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Abs t r ac t .  Genetic algorithms are adaptive Search techniques which have been used 
to learn high-performance knowledge structures in reactive environments that pro- 
vide information in the form of payoff. In general, payoff can be viewed as a noisy 
function of the structure being evaluated, and the learning task can be viewed as 
an optimization problem in a noisy environment. Previous studies have shown that 
genetic algorithms can perform effectively in the presence of noise. This work ex- 
plores in detail the tradeoffs between the amount of effort spent on evaluating each 
structure and the number of structures evaluated during a given iteration of the ge- 
netic algorithm. Theoretical analysis shows that, in some cases, more efficient search 
results from less accurate evaluations. Further evidence is provided by a case study 
in which genetic algorithms are used to obtain good registrations of digital images. 

1. I n t r o d u c t i o n  

In approaches to machine learning that  use genetic algorithms, success de- 
pends on the ability to search efficiently for high-performance knowledge struc- 
tures despite the presense of considerable amounts of noise in the evaluation 
process. In the approach taken in the systems LS-1 (Smith, 1983) and LS- 
2 (Schaffer & Grefenstette, 1985), genetic operators are applied to entire 
production-system programs, based on estimates of each program's  overall 
performance in the task domain. In general, exhaustive evaluations of each 
candidate program is infeasible. For example, in one series of experiments 
in which LS-1 learned to play draw poker, each product iomsystem program 
was evaluated by playing a certain number of hands against a fixed opponent. 
Given that  the hands were generated randomly, this procedure can be viewed 
as sampling from the performance space of all hands that  could be played 
by the program under evaluation. Consequently, the evaluation process was 
necessarily noisy. 

Likewise, in the classifier-system approach to learning with genetic algo- 
r i thms (Holland, Holyoak, Nisbett,  ~; Thagard,  1986; Wilson, 1987), genetic 
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operators are applied to individual rules (classifiers) based on noisy estimates 
of each rule's utility (or strength). Wilson (1987) has described BOOLE, a sys- 
tem that learned to solve difficult Boolean functions from payoff information. 
Each iteration through BOOLE's performance cycles produced an updated es- 
timate for the strength of selected classifiers. Genetic operators, invoked at 
varying intervals between performance cycles, acted on the basis of the cur- 
rent strength assigned to classifiers. Again, each performance cycle can be 
viewed as a sample from the performance space of the current set of classi- 
fiers. This paper addresses the performance of genetic algorithms in the kind 
of noisy environments that typically confront systems that learn from payoff 
information. 

The issue of efficient search in noisy environments has implications for ap- 
plications of genetic algorithms beyond machine learning, as well. Although 
successful pilot studies of genetic algorithms have been completed in a vari- 
ety of domains, including image processing, combinatorial optimization, gas 
pipeline control systems, VLSI layout, communication network design, and 
machine learning (Davis, 1987; Grefenstette, in press), one hindrance to the 
widespread application of genetic algorithms to large practical problems is 
that they generally require the evaluation of thousands of candidate solutions. 
In large, complex search spaces (e.g., high-dimensional, discontinuous spaces 
with many local optima) genetic algorithms exhibit an impressive improve- 
ment over both various forms of random search and local search techniques 
(De Jong, 1975). Nevertheless, if the evaluation of each candidate solution 
is computationally expensive, genetic algorithms may not provide a feasible 
approach. For many problems of practical interest, it is possible to evaluate 
individual candidate solutions approximately using statistical sampling tech- 
niques. In this paper we adopt this general formulation of the problem and 
investigate the use of genetic algorithms to optimize black-box functions for 
which approximate function values can be obtained by sampling methods. 

In a previous paper (Grefenstette & Fitzpatrick, 1985), we investigated some 
aspects of the performance of genetic algorithms when candidate solutions are 
evaluated approximately. In particular, we established that improved perfor- 
mance could result from decreasing the effort applied to accurate function 
evaluations and increasing the number of iterations of the genetic algorithm, 
while keeping the size of the current candidate set, or population, fixed. This 
paper considers the effects of varying both the population size and the sampling 
effort. 

The principles of genetic algorithms are presented in the next two sections. 
Section 4 presents a theoretical analysis of the effects of approximate function 
evaluations on the search heuristic embodied by genetic algorithms. Section 
5 describes experiments that explore the efficiency of genetic algorithms with 
approximate function evaluations. Section 6 describes an application of these 
techniques to an image-processing problem: the registration of two digital im- 
ages. There we define image difference to be the mean of the absolute difference 
between image intensities at corresponding points in two images. We show that 
genetic algorithms can be used to search a space of image transformations in 
order to minimize image differences. 
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Table 1. A genetic algorithm. 

procedure genetic algorithm 
begin 

t=O; 
initialize P(t); 
evaluate P(t); 
while (not termination condition) do 
begin 

t = t + l ;  
select  P(t) from P ( t -  1); 
recombine P(t); 
evaluate P(t); 

end 
end. 

2. A review of genetic algorithms 

Genetic algorithms are adaptive generate-and-test procedures derived from 
principles of natural population genetics. This section presents a high-level 
description of one formulation of genetic algorithms. Detailed descriptions are 
given by Holland (1975), Grefenstette (1986), and Goldberg (1988). A skeleton 
of a simple genetic algorithm is shown in Table 1. 

During iteration t, the genetic algorithm maintains a population P(t) of 
structures {x~, x~ , . . . ,  X~v } chosen from the domain of the objective function f .  
The initial population P(0) is usually chosen at random. The population size N 
remains fixed for the duration of the search. Each structure x~ is evaluated by 
computing f(x~). Often, the term trial is used for each such evaluation. This 
provides a measure of fitness of the evaluated structure for the given problem. 
When each structure in the population has been evaluated, a new population of 
structures is formed in two steps. First, structures in the current population 
are selected to reproduce on the basis of their relative fitness. That is~ the 
selection algorithm chooses structures for replication by a stochastic procedure 
that  ensures that the expected number of offspring associated with a given 
structure x} is f(x~)/p(P, t), where f(a:~) is the observed performance of x{ and 
#(P, t) is the average performance of all structures in the population. That is, 
structures that perform well may be chosen several times for replication and 
structures that perform poorly may not be chosen at all. In the absence of 
any other mechanisms, this selective pressure would cause the best-performing 
structures in the initial population to occupy a larger and larger proportion of 
the population over time. 

Next the selected structures are recombined using idealized genetic opera- 
tors to form a new set of structures for evaluation. One of the most impor- 
tant genetic operators is crossover, which combines the features of two parent 
structures to form two similar offspring. Crossover operates by swapping cor- 
responding segments of a string or list representation of the parents. For ex- 
ample, if the parents are represented by five-item lists, say x{ = (ai bi e, di ei) 
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t = (aj bj cj dj ej), then crossing the segments between the second and x j 
and the fifth components would produce the offspring (ai bi ej dj ei) and 
(aj bj ci di ej). Specific decisions define a range of alternative implementa- 
tions, including whether both resulting structures are to be entered into the 
population, whether the parents are to be retained, and which other structures, 
if any, are to be purged. 

In generating new structures for testing, the crossover operator draws only 
on the information present in the structures of the current population. If spe- 
cific information is missing, due to storage limitations or loss incurred during 
the selection process of a previous iteration, then crossover is unable to produce 
new structures that contain it. A mutation operator that arbitrarily alters one 
or more components of a selected structure provides the means for introducing 
new information into the population. However, in contrast to the early com- 
putational models of evolutionary processes (Fogel, Owens, & Walsh, 1966), 
mutation functions solely as a background operator within a genetic algorithm 
(i.e., its probability of application is kept very low). Its presence ensures that 
all points in the search space can be reached. 

3.  I m p l i c i t  p a r a l l e l i s m  o f  g e n e t i c  a l g o r i t h m s  

The power of the adaptive search strategies described above does not lie in 
the testing of individual structures; rather, it resides in the efficient exploita- 
tion of the wealth of information that the testing of structures provides with 
regard to the interactions among the components of these structures. Specific 
configurations of component values observed to contribute to good performance 
(e.g., values of a specific pair of list items in the example above) are preserved 
and propagated through the structures in the population in a highly parallel 
fashion. The development of successful small configurations, in turn, forms 
the basis for subsequent exploitation of larger and larger such configurations. 
Intuitively, one can view these structural configurations as the regularities in 
the space that emerge as individual structures are generated and tested. Once 
encountered, they serve as building blocks in the generation of new structures. 

More specifically, let H be a hyperplane in the search space. Suppose that  
the elements of the five-item lists above are allowed to take only the values 0 
or 1. Then the search space is a five-dimensional binary space. For example, 
the hyperplane denoted by H = 0 # # # 1  consists of all structures that  have 
a 0 in position one and a 1 in position five. Let M(H, t) denote the number 
of structures in P(t) that  are also members of H. Holland (1975) has shown 
that the result of selection alone (in the absence of genetic operators) is a new 
distribution of hyperplanes that obeys the formula 

M(H, t + l )  - #(H,#(p, ~ M(H, t), (1) 

where #(H, t) is the average fitness of the structures that are in both P(t) and 
in H, and p(P, t) is the average fitness of all structures in P(t). Equation (1) 
says that the nmnber of trials allocated to an above-average hyperplane H 
grows exponentially over time. The crucial observation is that (1) applies 
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to each hyperplane H that is represented in population P. The following 
proposition shows that  a large number of distinct hyperplanes are allocated 
trials according to (1). 

P r o p o s i t i o n  (Holland, 1980). Consider a population P of N random binary 
structures of length L. For most practical 'values of N and L, at leact N a 
hyperplanes are allocated trials according to (1). 

Proof .  See Goldberg (1985). Appendix A presents an alternative proof. 

For example, if N = 128 and L = 64 we can expect that at least ten million 
distinct hyperplanes are each represented by at least eight structures in P. 
The number of structures representing each of these ten million hyperplanes 
will vary according to (1). 

That is, genetic algorithms actually search the space of all feature combi- 
nations, quickly identifying and exploiting combinations associated with high 
performance. The ability to perform such a search by evaluating completely 
specified candidate solutions is called the implicit parallelism of genetic algo- 
rithms. 

Of course, achieving the above exploration rate with respect to a given 
hyperplane H is dependent on the specific configuration of component val- 
ues that defines the hyperplane passing unchanged from parent to offspring. 
Hence, it is necessary to examine the disruptive effects of the genetic opera- 
tors. The crossover operator will disrupt a given structural configuration if 
the selected crossover point falls between two or more of the configuration's 
component values. The probability of this occurring is directly proportional 
to the length of the smallest sequence of components containing the configu- 
ration, or the defining segment of the corresponding hyperplane. For exam- 
pie, the probability of disruption by crossover associated with the hyperplane 
H = # # . . .  # 1 # 0 1 # .  ,. # #  is no more than 3 / ( L  - 1), where L is the length 
of the structure representation. Thus, crossover tends to preserve the allo- 
cation rate in (1) with respect to hyperplanes whose defining segments are 
small relative to L, and tends to be disruptive with respect to hyperplanes 
having large defining segments. However, as structures belonging to specific, 
high-performance hyperplanes with small defining segments begin to dominate 
the population over time, the remaining population structures become more 
similar, and hence crossover has a less disruptive effect on the rate at which 
hyperplanes are allocated trials. The umtation operator has a negligible effect 
on the allocation rates, given its background role in the search. 

Further theoretical properties of genetic algorithms have been extensively 
analyzed (De Jong, 1975; Holland, 1975; Goldberg, 1988). It is clear that ge- 
netic algorithms make much more extensive use of the information provided 
by the evaluation of candidates than most other heuristic search methods. For 
example, a hill-climbing algorithm tests several structures and keeps the most 
promising one. In the process, hill climbing discards a vast amount of infor- 
mation concerning the combinations of features present in the unsuccessflfl 
structures. In genetic algorithms, on the other hand, combinations of features 
in unsuccessful structures may still be passed along to other more successful 
structures. To summarize, the power of a genetic algorithm derives from its 
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ability to exploit, in a near-optimal fashion (Holland, 1975), information about 
the utility of a large number of structural configurations without the compu- 
tational burden of explicit calculation and storage. This leads to a focused 
exploration of the search space wherein attention is concentrated in regions 
that contain structures of above average utility. Nonetheless, the population 
is widely distributed over the space, insulating the search from susceptibility 
to stagnation at a local optimum. 

4. Genetic algorithms with approximate evaluations 

In this section we analyze the impact of approximate evaluations on the 
heuristic embodied in genetic algorithms. This topic is motivated in part by 
the desire to apply genetic algorithms to problems whose candidate solutions 
can be evaluated by statistical methods. This approach is also motivated by 
the work of De Jong (1975), who included a noisy function as part of his 
experimental study of genetic algorithms, but did not specifically study the 
implications for using approximate evaluations on their efficiency. Our main 
question is the following: given a fixed amount of computation time, is it 
better to devote substantial effort to getting highly accurate evaluations or to 
obtain quick, rough evaluations and allow the genetic algorithm to consider 
many more candidate solutions per iteration? We assume that the evaluation 
of each structure by the genetic algorithm involves statistical sampling and the 
effort required for each trial is proportional to the nmnber of samples taken. 

Statistical sampling techniques are often used in the evaluation of integrals of 
complicated integrands over large domains. Such integrals appear in many ap- 
plications of physics and engineering (James, 1980; Lantrup, 1985). Through- 
out our discussions it will be convenient to treat the function, f(x), to be 
optimized as the mean of some random variable R(x). In terms of the evalua- 
tion of an integral by statistical sampling, f(x) is the mean of the integrand's 
value over the domain and R(x) is simply the set of values of the integrand over 
the domain. The approximation of f(x) by the statistical technique proceeds 
by selecting n random samples from R(x). The mean of the sample serves as 
the approximation and, to the extent that the samples are random, the sam- 
ple mean is guaranteed by the law of large numbers to converge to f(x) with 
increasing n. Once f(x) is approximated, the desired value of the integral can 
be approximated by multiplying the approximation of f(x) by the volume of 
the domain. There are many approaches to improving the convergence of the 
sample mean and the confidence in the means for a fixed n (Lautrup, 1985), 
but we will not investigate these approaches. Here we will be concerned only 
with the sample mean and an estimate of our confidence in that mean. 

The main idea is to use as an evaluation flmction in the genetic optimization 
of f(x), not f(x) itself, but an estimate e(x) obtained by taking n randomly 
chosen samples from a random variable R(x) with mean f(x). It seems intu- 
itively clear that e(x) approaches f(x) for large n. Statistical sampling theory 
tells us that if R(x) has standard deviation ~r(x) then the standard deviation 
of the sample mean, as(x), is given by 
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It is clear from (2) that reducing the size of cr~ (x) can be expensive. Reducing 
~,(x)  by a factor of two, for example, requires four times as many samples and 
hence four times as much evaluation time per trial. On the other hand, it is 
clear that the genetic algorithm will require more trials to reach a fixed level 
of optimization for f (z)  when a,(x) is larger and that the genetic algorithm 
will achieve a less satisfactory level of optimization for f(x) for a fixed number 
of trials when as(x) is larger. What is not obvious is which effect is more 
important,  the increase in the nmnber of trials required or the increase in the 
time required per trial. In Sections 5 and 6 we describe experiments that 
explore the relative importance of these two effects. Here we consider how the 
use of approximate evaluation of individual structures affects the estimate of 
the average performance of the hyperplanes in the search space. 

In particular, we derive an expression for the standard deviation of the esti- 
mate of the average performance for an arbitrary hyperplane H. This estimate 
controls the number of offspring allocated to H by the selection algorithm, and 
hence the focus of the genetic search, For the genetic algorithm to correctly 
identify high performance areas of the search space, it is important to minimize 
the error in the estimated average performance of hyperplanes. Let H be an 
arbitrary hyperplane in the representation space comprising a set of structures 

H = {xl ,z2 . . . . .  xl/-/I}. 

The performance of H can be viewed as a random variable with mean # and 
variance a2. Let E be a random variable defined by randomly choosing r struc- 
tures from H and computing the average (exact) evaluation of each structure. 
Then E has mean #E = P and variance ~r~ = cr2/r. 

We now consider the effects of evaluating the chosen structures by a sampling 
procedure. Let l~(xi) denote the random variable from which samples are taken 
in order to compute the estimate e(xi). Then R(xi) has mean I~(Xi) = f(x~) 
and variance a2(xi). If we estimate #(xi) by taking n samples from R(xi), the 
resulting random variable has mean lz(xi) and variance 

Let S be the random variable that results from averaging the results of taking 
n samples from each of r randomly chosen xi's in H. S has mean # and, as 
shown in Appendix B, it has variance 

r ~" ?~, 

where {.. .}u denotes the mean over all structures in H. Note that 
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That is, as the number of samples per trial gets large, the difference between 
approximate evaluation and exact evaluation diminishes, as expected. This 
analysis suggests a way to improve the estimation of hyperplane performance. 
Since the total number of samples taken during the estimation of H is rn,  (4) 
suggests that the estimate of / t  may be improved at no additional sampling 
cost by increasing r and decreasing n so as to keep the product r n  constant. 
Since the value of r is proportional to the population size N, it is reasonable 
to investigate the effect of increasing the population size while decreasing the 
immber of samples per trial. 

Before we present our experimental study of this effect, it is instructive to 
consider the effect of decreasing the number, n, of samples without varying 
the population size. From (4), we get 

0~r~ 1 2 

and from (3) it follows that 

giving 

- ( 5 )  
On r On 

In words, suppose we estimate the performance of hyperplane H by averaging 
the observed evaluations of r structures randomly selected from H. As the 
number n of samples per evaluation increases, the accuracy of the estimated 
performance of the hyperplane H increases at a rate equal to only 1 / r  times 
the rate of increase of the average accuracy of the evaluation of individual 
structures. Conversely, decreasing n results in a smaller percentage loss of ac- 
curacy in the estimation of the hyperplane performance than in the evaluation 
of individual structures. Since the quality of the search performed by genetic 
Mgorithms depends on the quality of its estimates of the performance of hy- 
perplanes, rather than the evaluation of particular individual structures, (5) 
suggests that genetic algorithms can be expected to perform well for problems 
requiring partial evaluation of candidate solutions. 

There are interesting questions concerning the optimal balance between the 
effort spent on evaluating individual structures and the effort spent on other 
aspects of the genetic algorithm. Equation (5) suggests that computation time 
could be saved, with relatively little negative effect on the genetic algorithm, 
by reducing the number of samples taken per trial. Assuming a fixed amount 
of time is available, we can utilize the time saved by increasing the population 
size, by increasing the number of generations, or by doing both. In a previous 
paper (Grefenstette & Fitzpatrick, 1985), we investigated one aspect of this 
tradeoff and established that, assuming negligible overhead for the operation of 
the genetic algorithm, performance can be improved by increasing the number 
of generations alone. In this paper, we investigate the general case, varying 
both population size and number of generations and taking the overhead into 
a c c o u n t .  
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5. Tradeoffs between population size and sample size 

This section empirically explores the effect suggested by analysis in the last 
section, namely, that the estimation of hyperplanes can be improved by in- 
creasing the population size while decreasing the number of samples taken per 
trial. A genetic algorithm was applied to minimize a test function, described 
below, on which statistical sampling was performed to evaluate structures in 
the search space. The primary goal was to study the relationship between 
population size and sample size when the overall computation time was fixed. 

The initial experiments used a genetic algorithm to minimize the function 
*--30 .a 4 f (x)  = 2~j=lJ j, where x = (al . . . .  ,a30), a n d - l . 2 8  < aj < 1.28, 

for j = 1,2, . . . ,30.  De Jong (1975) used f (x)  in his early study of the 
behavior of genetic algorithms, in which he investigated the effects of adding 
Gaussian noise to the function. In this study, we estimate f (x)  by sampling; 
in particular, we treat f (x)  as the mean of a normal distribution with a = 2.0. 
Thus, an important difference between this study and De Jong's is that the 
earlier one assumed a fixed amount of noise, whereas the amount of noise in 
these experiments depends on the number of samples taken. 

5.1 Overhead considerations and experimental design 

Our primary concern is with improving the performance of genetic algo- 
rithms when time is limited. With this purpose in mind, the following experi- 
ments ignore the cost of the extra memory required to accommodate increased 
population sizes, though we do restrict our attention to population sizes that 
can be easily accommodated on currently available microcomputers. 

In order to accurately assess the time-related tradeoffs between taking more 
samples per trial and evaluating more structures per generation, the overhead 
resulting from the genetic algorithm must be taken into account. For a given 
representation of structures, each of the phases initialize, select, and recombine 
shown in Table 1 takes a constant amount of time per evaluated structure. 1 Let 
st be total computational cost that can be attributed to the genetic algorithm 
per trial. Let fl be tile cost per sample taken during the evaluation of each 
structure. Then the total time required for the genetic algorithm, neglecting 
the initialization phase, is 

T = (c~ + /~n)GN, 

where G is the total number of generations, N is the population size, and n 
is the number of samples per trial. Consider the effects of increasing N while 
keeping T and N n  constant. Clearly, the number of generations that can be 
achieved in a fixed amount of time decreases as we increase the population 
size. Furthermore, the rate at which G decreases depends on the ratio a//3. 
That is, we expect to see the following tradeoff: increasing the population 
size while keeping N n  constant should improve the quality of the information 

1Baker (1987) presents an algorithm for selecting the offspring of successive generations 
in linear time. 



110 J. M. FITZPATRICK AND J. J, GREFENSTETTE 

processed by the genetic algorithm, as shown in (4). At the same time, the 
genetic algorithm will have fewer iterations G in which to use the improved 
information. 

A series of experiments was performed in order to assess the tradeoff be- 
tween the population size and sample size for various values of all3. In each 
experiment, the total computation time T and the product Nn were held fixed, 
while N varied between 25 and 2000 and n varied between 80 and 1. The value 
for T was chosen so that the number of generations G was 200 for N = 25. 

5.2 Per formance  metr ic  

Previous studies (De Jong, 1975; Grefenstette, 1986) have suggested ways 
to measure both the quality of the final result and the efficiency of the inter- 
mediate behavior of genetic algorithms. In comparing the various runs of a 
genetic algorithm using approximate evaluation techniques, care must be taken 
in defining a useful performance statistic. It would be misleading to simply 
record the best evaluation of all structures examined during the search, since 
the accuracy of the evaluation varies with the number of samples. For example, 
if the number of samples is very small, there may be little relation between the 
observed performance on any individual structure and that structure's true 
performance when exactly evaluated. If we consider that the entire final pop- 
ulation represents the knowledge obtained by the genetic algorithm, it seems 
natural to measure the performance of a genetic algorithm by the best exact 
evaluation of all structures in the final population. However, this metric has 
the disadvantage that it requires more computational effort to exactly evaluate 
a large population than a small one. Thus the total computation time devoted 
to running and evaluating a genetic algorithm with large N is greater than if 
N is small. In order to determine whether this difference could be eliminated, 
we collected another performance statistic in the experiments, consisting of the 
best exact evaluation of the top 50 structures in the final population, selected 
on the basis of the observed performance values, This technique appears to 
provide a practical way to measure the performance of a genetic algorithm 
with a large population. 

5.3 Exper imen ta l  results  

For each experiment at least ten runs of the genetic algorithm were per- 
formed, using different random number seeds, on the test function described 
above for each combination of N and n. The average of the performance met- 
ric for these runs is shown in Tables 2 through 4. Note that since the function 
is being minimized, a smaller performance value indicates a more successful 
search strategy. 

In the first experiment, the ratio a//~ was set to zero, corresponding to a 
situation in which the cost of sampling far surpasses the cost per structure as- 
sociated with the genetic algorithm. This situation arises in practice when the 
evaluation of a structure requires running a complex simulation (Grefenstette, 
1986) or a production-system interpreter (Smith, 1983; Grefenstette, 1987). 
Table 2 shows the results. 



NOISY ENVIRONMENTS 111 

Table 2. Results of the first experiment: Average performance of best structures on 
the test function when c~/~ = 0. 

NUMBER OF SIZE OF NUMBER OF AVERAGE 

SAMPLES POPULATION GENERATIONS PERFORMANCE 

1 
2 
5 

10 
20 
40 
80 

2000 
1000 
400 
200 
100 
50 
25 

200 
200 
200 
200 
200 
200 
200 

1.38 
1.30 
1.48 
1.59 
1.79 
2.55 
4.56 

Since the overhead for the genetic algorithm is insignificant in this case, the 
number of generations is identical (200) for all runs in this experiment. That 
is, the genetic algorithm has an equal number of iterations in which to operate. 
However, the accuracy of the estimated hyperplane improves as N increases. 
In this case, the results are consistent with our theoretical analysis in Section 
2. (The difference in performance between using a sample size of one and a 
sample size of two is not statistically significant.) The best results are achieved 
with smaller sample sizes and larger population sizes. As n increases and N 
decreases, performance declines as expected, with a dramatic drop at n > 20. 
This is because, as n increases beyond 20, the improvement in the accuracy 
of each evaluation does not compensate for the reduction in the number of 
representatives for each hyperplane in the smaller population. We now consider 
cases where the genetic algorithm overhead plays a more significant role. 

In the second experiment, the ratio a//3 is assumed to be three. This corre- 
sponds to a moderate cost per sample, as might be expected when computing 
a moderately complex numerical function. This is also approximately the ratio 
associated with the image-processing problem described in the next section. 
The results for the test function are shown in Table 3. In this experiment, 
there is no statistically significant difference in performance between the runs 
at 5, 10, and 20 samples. However, the difference between the results with 5 
samples and the result with fewer samples is statistically significant at the 0.05 
level. This experiment shows that, when genetic algorithm overhead is taken 
into account, a secondary effect comes into play when N is large. Namely, 
the number of generations possible within the available computation time de- 
clines, leading to a corresponding decline in performance. This experiment 
shows that it is necessary to balance the time spent per generation and the 
number of generations performed when there is significant overhead for the 
genetic algorithm. 

In the third experiment, the ratio c~//3 is assumed to be 32, which is in fact 
the ratio of overhead to sampling effort in the test function. The results for 
this experiment are shown in Table 4. As expected from the discussion of the 
previous experiment, these data reveal a severe tradeoff between time spent 
per generation and total number of generations. In this experiment, the opti- 
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Table 3. Results of the second experiment: Average performance of best structures 
on the test function when (~/~ = 3. 

] 
NUMBER OF SIZE OF ] NUMBER OF AVERAGE 

SAMPLES POPULATION [ GENERATIONS PERFORMANCE 

1 
2 
5 

10 
20 
40 
80 

2000 
1000 
400 
200 
100 
50 
25 

52 
83 

130 
160 
180 
193 
200 

5.27 
3.19 
2.10 
2.09 
1.96 
2.63 
4.71 

mal performance occurs when between 20 and 40 samples are taken per trial. 
Runs with fewer samples per trial had larger population sizes and therefore 
far fewer generations in the allotted time. In these cases, the relatively high 
additional costs incurred by the genetic algorithm exacerbated the problem of 
allowing it enough generations to perform a thorough search. It is interesting 
to note that performance also declines if the population is too small. When the 
population size falls below 50, the increase in the number of generations does 
not compensate for the decrease in both the number of hyperplanes processed 
per generation (Proposition 1) and the accuracy of the performance estimates 
of the hyperplanes (Equation 5). 

In summary, these preliminary experiments support the analysis of trad- 
ing additional samples per trial for additional structures per population. In 
general, increasing the population size while decreasing the samples per trial 
appears to improve the performance of genetic algorithms. However, this effect 
is moderated by the requirement that the algorithm perform sufficient numbers 
of iterations to adequately explore the search space. This latter requirement 
places a limit on the population size when the genetic algorithm overhead is 
relatively high in comparison to the sampling cost. 

6. Tests  on an image  registrat ion prob lem 

This section describes experiments using approximate evaluation on a real- 
istic task - image registration. The general problem of image registration is 
important in such diverse fields as aerial photography (Svedlow, McGillem, & 
Anuta, 1978; Merchant, 1981) and medical imaging (Venot ~ Leclerc, 1984; 
Fitzpatrick, Pickens, Grefenstette, Price, ~ James, 1987). General introduc- 
tions to the field of image registration and extensive bibliographies may be 
found in Hall (1979) and Goshtasby (1983). An image comparison technique 
based on random sampling, different from the method used here~ is described 
by Barnea and Silverman (1972). 

The function to be minimized in image registration measures the difference 
between two images of a scene, in our case medical x-ray images, that have 
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Table 4. Results of the third experiment: Average performance of best structures 
on the test function when a /~  = 32. 

NUMBER OF SIZE OF NUMBER OF AVERAGE 
SAMPLES POPULATION GENERATIONS PERFORMANCE 

1 
2 
5 

10 
20 
40 
80 

2000 
1000 
400 
200 
100 
50 
25 

8 
I6 
38 
67 

108 
156 
200 

41.32 
27.33 
10.47 
5.73 
3.62 
3.20 
4.71 

been acquired at different times. The images differ because of motion that 
has taken place between the two acquisition times, because of the injection of 
dye into the arteries, and because of noise in the image acquisition process. 
The registration of such images is necessary for the successful use of digital 
subtraction angiography, in which an image of an artery's interior is produced 
by subtracting a pre-injection image from a post-injection image. Fitzpatrick 
et al. (1987) describe the details of the process and the registration technique. 
The misregistration of two images results in motion artifacts such as those in 
Figure 1. By performing a geometrical transformation that warps one image 
relative to the other, it is possible to improve the registration of the images 
so that the difference due to motion is reduced. For example, Figure 2 shows 
an improved registration resulting from a geometrical transformation prior to 
subtraction. We have investigated the use of a genetic algorithm to search a 
parameterized space of image transformations in order to minimize the image 
difference. The class of transformations we consider includes elastic motion, 
rotation, and translation. 

The method selects two images and designates one of them as the mask 
image. A transformed version of that image is to be compared to a second 
image - the target image - within a square subimage - the region of interest. 
(The target image typically includes dye injected into the arteries.) The space 
of transformations is parameterized by four vectors dl, d2, d3, and d4 - 
that specify the motion of the mask image at the four corners of the region 
of interest. The motion of intermediate points is determined by means of 
bilinear interpolation from the corner points. (More complicated warpings can 
be described with additional vectors.) 

The images are represented digitally as square arrays of pixels representing 
an approximate map of image intensity. The image difference is defined to be 
the mean absolute difference between the pixels at corresponding positions in 
the transformed and target images. The exact mean can be determined by 
measuring the absolute difference at each pixel position; an estimate of the 
mean may be obtained by sampling randomly from the population of absolute 
pixel differences. The effort required to estimate the mean is approximately 
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Figure I. A difference image of the region surrounding the humerus. An artery is 
made visible (dark horizontal band) by injecting a dye that is relatively 
opaque to x-rays. The image was obtained by subtracting a pre-injection 
image, the mask, from a post-injection image. Motion artifacts resulting 
from misregistration of bone (dark and light diagonal bands) interfere with 
the image of the artery. The square outlines a 100 by 100 pixel region of 
interest. The mask image must be transformed within this region to reduce 
the severity of the artifacts. 

proportional to the number of samples taken, so this problem meets the con- 
ditions for statistical evaluation of candidate solutions. The region of interest 
is typically 100 by 100 pixels, giving a sample space of size 10,000 values from 
which to estimate the exact mean. The parameters for the transformation 
comprise the x and y components of the four vectors. The magnitude of each 
component is limited to less than one-fourth the width of the region of interest, 
to avoid the possibility of folding (Fitzpatrick & Leuze, 1987). The range for 
each of these eight components is digitized to eight-bit accuracy. 

Table 5 shows the results from a series of experiments in which genetic 
algorithms were applied to eight-image registration problems, generated by se- 
lecting four regions from each of two pairs of x-ray images, one of the elbow and 
one of the humerus. The unregistered difference image for the eighth region, a 
segment of the humerus, is shown in Figure 1. As in the earlier experiments, 
the population size was varied in order to keep the sampling time per genera- 
tion fixed across all runs. The total time per run was fixed at five minutes (on 
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Figure2. A difference image of the same region as Figure 1. Here the region of 
interest, outlined in Figure 1, shows reduced motion artifacts. The image 
of the artery is much improved where it crosses the bone edge (above and 
to the left of the + sign). The misregistration in the lower left corner of 
the region of interest is almost completely removed. The improvement is 
accomplished by transforming the mask image within this region before 
subtracting. 

a Sun 3/260 workstation with floating point accelerator). The performance 
of each genetic algorithm was measured according to tile technique described 
previously: the 50 structures with the best observed performance in the final 
population were subjected to an exact computation of the mean pixel differ- 
ence between the target image and the corresponding transformed image. The 
results are normalized so that random search gets a score of 1.00 on each im- 
age and lower scores indicate improved search performance. The registration 
shown in Figure 2 was found during one of the runs of the genetic algorithm 
reported in colmnn ls in Table 5, using ten samples per trial. Table 5 shows 
the average results from 50 runs of the genetic algorithm for each sample size 
per evaluation. The results in Table 5 are consistent with the results shown in 
Table 3 for tile corresponding o~//~ ratio in the test function. 

There is statistically significant improvement for all images when the sam- 
ple size is increased from one to two, and again when it is increased from two 
to five. Tile best results are obtained for five to ten samples per evaluation; 



116 J. M. FITZPATRICK AND J. J. GREFENSTETTE 

Table 5. Performance of best structures on eight image registration problems. 

SAMPLES POPUL. 

1 2000 
2 1000 
5 400 

10 200 
20 100 
40 50 
80 25 

GENS. I1 I2 I3 I4 I5 I6 IT Is 

103 .84 .88 .75 .86 .81 .81 .87 .79 
163 .53 .69 .47 .55 .71 .69 .77 .58 
251 .28 .45 .39 .33 .66 .61 .56 .50 
307 .27 .35 .39 .32 .66 .61 .48 .50 
343 .32 .33 .40 .34 .68 .62 .49 .51 
366 .34 .36 .45 .36 .70 .65 .51 .54 
378 .43 A7 .52 .43 .73 .67 .55 .59 

increasing the samples beyond ten (and decreasing the population size accord- 
ingly) decreases performance significantly. The slight difference between the 
results in Table 3 and Table 5 can be explained on the basis of our previous 
analysis. First, the a/j3 ratio for the registration problem is actually a little 
less than three. Second, the total time per run in the registration studies al- 
lowed nearly twice as many generations as in the test case. Both of the factors 
favor taking slightly fewer samples than in the second experiment. However, 
the overall similarity of the results between the test studies and the image- 
registration study supports our analysis of the behavior of genetic algorithms 
with approximate evaluations of candidate solutions. 

7. Conclus ions  

Genetic algorithms search by allocating effort to regions of the search space 
based on an estimate of the relative performance of competing regions. One 
benefit of this approach is that the individual knowledge structures represent- 
ing the competing regions of the space need not be evaluated precisely. This 
observation lets one apply genetic algorithms to problems in which the envi- 
ronment provides noisy or approximate payoff information, or in which the 
evaluation of knowledge structures can only be performed through statistical 
techniques. Our analysis suggests that in some cases the overall efficiency of 
genetic algorithms may be improved by reducing the time spent on individ- 
ual evaluations and by increasing the population size. This analysis has been 
supported by a case study in the image-processing domain. 

This work has important implications for approaches to machine learning 
that search for high-performance knowledge structures. Even in limited do- 
mains (Smith, 1983), it is typically impossible to evaluate precisely the per- 
formance of a given program or rule. In a general-purpose learning system 
(Holland et al., 1986), one expects perpetual novelty to be a characteristic 
feature of many learning environments. In these cases, traditional search tech- 
niques such as hill climbing are likely to be misled by noise in the available 
environmental feedback. This work suggests that genetic algorithms may be 
the search technique of choice for machine learning systems in complex envi- 
ronments. 
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Appendix A. Implicit parallelism in genetic algorithms 

The following result is one of the folk theorems of genetic algorithms, and 
was first announced by Holland (1980). The proof included here is somewhat 
shorter than Goldberg's (1985), but focuses only on the effects of selection and 
ignores the effects of genetic operators. 
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P r o p o s i t i o n .  Consider a population P of N random binary structures of 
length L. For ruost practical values of N and L. at least N 3 hyper'planes are 
allocated trials according to (1). 

P r o o f .  First note that  (1) is a reasonable heuristic for a given hyperplane H 
only to the extent that  it(H, t) gives a reasonable nleasure of the quality of H. 
We therefore restrict our enumeration to those hyperplanes that  have some 
mininmm number, say r, of representatives in P. Let k = log(N/r). Then 
for any choice of k positions, there are 2 k distinct hyperplanes defined at those 
k positions, each of which can be expected to be represented by r structures 
in P. Therefore, the number of distinct hyperplanes with r representatives in 
P is at least 

For most problems of practical interest, L >_ 64 and 26 < N < 2 ~°, and 
it is reasonable to require that  r > 8. I f r  = 8, t h e n 3  < k < 17. By 
inspection of the value of (6) over this range, we find that  M~ > ~3.  • 

Appendix  B. Derivation of Equation (5) 

Here, we derive tim variance (~  for S, the random variable that  results from 
averaging n samples from each of r a:i's randomly chosen fl'om H.  Let pj (xi) 
denote the j t h  sample taken from the random variable R(xi) in the estimation 
of f(xi),  for j = 1 . . . . .  n. Then the mean performance of x~ is 

I~(:ci) ~ ( t ) j ( x i ) )R  = f ( a ' . i ) ,  

and the mean performance of hyperplane H is 

, =- ( ,(~:~))H. 

where ( . . . )~  denotes tile mean averaged over all possible sets of r members  of 
hyperplane H and ( . . . )R denotes tiw mean averaged over all possible sets of 
n samples taken from R(xi). It follows that 

#( : r i )  = IL + ' q ( x i ) .  

where (T](Xi))H = 0 and 

pj(z~) = , ,( :rd + ~ j ( zd ,  

where (tlj(Xi))R = 0. Note that  the variance associated with H is 

~2 = O./ ( . r~)2)u 

and that  the variance associated with each xi is 

c~2(xi) = <~/~(z~)2>R. 
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I t  follows that  

r T~ 

i----1 j : l  

r2n 2 
i:=1 j~ - I  

1 r n 

i=1  j = l  

1 ~ 

i=1  j = l  

i=l j=l i':l j'=l 

_ 1 ( E  E nZ(('l(x~fi?(xi')>R>H + 2 Z n<(~(xi)vj, (xi,)>R)H 
T2Tt 2 

/=I i'=l i=l ~':I j'=l 

i=1 i'=1 j=l  j '= l  

If we assume that ~l(xi) and ~?(xi, ) are uncorrelated, we may simplify the first 
term, 

= ~ii,(T 2, 

If we assume further that the ~?j(xi) and the ~j,(x~,) are uncorrelated, we may 
simplify the third term, 

B e c ause  <~j , (x~, )}n = 0, we m a y  s impl i fy  the  second  term,  

-= O. 

Therefore, we have 

r 2 n 2  

r rl~ 


