithm involves statistical sampling and the
effort required for each trial is proportional to the nmnber of samples taken.

Statistical sampling techniques are often used in the evaluation of integrals of
complicated integrands over large domains. Such integrals appear in many ap-
plications of physics and engineering (James, 1980; Lantrup, 1985). Through-
out our discussions it will be convenient to treat the function, f(x), to be
optimized as the mean of some random variable R(x). In terms of the evalua-
tion of an integral by statistical sampling, f(x) is the mean of the integrand's
value over the domain and R(x) is simply the set of values of the integrand over
the domain. The approximation of f(x) by the statistical technique proceeds
by selecting n random samples from R(x). The mean of the sample serves as
the approximation and, to the extent that the samples are random, the sam-
ple mean is guaranteed by the law of large numbers to converge to f(x) with
increasing n. Once f(x) is approximated, the desired value of the integral can
be approximated by multiplying the approximation of f(x) by the volume of
the domain. There are many approaches to improving the convergence of the
sample mean and the confidence in the means for a fixed n (Lautrup, 1985),
but we will not investigate these approaches. Here we will be concerned only
with the sample mean and an estimate of our confidence in that mean.

The main idea is to use as an evaluation flmction in the genetic optimization
of f(x), not f(x) itself, but an estimate e(x) obtained by taking n randomly
chosen samples from a random variable R(x) with mean f(x). It seems intu-
itively clear that e(x) approaches f(x) for large n. Statistical sampling theory
tells us that if R(x) has standard deviation ~r(x) then the standard deviation
of the sample mean, as(x), is given by

N O I S Y E N V I R O N M E N T S 107

It is clear from (2) that reducing the size of cr~ (x) can be expensive. Reducing
~,(x) by a factor of two, for example, requires four times as many samples and
hence four times as much evaluation time per trial. On the other hand, it is
clear that the genetic algorithm will require more trials to reach a fixed level
of optimization for f (z) when a,(x) is larger and that the genetic algorithm
will achieve a less satisfactory level of optimization for f(x) for a fixed number
of trials when as(x) is larger. What is not obvious is which effect is more
important, the increase in the nmnber of trials required or the increase in the
time required per trial. In Sections 5 and 6 we describe experiments that
explore the relative importance of these two effects. Here we consider how the
use of approximate evaluation of individual structures affects the estimate of
the average performance of the hyperplanes in the search space.

In particular, we derive an expression for the standard deviation of the esti-
mate of the average performance for an arbitrary hyperplane H. This estimate
controls the number of offspring allocated to H by the selection algorithm, and
hence the focus of the genetic search, For the genetic algorithm to correctly
identify high performance areas of the search space, it is important to minimize
the error in the estimated average performance of hyperplanes. Let H be an
arbitrary hyperplane in the representation space comprising a set of structures

H = {xl ,z2 xl/-/I}.

The performance of H can be viewed as a random variable with mean # and
variance a2. Let E be a random variable defined by randomly choosing r struc-
tures from H and computing the average (exact) evaluation of each structure.
Then E has mean #E = P and variance ~r~ = cr2/r.

We now consider the effects of evaluating the chosen structures by a sampling
procedure. Let l~(xi) denote the random variable from which samples are taken
in order to compute the estimate e(xi). Then R(xi) has mean I~(Xi) = f(x~)
and variance a2(xi). If we estimate #(xi) by taking n samples from R(xi), the
resulting random variable has mean lz(xi) and variance

Let S be the random variable that results from averaging the results of taking
n samples from each of r randomly chosen xi's in H. S has mean # and, as
shown in Appendix B, it has variance

r ~" ?~,

where {.. .}u denotes the mean over all structures in H. Note that

108 J . M . FITZPATRICK AND J. J. GREFENSTETTE

That is, as the number of samples per trial gets large, the difference between
approximate evaluation and exact evaluation diminishes, as expected. This
analysis suggests a way to improve the estimation of hyperplane performance.
Since the total number of samples taken during the estimation of H is rn, (4)
suggests that the estimate of / t may be improved at no additional sampling
cost by increasing r and decreasing n so as to keep the product r n constant.
Since the value of r is proportional to the population size N, it is reasonable
to investigate the effect of increasing the population size while decreasing the
immber of samples per trial.

Before we present our experimental study of this effect, it is instructive to
consider the effect of decreasing the number, n, of samples without varying
the population size. From (4), we get

0~r~ 1 2

and from (3) it follows that

giving

- (5)
On r On

In words, suppose we estimate the performance of hyperplane H by averaging
the observed evaluations of r structures randomly selected from H. As the
number n of samples per evaluation increases, the accuracy of the estimated
performance of the hyperplane H increases at a rate equal to only 1 / r times
the rate of increase of the average accuracy of the evaluation of individual
structures. Conversely, decreasing n results in a smaller percentage loss of ac-
curacy in the estimation of the hyperplane performance than in the evaluation
of individual structures. Since the quality of the search performed by genetic
Mgorithms depends on the quality of its estimates of the performance of hy-
perplanes, rather than the evaluation of particular individual structures, (5)
suggests that genetic algorithms can be expected to perform well for problems
requiring partial evaluation of candidate solutions.

There are interesting questions concerning the optimal balance between the
effort spent on evaluating individual structures and the effort spent on other
aspects of the genetic algorithm. Equation (5) suggests that computation time
could be saved, with relatively little negative effect on the genetic algorithm,
by reducing the number of samples taken per trial. Assuming a fixed amount
of time is available, we can utilize the time saved by increasing the population
size, by increasing the number of generations, or by doing both. In a previous
paper (Grefenstette & Fitzpatrick, 1985), we investigated one aspect of this
tradeoff and established that, assuming negligible overhead for the operation of
the genetic algorithm, performance can be improved by increasing the number
of generations alone. In this paper, we investigate the general case, varying
both population size and number of generations and taking the overhead into
a c c o u n t .

NOISY ENVIRONMENTS 109

5. Tradeoffs between population size and sample size

This section empirically explores the effect suggested by analysis in the last
section, namely, that the estimation of hyperplanes can be improved by in-
creasing the population size while decreasing the number of samples taken per
trial. A genetic algorithm was applied to minimize a test function, described
below, on which statistical sampling was performed to evaluate structures in
the search space. The primary goal was to study the relationship between
population size and sample size when the overall computation time was fixed.

The initial experiments used a genetic algorithm to minimize the function
*--30 .a 4 f (x) = 2~j=lJ j, where x = (al ,a30), a n d - l . 2 8 < aj < 1.28,

for j = 1,2, . . . ,30. De Jong (1975) used f (x) in his early study of the
behavior of genetic algorithms, in which he investigated the effects of adding
Gaussian noise to the function. In this study, we estimate f (x) by sampling;
in particular, we treat f (x) as the mean of a normal distribution with a = 2.0.
Thus, an important difference between this study and De Jong's is that the
earlier one assumed a fixed amount of noise, whereas the amount of noise in
these experiments depends on the number of samples taken.

5.1 Overhead considerations and experimental design

Our primary concern is with improving the performance of genetic algo-
rithms when time is limited. With this purpose in mind, the following experi-
ments ignore the cost of the extra memory required to accommodate increased
population sizes, though we do restrict our attention to population sizes that
can be easily accommodated on currently available microcomputers.

In order to accurately assess the time-related tradeoffs between taking more
samples per trial and evaluating more structures per generation, the overhead
resulting from the genetic algorithm must be taken into account. For a given
representation of structures, each of the phases initialize, select, and recombine
shown in Table 1 takes a constant amount of time per evaluated structure. 1 Let
st be total computational cost that can be attributed to the genetic algorithm
per trial. Let fl be tile cost per sample taken during the evaluation of each
structure. Then the total time required for the genetic algorithm, neglecting
the initialization phase, is

T = (c~ + /~n)GN,

where G is the total number of generations, N is the population size, and n
is the number of samples per trial. Consider the effects of increasing N while
keeping T and N n constant. Clearly, the number of generations that can be
achieved in a fixed amount of time decreases as we increase the population
size. Furthermore, the rate at which G decreases depends on the ratio a//3.
That is, we expect to see the following tradeoff: increasing the population
size while keeping N n constant should improve the quality of the information

1Baker (1987) presents an algorithm for selecting the offspring of successive generations
in linear time.

110 J. M. FITZPATRICK AND J. J, GREFENSTETTE

processed by the genetic algorithm, as shown in (4). At the same time, the
genetic algorithm will have fewer iterations G in which to use the improved
information.

A series of experiments was performed in order to assess the tradeoff be-
tween the population size and sample size for various values of all3. In each
experiment, the total computation time T and the product Nn were held fixed,
while N varied between 25 and 2000 and n varied between 80 and 1. The value
for T was chosen so that the number of generations G was 200 for N = 25.

5.2 Per formance metr ic

Previous studies (De Jong, 1975; Grefenstette, 1986) have suggested ways
to measure both the quality of the final result and the efficiency of the inter-
mediate behavior of genetic algorithms. In comparing the various runs of a
genetic algorithm using approximate evaluation techniques, care must be taken
in defining a useful performance statistic. It would be misleading to simply
record the best evaluation of all structures examined during the search, since
the accuracy of the evaluation varies with the number of samples. For example,
if the number of samples is very small, there may be little relation between the
observed performance on any individual structure and that structure's true
performance when exactly evaluated. If we consider that the entire final pop-
ulation represents the knowledge obtained by the genetic algorithm, it seems
natural to measure the performance of a genetic algorithm by the best exact
evaluation of all structures in the final population. However, this metric has
the disadvantage that it requires more computational effort to exactly evaluate
a large population than a small one. Thus the total computation time devoted
to running and evaluating a genetic algorithm with large N is greater than if
N is small. In order to determine whether this difference could be eliminated,
we collected another performance statistic in the experiments, consisting of the
best exact evaluation of the top 50 structures in the final population, selected
on the basis of the observed performance values, This technique appears to
provide a practical way to measure the performance of a genetic algorithm
with a large population.

5.3 Exper imen ta l results

For each experiment at least ten runs of the genetic algorithm were per-
formed, using different random number seeds, on the test function described
above for each combination of N and n. The average of the performance met-
ric for these runs is shown in Tables 2 through 4. Note that since the function
is being minimized, a smaller performance value indicates a more successful
search strategy.

In the first experiment, the ratio a//~ was set to zero, corresponding to a
situation in which the cost of sampling far surpasses the cost per structure as-
sociated with the genetic algorithm. This situation arises in practice when the
evaluation of a structure requires running a complex simulation (Grefenstette,
1986) or a production-system interpreter (Smith, 1983; Grefenstette, 1987).
Table 2 shows the results.

NOISY ENVIRONMENTS 111

Table 2. Results of the first experiment: Average performance of best structures on
the test function when c~/~ = 0.

NUMBER OF SIZE OF NUMBER OF AVERAGE

SAMPLES POPULATION GENERATIONS PERFORMANCE

1
2
5

10
20
40
80

2000
1000
400
200
100
50
25

200
200
200
200
200
200
200

1.38
1.30
1.48
1.59
1.79
2.55
4.56

Since the overhead for the genetic algorithm is insignificant in this case, the
number of generations is identical (200) for all runs in this experiment. That
is, the genetic algorithm has an equal number of iterations in which to operate.
However, the accuracy of the estimated hyperplane improves as N increases.
In this case, the results are consistent with our theoretical analysis in Section
2. (The difference in performance between using a sample size of one and a
sample size of two is not statistically significant.) The best results are achieved
with smaller sample sizes and larger population sizes. As n increases and N
decreases, performance declines as expected, with a dramatic drop at n > 20.
This is because, as n increases beyond 20, the improvement in the accuracy
of each evaluation does not compensate for the reduction in the number of
representatives for each hyperplane in the smaller population. We now consider
cases where the genetic algorithm overhead plays a more significant role.

In the second experiment, the ratio a//3 is assumed to be three. This corre-
sponds to a moderate cost per sample, as might be expected when computing
a moderately complex numerical function. This is also approximately the ratio
associated with the image-processing problem described in the next section.
The results for the test function are shown in Table 3. In this experiment,
there is no statistically significant difference in performance between the runs
at 5, 10, and 20 samples. However, the difference between the results with 5
samples and the result with fewer samples is statistically significant at the 0.05
level. This experiment shows that, when genetic algorithm overhead is taken
into account, a secondary effect comes into play when N is large. Namely,
the number of generations possible within the available computation time de-
clines, leading to a corresponding decline in performance. This experiment
shows that it is necessary to balance the time spent per generation and the
number of generations performed when there is significant overhead for the
genetic algorithm.

In the third experiment, the ratio c~//3 is assumed to be 32, which is in fact
the ratio of overhead to sampling effort in the test function. The results for
this experiment are shown in Table 4. As expected from the discussion of the
previous experiment, these data reveal a severe tradeoff between time spent
per generation and total number of generations. In this experiment, the opti-

112 J. M. FITZPATRICK AND J, J. GREFENSTETTE

Table 3. Results of the second experiment: Average performance of best structures
on the test function when (~/~ = 3.

]
NUMBER OF SIZE OF] NUMBER OF AVERAGE

SAMPLES POPULATION [GENERATIONS PERFORMANCE

1
2
5

10
20
40
80

2000
1000
400
200
100
50
25

52
83

130
160
180
193
200

5.27
3.19
2.10
2.09
1.96
2.63
4.71

mal performance occurs when between 20 and 40 samples are taken per trial.
Runs with fewer samples per trial had larger population sizes and therefore
far fewer generations in the allotted time. In these cases, the relatively high
additional costs incurred by the genetic algorithm exacerbated the problem of
allowing it enough generations to perform a thorough search. It is interesting
to note that performance also declines if the population is too small. When the
population size falls below 50, the increase in the number of generations does
not compensate for the decrease in both the number of hyperplanes processed
per generation (Proposition 1) and the accuracy of the performance estimates
of the hyperplanes (Equation 5).

In summary, these preliminary experiments support the analysis of trad-
ing additional samples per trial for additional structures per population. In
general, increasing the population size while decreasing the samples per trial
appears to improve the performance of genetic algorithms. However, this effect
is moderated by the requirement that the algorithm perform sufficient numbers
of iterations to adequately explore the search space. This latter requirement
places a limit on the population size when the genetic algorithm overhead is
relatively high in comparison to the sampling cost.

6. Tests on an image registrat ion prob lem

This section describes experiments using approximate evaluation on a real-
istic task - image registration. The general problem of image registration is
important in such diverse fields as aerial photography (Svedlow, McGillem, &
Anuta, 1978; Merchant, 1981) and medical imaging (Venot ~ Leclerc, 1984;
Fitzpatrick, Pickens, Grefenstette, Price, ~ James, 1987). General introduc-
tions to the field of image registration and extensive bibliographies may be
found in Hall (1979) and Goshtasby (1983). An image comparison technique
based on random sampling, different from the method used here~ is described
by Barnea and Silverman (1972).

The function to be minimized in image registration measures the difference
between two images of a scene, in our case medical x-ray images, that have

NOISY ENVIRONMENTS 113

Table 4. Results of the third experiment: Average performance of best structures
on the test function when a /~ = 32.

NUMBER OF SIZE OF NUMBER OF AVERAGE
SAMPLES POPULATION GENERATIONS PERFORMANCE

1
2
5

10
20
40
80

2000
1000
400
200
100
50
25

8
I6
38
67

108
156
200

41.32
27.33
10.47
5.73
3.62
3.20
4.71

been acquired at different times. The images differ because of motion that
has taken place between the two acquisition times, because of the injection of
dye into the arteries, and because of noise in the image acquisition process.
The registration of such images is necessary for the successful use of digital
subtraction angiography, in which an image of an artery's interior is produced
by subtracting a pre-injection image from a post-injection image. Fitzpatrick
et al. (1987) describe the details of the process and the registration technique.
The misregistration of two images results in motion artifacts such as those in
Figure 1. By performing a geometrical transformation that warps one image
relative to the other, it is possible to improve the registration of the images
so that the difference due to motion is reduced. For example, Figure 2 shows
an improved registration resulting from a geometrical transformation prior to
subtraction. We have investigated the use of a genetic algorithm to search a
parameterized space of image transformations in order to minimize the image
difference. The class of transformations we consider includes elastic motion,
rotation, and translation.

The method selects two images and designates one of them as the mask
image. A transformed version of that image is to be compared to a second
image - the target image - within a square subimage - the region of interest.
(The target image typically includes dye injected into the arteries.) The space
of transformations is parameterized by four vectors dl, d2, d3, and d4 -
that specify the motion of the mask image at the four corners of the region
of interest. The motion of intermediate points is determined by means of
bilinear interpolation from the corner points. (More complicated warpings can
be described with additional vectors.)

The images are represented digitally as square arrays of pixels representing
an approximate map of image intensity. The image difference is defined to be
the mean absolute difference between the pixels at corresponding positions in
the transformed and target images. The exact mean can be determined by
measuring the absolute difference at each pixel position; an estimate of the
mean may be obtained by sampling randomly from the population of absolute
pixel differences. The effort required to estimate the mean is approximately

114 J.M. FITZPATRICK AND J. J. GREFENSTETTE

Figure I. A difference image of the region surrounding the humerus. An artery is
made visible (dark horizontal band) by injecting a dye that is relatively
opaque to x-rays. The image was obtained by subtracting a pre-injection
image, the mask, from a post-injection image. Motion artifacts resulting
from misregistration of bone (dark and light diagonal bands) interfere with
the image of the artery. The square outlines a 100 by 100 pixel region of
interest. The mask image must be transformed within this region to reduce
the severity of the artifacts.

proportional to the number of samples taken, so this problem meets the con-
ditions for statistical evaluation of candidate solutions. The region of interest
is typically 100 by 100 pixels, giving a sample space of size 10,000 values from
which to estimate the exact mean. The parameters for the transformation
comprise the x and y components of the four vectors. The magnitude of each
component is limited to less than one-fourth the width of the region of interest,
to avoid the possibility of folding (Fitzpatrick & Leuze, 1987). The range for
each of these eight components is digitized to eight-bit accuracy.

Table 5 shows the results from a series of experiments in which genetic
algorithms were applied to eight-image registration problems, generated by se-
lecting four regions from each of two pairs of x-ray images, one of the elbow and
one of the humerus. The unregistered difference image for the eighth region, a
segment of the humerus, is shown in Figure 1. As in the earlier experiments,
the population size was varied in order to keep the sampling time per genera-
tion fixed across all runs. The total time per run was fixed at five minutes (on

NOISY ENVIRONMENTS 115

Figure2. A difference image of the same region as Figure 1. Here the region of
interest, outlined in Figure 1, shows reduced motion artifacts. The image
of the artery is much improved where it crosses the bone edge (above and
to the left of the + sign). The misregistration in the lower left corner of
the region of interest is almost completely removed. The improvement is
accomplished by transforming the mask image within this region before
subtracting.

a Sun 3/260 workstation with floating point accelerator). The performance
of each genetic algorithm was measured according to tile technique described
previously: the 50 structures with the best observed performance in the final
population were subjected to an exact computation of the mean pixel differ-
ence between the target image and the corresponding transformed image. The
results are normalized so that random search gets a score of 1.00 on each im-
age and lower scores indicate improved search performance. The registration
shown in Figure 2 was found during one of the runs of the genetic algorithm
reported in colmnn ls in Table 5, using ten samples per trial. Table 5 shows
the average results from 50 runs of the genetic algorithm for each sample size
per evaluation. The results in Table 5 are consistent with the results shown in
Table 3 for tile corresponding o~//~ ratio in the test function.

There is statistically significant improvement for all images when the sam-
ple size is increased from one to two, and again when it is increased from two
to five. Tile best results are obtained for five to ten samples per evaluation;

116 J. M. FITZPATRICK AND J. J. GREFENSTETTE

Table 5. Performance of best structures on eight image registration problems.

SAMPLES POPUL.

1 2000
2 1000
5 400

10 200
20 100
40 50
80 25

GENS. I1 I2 I3 I4 I5 I6 IT Is

103 .84 .88 .75 .86 .81 .81 .87 .79
163 .53 .69 .47 .55 .71 .69 .77 .58
251 .28 .45 .39 .33 .66 .61 .56 .50
307 .27 .35 .39 .32 .66 .61 .48 .50
343 .32 .33 .40 .34 .68 .62 .49 .51
366 .34 .36 .45 .36 .70 .65 .51 .54
378 .43 A7 .52 .43 .73 .67 .55 .59

increasing the samples beyond ten (and decreasing the population size accord-
ingly) decreases performance significantly. The slight difference between the
results in Table 3 and Table 5 can be explained on the basis of our previous
analysis. First, the a/j3 ratio for the registration problem is actually a little
less than three. Second, the total time per run in the registration studies al-
lowed nearly twice as many generations as in the test case. Both of the factors
favor taking slightly fewer samples than in the second experiment. However,
the overall similarity of the results between the test studies and the image-
registration study supports our analysis of the behavior of genetic algorithms
with approximate evaluations of candidate solutions.

7. Conclus ions

Genetic algorithms search by allocating effort to regions of the search space
based on an estimate of the relative performance of competing regions. One
benefit of this approach is that the individual knowledge structures represent-
ing the competing regions of the space need not be evaluated precisely. This
observation lets one apply genetic algorithms to problems in which the envi-
ronment provides noisy or approximate payoff information, or in which the
evaluation of knowledge structures can only be performed through statistical
techniques. Our analysis suggests that in some cases the overall efficiency of
genetic algorithms may be improved by reducing the time spent on individ-
ual evaluations and by increasing the population size. This analysis has been
supported by a case study in the image-processing domain.

This work has important implications for approaches to machine learning
that search for high-performance knowledge structures. Even in limited do-
mains (Smith, 1983), it is typically impossible to evaluate precisely the per-
formance of a given program or rule. In a general-purpose learning system
(Holland et al., 1986), one expects perpetual novelty to be a characteristic
feature of many learning environments. In these cases, traditional search tech-
niques such as hill climbing are likely to be misled by noise in the available
environmental feedback. This work suggests that genetic algorithms may be
the search technique of choice for machine learning systems in complex envi-
ronments.

NOISY ENVIRONMENTS 117

Acknowledgements

This research was supported in part by grants from the National Institutes
of Health (HL34703), the National Science Foundation (ECS-8608588), and
the Whitaker Foundation. We acknowledge the assistance of Dirk Van Gucht
in the early stages of this project. We also wish to thank the editors for their
help in the final preparation of this paper.

References

Baker, J. E. (1987). Reducing bias and inefficiency in the selection Mgorithm.
Genetic Algorithms and Their Applications: Proceedings of the Second
International Conference on Genetic A19orithms (pp. 14 21). Cambridge,
MA: Lawrence Erlbaum.

Bamea, D. I., & Silverman, H. F. (1972). A class of algorithms for fast digital
image registration. IEEE Transactions on Computers, 212, 179-186,

Davis, L. (1987) (Ed.). Genetic algorithms and simulated annealing. London:
Pitman Press.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic
adaptive systems. Doctoral dissertation, Department of Computer and
Communication Sciences, University of Michigan, Ann Arbor.

Fitzpatrick, J. M., & Leuze, M. R. (1987). A class of injective two dimen-
sional transformations. Computer Vision, Graphics, and Image Process,
39, 369-382.

Fitzpatrick, J. M., Pickens, D. R., Grefenstette, J. J., Price, R. R., & James,
A. E. (1987). A technique for automatic motion correction in DSA. Optical
Engineering, 26, 1085 1093.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through
simulated evolution. New York: John Wiley.

Goldberg, D. E. (1985). Optimal initial population size for binary-coded ge-
netic algorithms (TCGA Report No. 85001). Tuscaloosa: University of
Alabama, The Clearinghouse for Genetic Algorithms.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and ma-
chine learning. Reading, MA: Addison-Wesley.

Goshtasby, A. (1983). A symbolically-assisted approach to digital image reg-
istration with application in computer vision. Doctoral dissertation, De-
partment of Computer Science, Michigan State University, East Lansing.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic
algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16,
122-128.

Grefenstette, J. J. (1987). Multilevel credit assignment in a genetic learning
system. Genetic Algorithms and Their Applications: Proceedings of the
Second International Conference on Genetic Algorithms (pp. 202 209).
Cambridge, MA: Lawrence Erlbaum.

118 J, M. FITZPATRICK AND J. J, GREFENSTETTE

Grefenstette, J. J. (in press). Genetic algorithms and their applications. In
A. Kent & J. G. Williams (Eds.), Encyclopedia of Computer Science and
Technology (Vol. 21, Supplement 6). New York: Marcel Dekker, Inc.

Grefenstette, J. J., & Fitzpatrick, J. M. (1985). Genetic search with approxi-
mate function evaluations. Proceedings of the First International Confer-
ence on Genetic Algorithms and Their Applications (pp. 112 120). Pitts-
burgh, PA: Lawrence Erlbaum.

Hall, E. L. (1979). Computer image processing and recognition. New York:
Academic Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann
Arbor, MI: University of Michigan Press.

Holland, J. H. (1980). Adaptive algorithms for discovering and using gen-
eral patterns in growing knowledge-bases. International Journal of Policy
Analysis and information Systems, 4, 217 240.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986).
Induction: Processes of inference, learning, and discovery. Cambridge,
MA: MIT Press.

James, F. (1980). Monte Carlo theory and practice. Reports on Progress in
Physics, ~3, 73.

Lautrup, B. (1985). Monte Carlo methods in theoretical high-energy physics.
Communications of the ACM, 28, a5s-ara

Merchant, J. (1981). Exact area registration of different views of a common
object scene. Optical Engineering, 20, 424-436.

Scimffer 3. D., & Grefenstette, a. J. (1985). Multi-objective learning via ge-
netic algorithms. Proceedings of the Ninth International Joint Conference
on Artificial Intelligence (pp. 593-595). Los Angeles, CA: Morgan Kauf-
n l ann .

Smith, S. F. (1983). Flexible learning of problem solving heuristics through
adaptive search. Proceedings of the Eighth International Joint Confer-
ence on Artificial Intelligence (pp. 422- 425). Karlsruhe, West Germany:
Morgan Kaufnlann.

Svedlow, M., McGillem, C. D., & Anuta, P. F. (1978). Image registration:
Similarity measure and preprocessing method comparisons. IEEE Trans-
actions on Aerospace and Electronic Systems, 1~, 141-150.

Venot, A., & Leclerc, V, (1984). IEEE Transactions on Medical Imaging, 3,
179 186.

Wilson, S. W. (1987). Classifier systems and the animat problein. Machine
Learning, 2, 199-228.

Appendix A. Implicit parallelism in genetic algorithms

The following result is one of the folk theorems of genetic algorithms, and
was first announced by Holland (1980). The proof included here is somewhat
shorter than Goldberg's (1985), but focuses only on the effects of selection and
ignores the effects of genetic operators.

NOISY ENVIRONMENTS 119

P r o p o s i t i o n . Consider a population P of N random binary structures of
length L. For ruost practical values of N and L. at least N 3 hyper'planes are
allocated trials according to (1).

P r o o f . First note that (1) is a reasonable heuristic for a given hyperplane H
only to the extent that it(H, t) gives a reasonable nleasure of the quality of H.
We therefore restrict our enumeration to those hyperplanes that have some
mininmm number, say r, of representatives in P. Let k = log(N/r). Then
for any choice of k positions, there are 2 k distinct hyperplanes defined at those
k positions, each of which can be expected to be represented by r structures
in P. Therefore, the number of distinct hyperplanes with r representatives in
P is at least

For most problems of practical interest, L >_ 64 and 26 < N < 2 ~°, and
it is reasonable to require that r > 8. I f r = 8, t h e n 3 < k < 17. By
inspection of the value of (6) over this range, we find that M~ > ~3. •

Appendix B. Derivation of Equation (5)

Here, we derive tim variance (~ for S, the random variable that results from
averaging n samples from each of r a:i's randomly chosen fl'om H. Let pj (xi)
denote the j t h sample taken from the random variable R(xi) in the estimation
of f(xi), for j = 1 n. Then the mean performance of x~ is

I~(:ci) ~ (t) j (x i))R = f (a ' . i) ,

and the mean performance of hyperplane H is

, =- (,(~:~))H.

where (. . .)~ denotes tile mean averaged over all possible sets of r members of
hyperplane H and (. . .)R denotes tiw mean averaged over all possible sets of
n samples taken from R(xi). It follows that

#(: r i) = IL + ' q (x i) .

where (T](Xi))H = 0 and

pj(z~) = , ,(:rd + ~ j (zd ,

where (tlj(Xi))R = 0. Note that the variance associated with H is

~2 = O./ (. r~)2)u

and that the variance associated with each xi is

c~2(xi) = <~/~(z~)2>R.

120 J. M. FITZPATRICK AND J. J. GREFENSTETTE

I t follows that

r T~

i----1 j : l

r2n 2
i:=1 j~ - I

1 r n

i=1 j = l

1 ~

i=1 j = l

i=l j=l i':l j'=l

_ 1 (E E nZ(('l(x~fi?(xi')>R>H + 2 Z n<(~(xi)vj, (xi,)>R)H
T2Tt 2

/=I i'=l i=l ~':I j'=l

i=1 i'=1 j=l j '= l

If we assume that ~l(xi) and ~?(xi,) are uncorrelated, we may simplify the first
term,

= ~ii,(T 2,

If we assume further that the ~?j(xi) and the ~j,(x~,) are uncorrelated, we may
simplify the third term,

B e c ause <~j , (x~,)}n = 0, we m a y s impl i fy the second term,

-= O.

Therefore, we have

r 2 n 2

r rl~

