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Abstract. Learning multiple descriptions for each class in the data has been shown to reduce generalization error 
but the amount of error reduction varies greatly from domain to domain. This paper presents a novel empirical 
analysis that helps to understand this variation. Our hypothesis is that the amount of error reduction is linked to 
the "degree to which the descriptions for a class make errors in a correlated manner." We present a precise and 
novel definition for this notion and use twenty-nine data sets to show that the amount of observed error reduction is 
negatively correlated with the degree to which the descriptions make errors in a correlated manner. We empirically 
show that it is possible to learn descriptions that make less correlated errors in domains in which many ties in 
the search evaluation measure (e.g. information gain) are experienced during learning. The paper also presents 
results that help to understand when and why multiple descriptions are a help (irrelevant attributes) and when they 
are not as much help (large amounts of class noise). 

Keywords: Multiple models, Combining classifiers 

1. Introduction 

Learning multiple models of the data has been shown to improve classification error rate 
as compared to the error rate obtained by learning a single model of the data (for example: 
decision trees: Kwok & Carter, 1990; Buntine, 1990, Kong & Dietterich, 1995; rules: 
Gams, 1989; Smyth & Goodman, 1992; Kononenko & Kovacic,1992; Brazdil & Torgo, 
1990; neural nets: Hansen & Salamon, 1990; Baxt, 1992; Bayesian nets: Madigan & York, 
1993; regression: Perrone, 1993, Breiman, in press). Although much work has been done 
in learning multiple models not many domains were used for such studies. There has also 
been little attempt to understand the variation in error reduction (the error rate of multiple 
models compared to error rate of the single model learned on the same data) from domain 
to domain. Three of the data sets used in our study for which this approach provides the 
greatest reduction in error (Tic-tac-toe, DNA, Wine) have not been used in previous studies. 
For these data sets, the multiple models approach is able to reduce classification error on 
a test set of examples by a factor of up to seven! This paper uses a precise definition of 
"correlated errors" to provide an understanding of the variation in error reduction. We also 
present the idea of "gain ties" to understand why the multiple models approach is effective 
- especially why it is more effective for domains with more irrelevant attributes. 

Figure 1 shows an example of multiple learned models of the form used in this paper. In 
the multiple models approach, several models of one training set are learned. Each model 
consists of a description for each class. Each description is a set of rules for that class (i.e. 
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1 st model of the data 

I st concept description for class a 

"class-a(X,Y) :- b(X),c(Y). 

class-a(X,Y) :- d(X,Z),e(Z,Y). 

1 st content descrintion for c la~  h 
class-b(X~Y) :- e(X,Y),f(X,X). ) 

"lass-b(X,Y) :- g(X),class-b(Y,X). 

2nd model of the data 

2rid concept description for class a 

class-a(X,Y) :- b(X),c(Y). "] 
,.class-a(X,Y) d(X,Z),h(Z,Y). J 
2nd concept description for class b 
class-b(X,Y) :- e(X,Y),k(X,X). 

class-b(X,Y) :- g(X),class-b(Y,X). ] 
J 

Figure 1. An example of learning multiple models - each model consists of a set of class descriptions. 

each class description is a set of first-order Horn clauses 1 for that class). The set of learned 
models is called an ensemble (Hansen & Salamon, 1990). 

Previous work in learning multiple models has mainly been concerned with demonstrating 
that the multiple models approach reduces error as opposed to the goal of this paper which 
is to explain the variation in error reduction from domain to domain. Previous work has 
compared different search strategies (Kononenko & Kovacic, 1992) compared different 
search evaluation measures (Gains, 1989; Smyth & Goodman, 1992), evaluated the effects of 
pruning (Kwok & Carter, 1990; Buntine, 1990) and compared different ways of generating 
models (nearly all authors). Except for the work of Buntine, all the other comparisons 
have been made on a few domains so we still do not have a clear picture of how domain 
characteristics affect the efficacy of using multiple models. It is important to analyze these 
experimental data because the amount of error reduction obtained by using multiple models 
varies a great deal. On the wine data set, for example, the error obtained by uniformly 
weighted voting between eleven, stochastically-generated descriptions is only one seventh 
that of the error obtained by using a single description. On the other hand, on the primary- 
tumor data set, the error obtained by the identical multiple models procedure is the same as 
that obtained by using a single description. 

Much of the work on learning multiple models is motivated by Bayesian learning the- 
ory (e.g. Bernardo & Smith, 1994) which dictates that to maximize predictive accuracy, 
instead of making classifications based on a single learned model, one should ideally use 
all hypotheses (models) in the hypothesis space. The vote of each hypothesis should be 
weighted by the posterior probability of that hypothesis given the training data. Since the 
theory requires voting from all hypotheses or models in the hypothesis space, all tractable 
implementations of this theory have to be approximations. This raises the following exper- 
imental question: what model-generation/evidence-combination method yields the lowest 
error rates in practice? Or, how can one characterize the domains in which a particular 
method works best and why does it work best on such domains? 

The main hypothesis examined in this paper is whether error is most reduced for domains 
for which the errors made by models in the ensemble are made in an uncorrelated manner. 
In order to test this hypothesis, we first need to define error reduction more precisely. Two 
obvious measures comparing the error of the ensemble (/£~) to the error of the single model 
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(Es) are error difference (Es - E~) and error ratio (F_,,. = Ec /Es) .  We use error ratio because 
it reflects the fact that it becomes increasingly difficult to obtain reductions in error as the 
error of  the single model approaches zero. Error ratios less than 1 indicate that the multiple 
models approach was able to obtain a lower error rate than the single model approach. The 
lower the error ratio, the greater the error reduction. A precise definition of the notion of 
"correlated errors" is presented in Section 5.2. Briefly, our metric (0c, "fraction of same 
(correlated) errors") measures the proportion of the test examples on which members of an 
ensemble make the same kinds of misclassification errors. Two models are said to make 
a "correlated error" when they both classify an example of class i as belonging to class 
j , j • i .  

The paper presents results on why it is possible to learn models with more uncorrelated 
errors for some domains than for others. We also explore the effect of varying two domain 
characteristics (level of class noise and number of irrelevant attributes) on error ratio. 
Finally, we examine the effect of  syntactic diversity on ensemble error. This follows the 
work of Kwok & Carter (1990) which postulates that learning more syntactically diverse 
decision trees leads to lower ensemble error. 

The remainder of  the paper is organized as follows. After an examination of the main 
issues in learning multiple models, we present our core learning algorithm HYDRA (All 
& Pazzani 1992,1993,1994) which we modify in various ways to learn multiple models. 
Next, we present results of experiments designed to answer the following questions: 

1. What effect does the multiple models approach have on classification error as compared 
to the error produced by the single model learned from the same training data'? 

2. What is the relationship between the amount of observed error reduction (E',-) and the 
tendency of the learned models to make correlated errors'? 

3. Can the amount of error reduction observed for a domain be predicted from the number 
of ties in gain experienced by the learning algorithm on that domain'? 

4. How does increasing the amount of class noise affect the amount of error reduction? 

5. How does increasing the number of irrelevant attributes affect the amount of error 
reduction'? 

6. Does increasing the diversity of the models necessarily lead to greater reduction in 
error'? 

2. Background 

Previous empirical work in using multiple models (e.g. Buntine, 1990; Kononenko & 
Kovacic, 1992) has mainly focused on demonstrating error reduction through using mul- 
tiple models and exploration of  novel methods of  generating models and combining their 
classifications. The work can be characterized along three dimensions: the kind of model 
being learned (tree, rule etc.), the method of generating multiple models, and the method 
of  combining classifications of the models to produce an overall classification. The work 
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of Kwok & Carter (1990) also serves as foundation for our work on the effect of syntactic 
diversity on error rate. They showed that ensembles with decision trees that were more 
syntactically diverse obtained better accuracies than ensembles with trees that were less 
diverse. 

Previous theoretical work in learning multiple models includes Buntine's formulation of 
general Bayesian learning theory, Schapire's (1990) Boosting algorithm and the results from 
Hansen & Salamon (1990) and Drobnic & Gams (1992, 1993). Schapire's work proceeds on 
the basis (proved in Hansen & Salamon, 1990) that models that make errors in a completely 
independent manner will produce lower ensemble error. His Boosting algorithm is the 
only learning algorithm which incorporates the goal of minimizing correlated errors during 
learning. However, the number of training examples needed by that algorithm increases as 
a function of the accuracy of the learned models. Schapire's method could not be used to 
learn many models on the modest training set sizes used in this paper. 

Other theoretical results on the effects of using multiple models come from Hansen & 
Salamon (1990) who prove that if all models have the same probability of making an error, 
and this probability is less than 0.5 and if they all make errors completely independently 
then the overall error must decrease monotonically as a function of the number of models. 
Theoretical analysis of using multiple regression models has also been done by Breiman (in 
press). However, this research does not say anything about the amount of error reduction 
and Hansen and Salamon's research does not say anything when errors are not completely 
independent. 

With the exception of Buntine (1990), most of the empirical work has been done on a 
small number of domains (two: Kwok & Carter (1990); three: Kononenko & Kovacic 
(1992); three: Smyth et  al. (1990)). The small number of domains used reduces the chance 
of accurately characterizing the conditions under which the method works. Furthermore, 
although Buntine used many data sets, he did not try to explain the variation in error 
reduction. By using twenty-nine data sets from twenty-one domains we are better able to 
study what domain characteristics are factors in error reduction (a data set being different 
from a domain in that it also involves specifying parameters such as number of training 
examples, noise levels and irrelevant attributes). 

3. Methods for learning multiple class descriptions 

We consider two methods for generating multiple class descriptions: stochastic hill-climbing 
(Ripley, 1987; Kononenko & Kovacic, 1992) and deterministic learning from a k-fold par- 
tition of the training data (Gams, 1990). Although these methods are not new, our goal is 
to show that our results pertaining to error reduction, correlatedness of errors and gain ties 
apply to more than one method of generating multiple models. 

We use HYDRA (Ali & Pazzani, 1993) to learn a single model consisting of a description 
for each class. HYDRA is based on extensions to FOIL 2 (Quinlan, 1990) proposed in All 
& Pazzani (1993) and Pazzani et al. (1991). HYDRA is then further modified to learn 
several models. 

The pseudo-code for FOIL is presented in Table 1. FOIL learns one clause (rule) at a time, 
removing positive training examples covered by that clause in order to learn subsequent 
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FOIL(POS-EGS,NEG-EGS,Positive-class-name,Arity): 

Let LearnedDescription be the empty set 

Until POS-EGS is empty do 

Separate: (begin a new clause) 

Let head of NewClause be Positive-class-name(Vl ..... V Arity) 

Let body of NewClause be empty, NEG he NEG-EGS, POS be POS-EGS 

Until NEG is empty do: 

Conquer: (build a clause body) 

Conjoin to body of NewClause the literal that yields highest gain 

Remove from POS and NEG examples that do not satisfy NewClause 

End 

Add NewClause to LearnedDescription 

Remove from POS-EGS all positive examples that satisfy NewClause. 

Return LearnedDescription 

T~tble 1. Pseudo-code for FOIL. 

clauses. This is referred to as the "separate and conquer" (Quinlan, 1990) or "covering" 
(Michalski & Stepp, 1983) strategy. The basic FOIL procedure learns as tbllows. A clause 
for a given class such as class-a is learned by a greedy search strategy. It starts with an empty 
clause body which covers all remaining positive and negative examples. Next, the strategy 
considers all literals that it can add to the clause body and ranks each by the information 
gained (Quinlan, 1990) if that literal were to be added to the current clause body. Briefly, the 
information gain measure favors the literal whose addition to the clause body would result 
in a clause that would cover many positive examples and exclude many negative examples. 
The literal that yields the highest intbrmation gain is then added to the clause body. The 
strategy keeps adding literals until either the clause covers no negative examples or there is 
no candidate literal with positive information gain. Positive examples covered by the clause 
are removed from the training set and the process continues to learn subsequent clauses on 
the remaining examples, terminating when no more positive examples are left. 

FOIL only learns in data sets consisting of two-classes, one of which must be identified 
as the "positive" class. FOIL learns a class description only for the class identified as the 
"positive" class. Thus, FOIL learns a single model consisting of a single class description. 
FOIL uses the closed-world assumption (Lloyd, 1984) for classification: if the test example 
matches the body of any clause learned for class "positive" then the example is assigned to 
class "positive." If it fails to match any clause, FOIL uses the closed-world assumption and 
assigns the example to class "negative." 

The way we extend FOIL to learn a rule set for each class is by treating examples of all 
other classes as negative. This is the algorithm used in HYDRA (Ali & Pazzani, 1993). 
We prefer this way of learning for multi-class data rather than learning a set of rules of the 
form~ 

class(V1 ...V,~, X) . . . . .  X = class-a 
class(V1...V,~, X) . . . . .  X : class-b 

because of a technical limitation with FOIL - there is no guarantee in FOIL that the variable 
corresponding to the class (X) will appear in the body of the learned clause. 
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Now we discuss two methods of learning several descriptions for each class in the training 
data. These methods involve executing the HYDRA procedure once for each model to be 
learned. 

Stochastic Hill-climbing- Stochastic hill-climbing only involves modifying HYDRA's 
procedure for selecting which literal to add to the clause currently being learned. Instead 
of picking the best literal (ranked according to some measure such as information gain) 
stochastic hill-climbing stores all literals that are within some margin, ~3, of the best 
and then picks non-deterministically from among that set. The probability of a literal 
being picked is proportional to its gain. The set of literals whose gain exceeds ,~ times 
that of the best literal is called the "bucket." 

k-fold partition learning- This procedure generates k models by partitioning the 
training data into k equal-sized sets and in turn, training on all but the i-th set. HYDRA 
is called k times and each time it learns a class description for each class in the data set. 
k-fold partition learning was first used by Gams (1989) whose system learns ten models 
using 10-fold partition learning and then combines them into a single model. By doing 
so, however, he is not able to exploit the advantages of evidence combination from 
different descriptions. Our version of this algorithm differs from Gams in retaining all 
rule sets and using evidence combination to form overall classifications. 

4. Methods for combining evidence 

Our experiments compare four evidence combination methods: Uniform Voting, weighted 
combination according to Bayesian probability theory (Buntine, 1990), weighted com- 
bination according to Distribution Summation (Clark & Boswell, 1991) and Likelihood 
Combination (Duda et al., 1979). Results using all four evidence combination methods and 
both learning methods are given in the first appendix. Our goal is to empirically demonstrate 
that our hypotheses about error reduction apply for a wide variety of evidence combination 
methods. 

Figure 2 shows a situation which will be used to explain the evidence combination meth- 
ods. Assume for the moment that only the first model has been learned. The rules in bold 
typeface indicate the rules that have been satisfied for the current test example. The figure 
indicates that the preconditions of two rules for class a were satisfied by the test example. 
The first of these rules covers four training examples of class a. The figure also indicates 
that the second rule of the first description of class b covers one training example of class 
a and two of class b. 

4.1. Evidence combination within one descript ion 

Before describing evidence combination between descriptions of a given class, we explain 
how classification occurs when only one model has been learned. Each evidence combina- 
tion method uses its own kind of reliability measure.  When only one model is being used, 
and more than one rule in a class description has been satisfied, three of the four methods 
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1st model of data (posterior prob. = 0.02) 

1 st description of class a 

a(X.Y) :-j(X), g(Y). Covers (7,0) LS = 5.0, Accu. = 0.89 1 

J a(X,Y) :- c(X,Z), i(Y). Covers (4,1), LS = 1.6, Accu. = 0.71 

a(X,Y) :- MY,X), d(X). Covers (3,1), LS = 1.3, Attn.  = 0.67 

1st description of class b 

I b(X,Y) :- h(X,Y), f(Y). Covers (0,6), LS=I 1.2, Ac . . . .  0.88 
b(X.Y) :- n(X,Y), f(Y). Covers (1,2), LS=2.4. Accu. = 0.60 J 

2nd model of data (posterior prob. = 0.015) 

" 2nd description of class a 

a(X,Y) :- j(X), d(Y). Covers (8,0). LS=5.6, Accu. = 0.90 "] 

J a(X.Y) :- k(Y,X), i(Y). Covers (6,0). LS=4.4. Accu = 0.8~ 

2nd description of class b 

I b(X,Y) :- m(X,Y), f(Y). Covers (1,6). LS=5 2. Accu. = 0.78 ] 
b(X.Y) :- n(X.Y), i(Y). Covers (0.2). LS=4.8. Accu. = 0.75 J 

Figure 2. C o m p a r i s o n  o f  ev idence  combina t ion  methods .  "Cover s  (0 ,6)"  for a rule for class ' b '  indicates  that the 
body  o f  that rule is true for 0 t ra ining e x a m p l e s  o f  class ' a '  and for 6 t ra ining example s  o f  o ther  class(es).  The  

g iven  accu racy  is a Lap lace  es t imate  o f  the accuracy  o f  the rule as es t imated  f rom the t ra ining data. LS is the 
degree  o f  logical suff iciency o f  that rule (expla ined under  " 'Likel ihood C o m b i n a t i o n "  in Section 4). 

Table 2. Four  ev idence  combina t ion  methods .  The  compos i t e  ev idence  for a class is obta ined by' s u m m i n g  the 
degrees  o f  be l ie f  for that class ove r  descr ip t ions  o f  that class. 

Evidence comb Descr. 1 Descr. 2 Composile Descr. 1 Descr. 2 Composite 
method class a class a class a class b class h class b 

Uniform Voting 1 1 2 I 0 I 

Bayesian Comb. 0.02 * 0.71 0.015 * 0.90 002 * 0.88 0.015 * 0 
=0.0142 =0.0135 0.0277 =0.0176 = 0  0.0176 

Distribution Sum. (4,1)+(3,1) 
= (7,2) (8,0) (15.2) (0,6) (0,0) (0.6) 

Likelihood Comb. 16 5.6 1.6 x 5,6 x 1,75 112 1 11.2 X 1 × 0 .57  
= 15.68 = 6.384 

described here use only the most reliable of those satisfied rules. We will refer to this as 
the "single, most reliable rule" bias. See Torgo (1993) for empirical support for using this 
bias within each rule set. 3 Only the Distribution Summation method takes all satisfied rules 
within a class description into account. For each method, if the example does not satisfy 
any rule of any class, each method predicts the class that was most frequent in the training 
set. 

Uniform Voting - Uniform Voting assigns a uniform reliability of 1 to each rule. It 
assigns a score of 1 to a class if any rule in that class was satisfied by the test example. 
Otherwise the score is 0. So this means that for Figure 2, both classes in model 1 
get a score of 1. Uniform Voting then randomly chooses between the classes with the 
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highest score. Uniform Voting is not competitive with the other methods when using 
just a single model but it is competitive once several models are used. 

Bayesian Combination Buntine, 1990) - In Bayesian Combination, there are weights 
associated with models (the posterior probability of the model) and weights associated 
with rules (the accuracy of  the rule). When only 1 model is being used, only the rule- 
weights are relevant. The accuracy of a rule r of class i with respect to a set S of 
examples is the ratio of the number of examples of class i in set 5' which satisfy the 
rule divided by the total number of examples (of any class) in S which satisfy the rule. 
The accuracy is denoted as p ( C l a s s i l r ) .  

A word about estimation of rule accuracy: we use the training set as set S. This will 
typically over-estimate the accuracy of the rule so as a correction we use the Laplace 
estimate (Kruskal & Tanur, 1987). The Laplace estimate of the probability of the event 
X = v where X is a variable and v is a value which has been observed to occur f times 
in T consecutive trials is ( f  + 1 ) / (T  + k) where k denotes the number of possible 
values that X can take. In the context of rule accuracy, using the Laplace estimate 
means that if N denotes the total number of examples that satisfy rule r and ni denotes 
the number of examples of class i that satisfy r, ,~i+l is used as an estimate of the rule N+2 
accuracy. We use "2" instead of the real number of classes since with respect to rules 
of class i, all other classes are grouped together as the "negative class." 

In Figure 2, the accuracies of the satisfied rules of class a are 0.71 and 0.67 so the more 
reliable (0.71) is used as the score for class a. Class b only has one satisfied rule so its 
accuracy (0.88) is used. Bayesian Combination predicts the class with the higher score 
- class b in this situation. 

Distribution Summation (Clark & Boswell, 199 l) - This method associates a k-component 
vector (the distribution) with each rule. k denotes the number of classes. The vector 
consists of the numbers of training examples from all k classes covered by that rule. A 
component-wise sum is formed over all satisfied rules (of all classes) that match a test 
example to produce a combined vector. So in Figure 2, the distributions of the satisfied 
rules are added to yield the summed vector: (4, 1) + (3, 1) + (0, 6) = (7, 8). Since the 
highest number in the summed vector corresponds to class b, this method will predict 
class b. 

Likelihood Combination (Duda et al., 1979) - This method associates the "degree of 
logical sufficiency of the rule" (LS) (Duda et al., 1979) with each rule. In the context 
of classification, the LS of  a rule of C l a s s i  is defined as the ratio of  the following 
probabilities: 

p ( r u l e ( T )  = t r u e  l~- E C las sy )  

where 7 is a random example. Each probability is estimated using the Laplace method. 
LS is a generalization of the notion that the body of a rule is completely sufficient to 
conclude the head of  the rule. This method uses the odds form of Bayes rule (Duda et 
al., 1979) which can be restated for our purposes as: 
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O(Classi[Mil)  = 
O(Class~) × O(M~llClasse) 

O(Mil)  

(1) 

where ~i[il denotes the description for class i in the first (and in this section, only) model. 
The odds of a proposition with probability p are defined to be p/(1 - p). In order to 
calculate O(Mil  [Classy), let {R1 , . . . ,  R,~} denote the set of rules in description 3,Z~1 
that were satisfied by the example. I f  these rules are conditionally independent given 
class i, we can write: 

O(AZg] [Clas&) = I-~ LSRj (2) 

where LSRj is the LS of rule Rj. However, since the rules were learned by a separate 
and conquer strategy, rather than taking a product of the LS's of the satisfied rules as 
suggested by Equation 2, it is conceptually (and empirically) better to use only the LS 
of the most reliable rule. 

In Figure 2, class a had 14 of the 22 training examples for a "prior" probability of 0.63 
and prior odds of 1.75. Class b had 8 of the 22 examples for a "prior" probability of 
0.36 and prior odds of 0.57. So, in Figure 2, for class a, we multiply the prior odds of 
class a with the LS of the more reliable of the two satisfied rules (1.6) to yield a score 
of 2.8. This score represents the posterior odds of class a. Class b has prior odds of 
0.57 and the LS of the most reliable satisfied rule of class b is 11.2, so its score is 6.384. 
Therefore, Likelihood Combination predicts class b in this situation. 

We chose Uniform Voting as a "straw man" method which the other methods should 
be able to beat in terms of accuracy. We chose Bayesian Combination because it is an 
approximation to the optimal Bayes approach. Distribution Summation was chosen because 
rules that cover more examples are given higher weight in this method. As Muggleton et 
al. (1992) have noticed, training coverage of a rule is more closely correlated with its 
test-set accuracy than is its training accuracy. Finally, we chose Likelihood Combination 
because the logical sufficiency measure used by that method has the flavor of measuring both 
coverage and accuracy. Most of the rules learned by HYDRA cover no negative training 
examples. Under these conditions, the Laplace estimate of training set accuracy ranks rules 
in order of the number of positive examples covered whereas training set LS ranks rules in 
order of the fraction of positive space covered. Accordingly, we find that rules of minor 
classes are given relatively higher weights under the LS scheme. 

4.2. Evidence combination between descriptions 

Now we describe how to combine evidence when more than one model has been learned. 
When more than one model has been learned, classification proceeds by combining evidence 
for each class from all its descriptions and then finally comparing that degree of evidence 
to those of the other classes. 
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Uniform Voting - In the context of multiple models (Table 2) this method simply counts, 
for each class, the number of descriptions of that class that have at least one satisfied 
rule. So, in Figure 2, class a gets a score of 2 and class b gets a score of 1 so this method 
predicts class a. 

Bayesian Combination - In the general form of Bayesian Combination, the test example, 
x, should be assigned to the class, c with the highest expected posterior probability: 

ET(p( I , i ,  cO) = r )p (T l l ,  (3) 
Tint  

where the expectation is taken with respect to T, the model (hypothesis) space of all 
possible models, £ denotes the training examples and 6denotes the class labels of those 
training examples, x denotes the current test example, p(clz ,T) is the probability 
of class c given a test example x and a particular model T. p(clx, T) can be thought 
of as the degree to which T endorses class c for example z. In this paper, since we 
are using a "single, most reliable rule" bias, the Laplace accuracy of the most reliable 
satisfied rule is used for p(clx, T). p(Tli, ~ denotes the posterior probability of the 
model. Briefly, models whose class descriptions are syntactically-compact and are well 
able to separate the training examples of different classes end up with higher posterior 
probabilities. Appendix 2 and (Ali & Pazzani, 1995b) detail how Buntine's form for 
the posterior probability of a decision tree (Buntine, 1990) is adapted for the kinds of 
models described in this paper. 

The general Bayesian method is used in our "single, most reliable rule" framework as 
follows. As Figure 2 indicates, the first model has posterior probability 0.02 and the 
satisfied rule of class a with highest accuracy has accuracy 0.71. The second model has 
posterior probability 0.015 and the accuracy of the matching rule is 0.90. This yields 
an expected posterior probability for class a of 0.0277 (0.02 • 0.71 + 0.015 • 0.90). 
Doing the same for class b yields a degree of belief of 0.0117 for class b. Hence, the 
test example is assigned to class a. 

Distribution Summation - This method is simply extended to multiple models by doing 
a vector summation of the distributions of all satisfied rules across all models. So, in 
Figure 2, this produces an summed vector of (4, 1) + (3, 1) + (0, 6) + (8, 0) = (15, 8) 
and consequently the example is assigned to class a. 

Likelihood Combination - In extending this method to multiple models, the prior odds 
of the class only appear once: let Mi denote the set of class descriptions for class i and 
Mij denote one such class description. Then the posterior odds of C[assi a re  given by: 

O(Class~lMi ) ~ O(Classi) × H O ( C l ~ s ~ l ~ J )  
J 

For the term O(ClassilAfij) we use the LS of the most reliable satisfied rule in AIde. 
As Table 2 shows, the posterior odds of class a are obtained by multiplying the prior 
odds (1.75) by the LS of the most reliable matching rule in the first description of class 
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a with the LS of the most reliable matching rule in the second description of class a. 
This yields posterior odds of 15.68 for class a and posterior odds of 6.384 for class b. 
Therefore, this evidence combination method will assign the example to class (l. 

5. Empirical analyses 

For our experiments we chose domains from the UCI repository of machine learning 
databases (Murphy & Aha, 1992) ensuring that at least one domain from each of the major 
groups (molecular biology, medical diagnosis ...) was chosen. These include molecular- 
biology domains (2), medical diagnosis domains (7), relational 4 domains (6 variants of the 
King-Rook-King (KRK) domain, Muggleton et al., 1989), a chess domain with a "small 
disjuncts problem" (KRKP; Holte et al., 1989), and attribute-value domains (4 LED variants 
and the tic-tac-toe problem). 

For most of the domains tested here, we used thirty independent trials, each time training 
on two-thirds of the data and testing on the remaining one-third. The exceptions to this 
are the DNA promoters domain for which leave-one-out testing has traditionally been used 
and we follow this tradition to allow comparability with other work. Other exceptions are 
trials involving the King-Rook-King domain. For this domain, the training and test sets 
are independently drawn (rather than being mutually exclusive) from the set of all 86 board 
configurations. There is little chance of overlap between training and test sets at the sample 
sizes we use. Whenever possible we tried to test learned models on noise-free examples 
(including noisy variants of the KRK and LED domains) but for the natural domains we 
tested on possibly noisy examples. The large variant of the Soybean data set was used and 
the 5-class variant of the Heart data set was used. 

5.1. Does using multiple rule sets lead to lower error? 

In this section we present results of an experiment designed to answer the first of the 
questions listed in Section 1: 

What effect does using multiple descriptions per class have on classification error 
as compared to the error produced by using a single description per class? 

For this experiment, the Stochastic and Partition methods were used to learn eleven models 
(we chose an odd number to prevent ties from occurring for the Uniform Voting combination 
method for two-class domains). Although most of the results in the following sections are 
given for eleven models, we also performed experiments using one, two and five models. 
Figure 3 shows the effect of varying the number of models on classification accuracy. Eleven 
models were used since preliminary experiments indicated that for most data sets, using 
more than eleven models yields little gains but costs a lot in terms of computation time. 
Unfortunately, we do not have a method that will indicate the optimal number of models to 
learn in a given data set. 

For the Stochastic method, all literals that had gain at least 0.8 ( S = 0.8) as large as 
that of the best literal were retained (see Section 5.6 for results on the effect of varying the 
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Figure 3. The figures above illustrate the effect of varying number of stochastically-learned models (combined with 
Uniform-Voting). Open circles represent accuracies obtained by HYDRA, closed circles represent the multiple 
models method, At least one data set from each of the major types of data sets used in this paper is represented. 

bucket size). For the Partition method, k was set to the same number of models (eleven) 
as used during stochastic hill-climbing. For each description generation method, we tested 
all four evidence combination schemes. The results of using Likelihood Combination 
on stochastically-generated descriptions are presented in Table 3. Results using all four 
evidence combination methods and both learning methods are presented in the appendix. 

Table 3 compares the accuracies obtained by using a single deterministically learned 
description to the accuracies obtained by using eleven descriptions. The first column 
indicates the domain name. Trailing suffixes indicate number of irrelevant attributes (i), 
number of training examples (e), percentage of attribute noise (a) or percentage of class 
noise 5 (c). The second column indicates the accuracy that would be attained by guessing the 
most frequent class. An asterisk signifies that the accuracy of the single description method 
was not significantly better than guessing the most frequent class. The third column indicates 
the accuracy obtained by using HYDRA (using information gain) to deterministically learn a 
single description. The next two columns indicate error ratios for stochastic and k-partition 
learning respectively. A '+' indicates a significant (using the paired 2-tailed t-test at the 
95% confidence level) reduction in error, a '-' indicates a significant increase. For the DNA 
domain, the t-test is not applicable because we used leave-one-out testing. For this domain, 
we used a sign-test (DeGroot, 1986). 

The data sets are grouped as follows: the first group contains noise-free training data 
from artificial concepts (for which we know the true class descriptions), the second group 
contains noisy data from artificial concepts the third contains data sets from molecular 
biology domains and the final group contains probably noisy data from medical diagnosis 
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Table 3. C o m p a r i s o n  o f  e r rors  p roduced  by a s ing le  desc r ip t ion  ve r sus  two methods ( s tochas t ic  

h i l l - c l imb ing  and k - fo ld  par t i t ion learn ing)  o f  l ea rn ing  mul t ip le  descr ip t ions .  E l even  m o d e l s  were 
used and the Like l ihood  C o m b i n a t i o n  method was used for ev idence  combina t ion .  A ' + '  indicates 
that the accuracy  o f  mul t ip le  m o d e l s  was  s ign i f ican t ly  h i g h e r  than that o f  the s ing le  model .  A ' - '  

indicates the accuracy was s ign i f i can t  lower.  An as te r i sk  indicates that the accuracy  o f  the  s ing le  

mode l  ve r s ion  was not significantly better than guessing the most  f requent  class.  

Domain Default Single 1 I Stochastic 1 I Stochastic I I Partition Number of 
Accuracy Description Descriptions Descriptions Descriptions training 

Accuracy' Accuracy Error Ratio Error Ratio examples 

Led 8i 10.0% 872% + 96.4% + .28 + .37 30 
Led 17i 10.0% 83.7% + 94.6% + .33 + .46 30 
Tic-tac-toe 653% 99.0% + 99.8% + .22 + .38 670 
Krkp 52.0% 94.5% + 955% + .82 + +86 200 
Krk I00e 66.7% 95.1% 95.6% 90 .89 100 
Krk 200e 66.7% 98.3% 98.9% .66 69  200 

Krk 160e 5a 66.7% 91.9% 93.2% 84 .80 160 
Krk 320e 5a 66.7% 94.8% 95.8% .80 + .66 320 
Krk 160e 20c 66.7% 89.6% 91  1% .86 .83 160 
Krk 320e 20c 66.7% 92.5% 93.4% .88 + .79 320 
Led 20a 10.0% 94.3% 94 65~- .94 82  50 
Led 40a 10.0% 85.0% 877% .82 .89 50 

DNA 50.0% 67.9% + 86.8% + 41 + .44 105 
Splice 53.4% 853% + 92.5% + 51 + .62 200 

Mushroom 50.0% 97.4% 96.8% 1.24 .96 I00 
Hypothyroid 90.0% 95.3% + 97.8% + .47 + 53  200 
BC-Wisconsin 65.5% 93.5% + 96.1% + .60 + .70 200 
Voting 62.0% 93.5% + 94.9% + .78 + 84  100 
Wine 39.8% 93.3% + 98.9% +.  16 + .53 118 
Iris 33.3% 91.4% 92.4% +88 .96 50 
Soybean 14.6% 88.5% + 92.3% + .67 + .74 288 
Horse-colic 63.4% 83.2% + 87.1% + .77 + .73 245 
Hepatitis *79.6% 78.8% 79.2% .98 .99 103 
Lymph. 54.7% 77.9% + 83.9% + .73 .90 I 10 
Audiology 25.3% 72. 1% + 805% + .70 + 76  150 
Diabetes 65.1% 71.9% + 73 9 %  + .93 + .93 200 
B Cancer *70.2% 69.9% - 67 2 %  - 1+09 1.05 190 
Heart *54.1% 54.3% 55.2% .98 .98 200 
Primary-tumor 24.7% 38.8% 38.2% 1.0] - 1.04 225 

and other "real world" domains. The domains in the last group are sorted so that those with 
the highest single model accuracies appear first. 

Table 3 shows that stochastic search using Likelihood Combination is able to statisti- 
cally significantly (95% confidence) reduce or maintain error on all domains except the 
(Ljubljana) breast-cancer domain. On that breast cancer data set few learning methods 
have been able to get an accuracy significantly higher than that obtained by guessing the 
most frequent class suggesting it lacks the attributes relevant for discriminating the classes. 
The table shows that for approximately half the data sets, error is reduced by a statistically 
significant margin when using models learned by stochastic search and combined with Like- 
lihood Combination. The appendix shows that the other evidence combination methods 
and learning methods also lead to statistically significant error reductions for many data 
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sets. There is no significant change in error for most of the other data sets - on very few 
occasions does the multiple models approach lead to a significant increase in error. 

Another striking aspect of the results presented in Table 3 is that the error is reduced 
by a factor of 6 for the wine data set (representing an increase in accuracy from 93.3% 
to 98.9%!) and by large (around 3 or 4) factors for LED and Tic-tac-toe. The molecular 
biology data sets also experienced significant reduction with the error being halved (for 
DNA this represented an increase in accuracy from 67.9% to 86.8%!). The error reduction 
is least for the noisy KRK and LED data sets and for the presumably noisy medical diagnosis 
data sets. Eighty percent of the data sets which scored unimpressive error ratios (above 0.8) 
were noisy data sets. This finding is further explored in Section 5.4 in which we explore the 
effect of class noise on error ratios. The fact that the best error ratios were obtained on the 
noise-free and molecular biology data sets holds for all four of the evidence combinations 
schemes we used and both description generation methods (see appendix 1). 

The LED domain, in particular, gives us some insight into the effect of irrelevant attributes 
and class noise on error ratios. As the table shows, learning multiple descriptions helps a 
lot in reducing errors of the LED data sets with irrelevant attributes. For eight irrelevant 
attributes, the error is reduced from 12.8% to just 3.6%. This suggests that when irrelevant 
attributes are present, using multiple descriptions provides a substantial benefit. Backing 
up this hypothesis are also the DNA and Splice domains for which the error is reduced by 
a large factor. These domains have many (57 for DNA, 60 for Splice) attributes some of 
which are probably irrelevant. These observations led us to more carefully investigate the 
effect of irrelevant attributes on error ratio. The results of those investigations are presented 
in Section 5.5. 

Although error ratios for the noisy data sets represent a statistically significant reduction 
in error, the ratios are not as impressive as they are for noise-free domains containing 
irrelevant attributes. Again, the LED data sets provide some insight. The LED variants 
presented in the table differ by two dimensions: the variants with irrelevant attributes have 
no noise and the noisy variants have no irrelevant attributes. The LED results suggest that 
the error ratios obtained through the use of multiple descriptions become less beneficial as 
the amount of noise increases. This issue is explored in detail in Section 5.4. 

In summary, the answer to the question for this section ("What effect does the use of 
multiple descriptions have on classification error?") is that the use of multiple descriptions 
leads to significant reductions in classification error for about half of the data sets tested 
here. For most of the other data sets, the error does not change significantly. Therefore, most 
of the time, the multiple descriptions approach helps significantly or does not hurt. This 
is true for both description generation methods and all four evidence combination methods 
tried here. The table in the appendix presents results for the other generation methods and 
evidence combination methods. 

5.2. L ink  between error reduction and correlated errors 

In this section we explore the following question: 
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What is the relationship between the amount of observed error reduction (as mea- 
sured by error ratio) and the tendency of the learned models to make correlated 
errors ? 

Hansen & Salamon (1990) first introduced the hypothesis that the ensemble of  models 
is most useful when its member models make errors totally independently with respect to 
every other model in the ensemble. They proved that when all the models have the same 
error and that error is less than 0.5 and they make errors completely independently that the 
expected ensemble error must decrease monotonically with the number of models. The 
question we explore here is more general firstly because it does not assume that the errors 
are made completely independently and secondly because it attempts to explain the amount 
of error reduction in terms of the fraction of correlated errors (¢~). 

Now we present a precise instantiation of the concept: "the degree to which the errors 
made by models of the ensemble are correlated." In our approach, we will compute a 
correlation for each pair of models in the ensemble 5 c -- {fl...f7"} and Ce will be the 
average of all those pairwise correlations. Let Oij denote the correlation between the i-th 

and j-th models. Let fi (x) = !1 denote the event that model i has classified example x to 
class y. Let f (x)  denote the true class of x. Then ¢ij has the following definition: 

d,,j = p ( / / (x )  : ] j (x) , / i (x )  # f (x ) )  

and ¢~ (.T'), the degree to which the errors in .)c are correlated, has the following definition: 

T T 
1 

0 (m> - - 1)  p(L(x) : 

i=1 j ¢ i  

Figure 3 plots error ratio as a function of percentage of correlated errors (100 x 0~) for 
all domains for which there was a statistically significant reduction in error. 6 The linear 
correlation coefficient (r) between fraction of  correlated errors ((fie) and error ratio (E,.) 
can be used to measure how well Ce models error reduction as measured by E,.. Of the 29 
data sets used in this study, significant error reduction was obtained (when using stochastic 
learning and Uniform Voting) on 15 data sets. Error did not increase significantly for any of 
the remaining 14 data sets. The r 2 of 0.56 in the Figure shows that 56% of the variance in 
error ratio can be explained by the tendency of members of the ensemble to make correlated 
errors. For the other evidence combination methods, the values were 56% (Bayesian 
Combination), 43% (Distribution Summation) and 41% (Likelihood Combination). When 
k-fold partition learning was used, the values were 60% (Uniform Voting), 40% (Bayesian 
Combination), 35% (Distribution Summation) and 41% (Likelihood Combination). This is 
quite encouraging given that the data sets vary widely in type of class description, optimal 
Bayes error level, numbers of training examples and numbers of attributes. Another point 
to note is that 0e is a pairwise measure, whereas what the error rate under Uniform Voting 
counts is the proportion of the test examples on which at least half of  the members in the 
ensemble make an error. 

How stable are these estimates of  r~? In particular, is it possible that we are able to get 
such a high r 2 simply because of one point luckily appearing near the line of best fit? In 
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Figure 4. Plot of error ratio as a function of lO0 x ~Pe. One point represents one data set. Learning method: 
stochastic bill-climbing, evidence combination method: Uniform Voting. 

order to measure the stability of these estimates of r 2, for each of the eight combinations 
of learning method and evidence combination method we calculated twenty-nine r 2 values 
- each time calculating what the r 2 would be if one of the 29 data sets were left out. This 
analysis (Table 4) shows that the r 2 values presented above do not depend critically on 
any single data set. We also performed significance tests to compute the likelihood of the 
observed results under the null hypothesis (that the population correlation, p, equals 0). 
The tests showed that the likelihood of our data given H0 was less than 0.01 for each of 
the eight combinations of learning method and evidence combination method. Therefore, 
we can conclude that there is a significant linear correlation between error ratio and the 
tendency to make correlated errors for all the learning methods and evidence combination 
methods used in this study. When 0r is small, multiple models have a substantial impact 
on reducing error. In Sections 5.4 and 5.5 we investigate how class noise and irrelevant 
attributes affect 0r and consequently the amount of  error reduction achieved by multiple 
models. 

In order to gain insight into why ~e explains so much of  the variance in error ratio consider 
the simpler problem of modeling variation in error within a given data set (this removes 
possibly confounding variables such as optimal Bayes error rate that vary from one data 
set to another). Assume that N trials have been conducted to yield N ensemble error 
values. Assume that the simplest evidence combination method (Uniform Voting) is used 
and that the data set contains two classes and that the ensemble contains just two models. 
In this situation, an ensemble error occurs if both the models make an error or if the models 
disagree and the tie is broken so as to cause an error. Assume that a tie will occur for a 
negligible proportion of the test examples. Under these assumptions, 0e is an exact measure 
of ensemble error (Ee). 
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Table 4. Ranges of leave-one-out estimates of r 2 between error ratio and Oe (the 
fraction of correlated errors). 

Uniform Bayes ian  Distribution Likelihood 
Voting Combination Summation Combination 

Stochastic 
Hill-climbing [0.54,0.61] [0.47,0.7l] [0.37, 0.52] [0.38,0.48] 

k-fold Partition 
Learning [0.55,0.66] [0.27,0.56] [0.28,0.46] [0.29,0.56] 

As 0~ is a pairwise measure, how well it models within-dataset ensemble error depends 
on the size of  the ensemble. It is a better model of ensemble errors for ensembles of  smaller 
size. The evidence combination method also affects the ability to model ensemble error 
using ~ .  0e is a better model of ensemble error obtained by Uniform Voting than it is 
for evidence combination methods in which different models are given different "voting" 
weights. 

5.3. Gain ties and error reduction 

0e provides a post-hoc way of  understanding why the multiple models approach reduces 
error more for some domains than for other domains. In this section, we explore whether we 
can approximately predict the amount of error reduction due to the use of  multiple models. 
We explore the following question: 

Can the amount of error reduction observed for a data set be predicted from the 
number of  ties in gain experienced by the learning algorithm on that data set? 

The motivation for postulating this hypothesis is the observation that each time the stochastic 
generation method is run, it uses the same training data. However, it is able to generate 
different descriptions because it randomly picks from the literals whose gain is within some 
factor/3 (/3 E [0, 1]) of the gain of the highest literal. If there are many such literals 
then the possibility for syntactic variation from description to description is greater. The 
greater syntactic diversity may leads to less correlation of  errors as measured by ¢~e which 
in turn may lead to lower (i.e. better) error ratios. As a first approximation measure of the 
amount of  syntactic variety in a data set as experienced by a learning algorithm, consider 
the number of literals that tie for the highest information gain. If 7z literals tie for gain, that 
event is recorded as representing n - 1 ties in gain. The total number of ties experienced 
during learning a model is then divided by the number of literals in the model to produce 
the quantity 9, the "average number of  gain ties" for that data set. A large number of such 
ties are a problem for a hill-climbing deterministic learner but represent an opportunity for 
the multiple model learner. Figure 5 plots error ratio as a function of average gain ties (each 
point represents results for one data set from Table 3). The figure shows that some of  the 
largest reductions in error are obtained for data sets for which such ties are frequent (on 
average, there were 5.1 gain ties on the wine data set, 6.6 for the DNA promoters data set 
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Figure 5. Error ratio as a function of average gain ties for decision trees (left) and rule sets (right). The ensembles 
of decision trees contained eleven decision trees stochastically learned with respect to the entropy gain function. 
The ensembles of eleven rule sets were learned using stochastic hill-climbing and combined using Likelihood 
Combination. Similar plots are obtained for other evidence combination methods and the other learning method. 

and 2.5 for the Splice data set). However, the figure also shows that a high average value 
for ties in gain is not a necessary condition for significant reduction of error. For example, 
multiple models are able to achieve low error ratios on the Tic-Tac-Toe and the noise-free 
LED variants (bottom left of figure) even though there are not many ties in gain for those 

data sets. 

In summary, the answer to the question posed in this section is that if the number of gain 

ties experienced on average for a data set is large (say 2 or more) then that data set will 

benefit quite a lot (i.e. have its error reduced by at least 40%) from the use of multiple 
models. In our experiments, we have seen no exceptions to this trend. However, if the 

number of gain ties is small, the amount of error reduction cannot be predicted. As Figure 5 

shows, these gain-ties results are not just true for HYDRA - they are also true for ID3 

(Quinlan, 1986) - the canonical decision tree learning algorithm. 

5.4. Effect of class noise 

The results of Section 5.1 showed that the majority (80%) of data sets for which unim- 

pressive error ratios (above 0.8) were recorded were data sets with significant amounts of 
noise. Furthermore, experiments on the LED domain provided preliminary evidence that 
the addition of attribute noise increases (worsens) error ratios. In this section we follow up 

on that hypothesis by asking: 

How does increasing the amount of class noise affect the amount of error reduction? 

We choose to study the effect of class noise rather than attribute noise because attributes 

in some domains have more values than attributes in other domains and an attribute with 
fewer values is more likely by chance to have large information gain. Therefore it would 
not be easy to compare levels of attribute noise across domains. 
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Table 5. Effect of increasing class noise on error ratios (using 11 stochastically-learned models and Uniform 
Voting for evidence combination). Similar plots are obtained for other evidence combination methods and 
the other learning method. 

Class KRK 100 KRK 100 TTT 200 TTT 200 Wine Wine BC-Wisc. BC-Wisc. 
Noise Err. ratio 4~e Err. ratio Oe Err. ratio Oe Err. ratio 0e 

1067c .85 3.6% .70 3.9% .23 1.5% .55 2.7% 
20% .88 5.0% .77 5.6% .30 2.5% .56 3.6% 
30% .98 7.0% .92 7.4% .48 4.1% .62 4.4% 
40% .95 8.9% .95 8.9% .53 5.2% .69 5.5% 

Table6. Distribution of ensemble errors as a function of the number of models correctly classifying a 
test example. Learning method: stochastic hill-climbing; evidence combination method: Uniform 
Voting. Eleven models were combined using Uniform Voting so an ensemble error occurs if six 
or more of the models made an error. Values at 20% and 30% noise lie in between the values 
presented in the table. 

Number of models BC. Wise. BC. Wise. BC. Wisc. BC. Wisc. 
got test eg. correct 10% noise 10% noise 40% noise 40% noise 

% of ensemble Cumulative % of % of ensemble Cumulative % of 
errors ensemble errors errors ensemble errors 

0 15.4% 15.4% 27.6% 27.6% 
1 7.7% 23.1% 11.2% 38.8% 
2 20.5% 43.6% 12.2% 51.0% 
3 7.7% 51.3% 18.4% 69.4% 
4 15.4% 66.7% 14.3% 83.7% 
5 33.3% 100.0% 16.3% 100.0% 

Table  5 shows  the effect  of  add ing  class  noise  to four  very d i f ferent  k inds  o f  data  sets. 

Noise  was only added  to the t ra in ing  data. We chose  the wine  and  t ic- tac- toe  data  sets 

because  the mul t ip le  mode l s  approach  was able to reduce  error  by a large a m o u n t  (error  

rat ios of  0 .16 and 0.22 respec t ive ly)  for these  data  sets. We wanted  to see if  this  advan tage  

would be e roded by the addi t ion of  noise.  The  table  shows that  for each  of  the four  chosen  

data  sets the advan tage  y ie lded by the mul t ip le  mode ls  approach  lessens  as class  noise  is 

increased.  

M o r e  careful  e x a m i n a t i o n  of  the pa t te rns  of  errors  of  mode l s  in the e n s e m b l e  shows  that  

at 4 0 %  noise,  a re la t ively  larger  p ropor t ion  of  the test examples  on wh ich  the e n s e m b l e  

made  an error  were  incorrec t ly  classif ied by all  the mode ls  in the ensemble .  Tha t  is, as 

noise increases ,  some  of  the examples  b e c o m e  "ha rd"  for all the models .  

In a fo l low-up  e x p e r i m e n t  (Table 6), we s tudied the dis tr ibut ion  of  the e n s e m b l e  errors.  

We wanted  to know what  p ropor t ion  of  the e n s e m b l e  errors  were caused  by all the mode l s  

mak ing  an error  and what  p ropor t ion  were  caused  by a nar row major i ty  of  m o d e l s  m a k i n g  

an error. The  first c o l u m n  indicates  the n u m b e r  of  mode l s  that  correc t ly  classif ied the test  

example .  The  r e m a i n i n g  c o l u m n s  are a r ranged  in two groups.  C o l u m n s  two and  three 
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Figure 6. Comparison of error ratios at 0% added class noise and 40% added noise. Learning method: stochastic 
hill-climbing; evidence combination method: Uniform Voting. 

present results for 10% class noise, the last two columns present results for 40% noise. The 
i-th row corresponds to test examples that were correctly classified by i (out of 11) models. 
The first column in each set indicates the number of test examples characterized by that 
situation. Let a m/r~ split indicate the situation for a test example where rn models make 
a correct classification and rz make a mistake (m + n = 11). Therefore, the table indicates 
that a 0/11 split occurred on 15.4% of the test examples after learning with 10% class 
noise and it occurred on 27.6% of the test examples after learning with 40% class noise. 
Therefore, the table indicates that that as noise level increases, all the models misclassify 
a test example on a greater proportion of the test examples for which an ensemble error 
is made. This indicates that as noise level increases, some test examples become more 
difficult for all the models. 

Figure 6 compares the error ratio (11 models, stochastic learning, Uniform Voting) with 
0% added noise to that with 40% added noise. In each case, the addition of noise causes the 
error ratio to go towards 1 indicating the erosion of  the advantage of the multiple models 
approach. 

In summary, the answer to the question of this section ("How does increasing the amount 
of class noise affect the amount of  error reduction?") is that increasing class noise causes 
the multiple models approach to produce poorer error ratios. Extrapolation of these results 
suggests that at 100% noise the error ratios for all data sets would be 1.0. This makes sense 
because the training data contains no discrimination information so there is no reason to 
expect the multiple models approach to do better than the single models approach. 

5.5. Effect of irrelevant attributes 

The experiments presented in Section 5.1 provide preliminary evidence that the benefit 
of using the multiple models approach increases with increasing numbers of irrelevant 
attributes. In this section we describe further experiments to explore this question: 
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Table Z Error ratio as a function of number of added Boolean irrelevant attributes (using 
Uniform Voting of eleven stochastically generated models), The number below each data set 
identifier indicates the number of training examples. "5a" indicates 5 % attribute noise. Similar 
results are obtained for other evidence combination methods and the other learning method 

Number  o l  KRK KRK KRK 5a KRK 5a Splice Splice BC Wise BC ~t, isc Wine \~inc  
irrclc~ anl I(X} 100 160 160 2(R) 2(~) 2qR~ 2g~; I /8  I I S 
attributes Error A ~ 8 c  Error A~8¢ Em}r  a.xge Error A~gc E m , r  a a g c  

Ratm gain ties Ratio gain lies Ratio gain Zies Ratio 8.till tics Ratto gain tics 

0 0 8 5  o 4 2  {)81 1)54 [ )44 2 5 1  s5 8s 0 1 ~  51)~ 
O73  0,17 { 57 o 5 8  I}42 2 7 8  0 5 ~  q 4S 0 1 ~  6 6 1  

21) 0(715 (>55 O M  (P59 1139 2 9 !  ( 4g 1){~7 q~ I] 2~ ] 
511 0 5 2  0 9 6  1)55 i (K) 0 t 8  2 8] 0 41 I 19 0 L I I~M 2 

How does increasing the number of irrelevant attributes affect the amount of error 
reduction? 

To study this question, we added varying number of Boolean irrelevant attributes to a 
representative sample of data sets. We chose Boolean attributes rather than constructing 
irrelevant attributes whose values were domain specific because the attributes in some data 
sets can take on many more values than attributes in other data sets leading to comparison 
difficulties. 

Table 7 corroborates the hypothesis that the multiple models approach is able to attain 
especially impressive error reductions when many irrelevant attributes are present in the data. 
The table shows that error ratio decreases as a function of increasirig numbers of irrelevant 
attributes. To understand this, consider the Uniform Voting evidence combination scheme. 
For the multiple models approach to make an error due to irrelevant attributes, at least half 
of  the learned models need to involve an irrelevant attribute that leads to a classification 
error. If the number of irrelevant attributes is not too large, it is unlikely that at least half 
of  the models will be affected in this manner. Therefore, the multiple models approach 
will not make an error in this situation. But the single model approach need only make 
a mistake due to learning a rule involving an irrelevant attribute early in its separate and 
conquer strategy for most of the subsequent rules to go off track. Hence the single model 
approach is much more likely to suffer due to irrelevant attributes. Figure 7 extends the 
irrelevant attributes experiment to all 29 data sets. It plots the error ratio obtained after the 
addition of 50 irrelevant binary attributes against the error ratio before the addition of any 
irrelevant attributes. The fact that most of the plotted points lie below the diagonal indicate 
that for most of the data sets adding irrelevant attributes leads to smaller (better) error ratios. 

Table 7 also shows that the average number of gain ties experienced increases as the 
number of irrelevant attributes increases. This confirms the results (Section 5.3, Figure 5) 
that better (lower) error ratios are obtainable for data sets where the learning algorithm 
experiences more gain ties. 

Consider, however, what would happen if an arbitrarily large number of irrelevant at- 
tributes were to be added to a data set. By adding enough irrelevant attributes, one could 
force all the learned models to go astray. In this situation, one would expect that the error 
ratio should go to 1 as both the deterministic and multiple models approaches would perform 
at chance level. Hence, we predict that for large enough numbers of irrelevant attributes the 
error ratio would increase with increasing numbers of irrelevant attributes. This hypothesis 
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Figure 7. Comparison of error ratios with 0 added irrelevant binary attributes and 50 added irrelevant binary 
attributes. Learning method: stochastic hill-climbing; evidence combination method: Uniform Voting. 

Table 8. Error ratio as a function of number of added Boolean irrelevant attributes 
for small sample sizes (using ensembles of eleven stochastically-learned models; 
combined with Uniform Voting). The number below each data set identifier 
indicates the number of training examples. 

Number of irrel. KRK KRK 5% attr. Splice BC. Wisconsin Wine 
attributes 20 20 20 20 20 

0 1.00 0.98 1.00 0.68 0.44 
3 0.99 1.06 0.91 0.67 0.45 
20 1.08 1.01 0.92 0.68 0.59 
50 0.95 0.97 0.92 0.65 0.64 

is difficult to test with data sets of reasonable size because such data sets tend to have literals 
with high information gain and one needs exponentially many irrelevant attributes for an 

irrelevant attribute to have higher information gain purely by chance for reasonably-sized 

data sets. So, to test this hypothesis, we performed 100 trials with training sets of size 20. 

In particular, we were interested to see if the exceptionally low error ratio obtained on the 
wine data set could be made to increase with increasing numbers of irrelevant attributes. 
Table 8 shows that for very small training set sizes, adding irrelevant attributes makes no 

significant difference to error ratios in 4 domains and increases the error for the wine data 

set thus validating our hypothesis. 

In summary, the answer to the question posed in this section (+'How does increasing the 

number of irrelevant attributes affect the amount of error reduction?") is that error ratios 
initially decrease as irrelevant attributes are added thus providing an opportunity for the 
multiple models approach. However, beyond some point, adding irrelevant attributes will 
begin to hurt the multiple models approach and error ratios will begin increasing towards 
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T~tble 9. Effect of varying diversity on the tendency to make correlated errors (0~) and accuracy 
(learning method: stochastic hill-climbing; evidence combination method: Uniform Voting). 

Domain Accuracies Oe 

Bucket Bucket Bucket Bucket Bucket Bucket Bucket Bucket 
size size size size size size size size 

4 6 8 20 4 6 8 20 

LED-8 95.1 95.1 93.1 92.3 0.62% 0.62% 0.68% 0.71% 
KRK 100 93.9 93.1 93.0 92.1 1 . 1 0 %  2.46% 2.55% 2.94% 
Iris 94.4 94+3 94.5 94.5 1 . 9 3 %  1 . 7 4 %  1 . 5 9 %  1.57% 
Diabetes 73.9 74.3 74.1 74.2 8.09% 8.01% 7.95% 7.81% 
Splice 93.3 92.9 92.9 90.9 1 . 3 8 %  1 . 5 0 %  1 . 6 0 %  2.01% 

1. In the limit, neither the single model approach or the multiple models approach will be 
much use, and the error ratio will be 1. 

5.6. Effect of diversity 

In this section we explore the following question: 

Does increasing the diversity of the models necessarily lead to greater reduction in 
e r ro r ?  

This question is motivated by the conclusions in Kwok & Carter (1990) in which they show 
(on two domains) that ensembles consisting of syntactically more diverse decision trees are 
able to achieve lower error rates than ensembles consisting of less diverse decision trees. 

In this experiment, we modified the stochastic hill-climbing algorithm slightly by allowing 
the user to specify a fixed bucket size. Larger bucket sizes lead to ensembles whose members 
are more syntactically diverse. We chose a variety of domains for this study: LED-8 and 
KRK 100 are noise-free, Diabetes and Iris may contain class and attribute noise and the 
Splice domain may contain classes which can be succintly described with "m of n" rules 
(e.g. Spackman, 1988). Table 9 shows the accuracies obtained by combining eleven 
stochastically generated models using the Uniform Voting evidence combination method. 
Our hope is that increasing the bucket size will lead to an increase in ensemble accuracy. 
However, as Table 9 shows, increasing the bucket size does not always lead to an increase 
in ensemble accuracy. To achieve higher accuracy, the models should be diverse attd each 
model must be quite accurate. In fact, it is easy to produce uncorrelated errors by learning 
less accurate models. 

A more detailed examination of the results shows that many equally accurate models were 
learned for the Iris, Diabetes and Splice domains by increasing the bucket size. But for the 
noise-free, artificial concept data sets (Led-8 and "KRK 100") increasing the bucket size 
led to a few accurate models and many less accurate models. For LED and KRK, we know 
the target definitions so we know that all the relevant attributes are presented to the learning 
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algorithm. Maybe for these data sets, all the very accurate models that can be learned 
are syntactically similar so increasing syntactic diversity is not a good idea in this kind of 
data set. This experiment suggests that although theory prescribes evidence combination 
from all models in the model or hypothesis space (Buntine, 1990), in practice only a small 
number of models are learned and so it may be necessary to screen out less accurate models 
in order to maximize overall accuracy. 

To summarize, our experiments indicate that in order to minimize ensemble error, it is 
necessary to balance increased diversity with competence - ensuring the diverse members 
of the ensemble are all competent (accurate). The "hold-back" approach would seem to 
be an obvious approach. However, for some of the small data sets presented here, using a 
hold-back set may decrease accuracy since there would not be enough examples to learn 
good models. 

6. Previous work 

Breiman (in press; 1994) provides a characterization of learning algorithms which are 
amenable to the multiple models approach. He puts forward the notion of an "unstable" 
algorithm - an algorithm for which small perturbations in the training set will lead to 
significant differences in predicted classifications on an independent (test) set of examples. 
Breiman shows that decision-tree induction algorithms and neural-network algorithms are 
unstable whereas the basic nearest-neighbor algorithm is not. This work differs from ours in 
that we provide a characterization of domains for which the multiple models approach will 
be beneficial (many irrelevant attributes, low noise levels) whereas Breiman characterizes 
the learning algorithm. 

Schapire's Boosting algorithm (Schapire, 1990) is the only learning algorithm which 
explicitly attempts to learn models that make errors statistically independently. Boosting 
learns from an on-line "stream" of examples. Subsequent models are constructed on training 
sets that amplify the number of examples misclassified by earlier models. The idea is to 
concentrate on the difficult examples. However, Schapire's method could not be used to 
learn many models on the modest training set sizes used in this paper because the number of 
training examples required rapidly increases as a function of the accuracy of earlier models. 
Modified-boosting (Freund & Schapire, 1995) designed to work with small data sets has 
not been proved empirically and may end up concentrating noisy examples in subsequent 
training sets. 

The only previous work involving learning relational multiple models (apart from our 
own, Ali & Pazzani, 1995b) has been done by Kovacic (1994). Kovacic shows that learning 
multiple models by running mFOIL (Dzeroski, 1992) several times using simulated anneal- 
ing yields significantly lower error rates than mFOIL on the KRK and Finite-element mesh 
data sets. 

Previous work related to the effect of noise and multiple models includes that of Kovacic 
(1994) and Gams (1990). Our observation that error ratios asymptote to 1 as (class) noise 
is added is consistent with results tabulated in (Kovacic, 1994) and (Gams, 1990) although 
those authors did not explore the issue in detail as they did not attempt to explain the 
variation in error reduction from one domain to another. 
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Previous work on diversity and multiple models has been done by Kwok & Carter (1990) 
in which they showed that allowing the root of a decision tree to vary from model to model 
produces more diverse and more accurate ensembles than if variation is only allowed further 
down the tree. Our work builds on this by showing that in some situations one is forced to 
trade-offdiversity for accuracy - in such situations many syntactically-diverse and accurate 
models may not exist. Buntine (1990) also presents results in which option trees are able 
to achieve better error rates than ensembles of trees obtained by different way of pruning a 
single initial tree. He postulates that this is because different prunings do not lead to trees 
that are as diverse as those captured by the option-tree representation. 

7. Conclusions 

Our experiments confirmed previous work that using multiple descriptions lowers the gen- 
eralization error. Because our experiments used a large sample of data sets from the UCI 
repository we were able to find three data sets (not previously used in multiple models work) 
for which the multiple models approach offers striking error ratios: 1/7 for wine, 1/5 for 
tic-tac-toe and 1/2.5 for DNA. 

However, multiple models work in ways different to those we had anticipated. In particu- 
lar, they were better at reducing error on tasks which were already fairly accurate (reduced 
error for Tic-tac-toe from 1% to 0.2%) than they were at reducing error on noisy domains. 
Such noisy data sets may be called "data-limiting." However, when the limiting factor is not 
the noise or difficulty of the data, the multiple models approach provides an excellent way 
of achieving large reductions in error. One situation in which this occurs is for data sets with 
many irrelevant attributes. The information necessary to differentiate the classes is present 
in the data but the deterministic hill-climbing learning algorithm may have difficulty finding 
it. On such ("search-limiting") data sets, the multiple models approach does increasingly 
better than the single model as the number of irrelevant attributes is increased. We also 
find that the average number of gain ties experienced increases as the number of  irrelevant 
attributes increases. This confirms our earlier results that the multiple models approach 
does especially well when there are many gain ties. Beyond some point, however, adding 
irrelevant attributes begins to hurt the multiple models approach. In the limit, neither the 
single model approach or the multiple models approach will be much use, and the error 
ratio will be 1. 

We have shown that there is a substantial (linear) correlation between the amount of error 
reduction due to the use of multiple models and the degree to which the errors made by 
individual models are correlated. Therefore, we conclude that a major factor in explaining 
the variance in error reduction is the tendency of the learned models to make correlated 
errors. But why is it possible to learn models that do not make correlated errors for some 
domains and not for others? Part of the answer is that it is possible to learn models that make 
different kinds of errors for domains for which there are many ties in gain. To follow up on 
this, we tried to increase the number of gain ties for each data set by adding 50 irrelevant 
binary attributes to each data set. This increased the number of gain ties experienced 
and also produced greater reduction in error suggesting that an abundance of gain ties is 
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a problem for the single model hill-climbing learning method but an opportunity for the 
multiple models approach. 
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Appendix 1 

The appendix contains a table (Table 1.1) of accuracies for all four evidence combination 
methods crossed with the two multiple model learning methods and the single model, 
deterministic hill-climbing method. 

Appendix 2 

The posterior probability of a model, p(Tl£, cO, is computed as follows (this presentation 
follows that in Buntine, 1990): Using Bayes' rule, we can write: 

p(Tl£ , cO cx p(:~, c~T) x p(T) (2.1) 

p(T) is the prior probability of the model T. By further assuming that the training examples 
are independent given the model, we can write: 

N 

p(i,c~T) : H P(xi, c~lT ) 
/=1 

(2.2) 

where N denotes the size of the training set. Following Buntine, we assume that we 
can divide up the training set into subsets which correspond to different types of training 
examples (these can be different disjuncts or in Buntine's case, different leaves of a decision 
tree). Let there be V such subsets and let nj,k denote the number of training examples of 
class j in the k-th subset. Then we can write 

v c 

p(£,c]T) = H H 0~, ~ (2.3) 
k = l j = l  

where ~j,k represents the probability of generating a single example of class j in the k-th 
subset and C denotes the number of classes. One can then show (Buntine, 1990) that the 
contribution to the posterior from the k-th subset can be modeled by: 

Bc(nl,k + a, . . . ,  nc, k + a) (2.4) 
a c (  c~ ,  . . . , ~ ) 
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Table 1.1. The table below presents a compar i son  o f  methods  o f  genera t ing  models  and o f  evidence  combina t ion  

methods.  Each model  genera t ion  method  is represented by four co lumns  co r respond ing  to the evidence  combina-  

t ion methods.  They are, in order: Un i fo rm  Voting (U),  Bayes ian  C o m b i n a t i o n  (B), Dis t r ibut ion  S u m m a t i o n  (D) 

and L ike l ihood  C o m b i n a t i o n  (L). '+ '  indicates  a s igni f icant  (95% confidence)  increase in accuracy as compared  

to the s ingle  model  method:  "-" indicates  a s ignif icant  decline.  

Task Deterministic. single model Stochastic k-fold partition 
Hill-climbing Hill-climbing Learning 

U B D L U B D L U B D L 

led-8i 85.2 91.7 91.0 892 + 97.0 + 97.9 + 97.7 + 98.0 + 97.2 + 97.8 + 98.0 + 97.9 
led-17i 765 86.0 85.0 8~5 + 95.4 + 96.3 + 96.2 + 96.4 + 94.9 + 956 + 95.1 + 955 
TTT 98.7 99.0 98.9 99.0 + 99.7 + 99.8 + 99.5 + 99.8 + 997 + 99.8 + 99.5 + 99.6 
krkp 92.5 94.5 94.5 94.5 + 95.3 952 + 954  + 95.5 + 95 0 + 95.4 + 95.4 + 953 
KRK IO0e 94.7 95.2 95.2 95.1 95.5 95 6 94.6 95 6 955 95.9 94.3 95.7 
KRK 200e 97.6 98.3 983 98.3 + 98.8 98.9 982  98.9 + 987 98.8 98.1 98.8 

K R K I 6 0 e 5 a  90.8 91.9 920  91.9 925 92.5 91.8 93.2 + 9 3 0  92.4 92.3 935 
KRK 320e 5a 93.4 94.8 948 948 + 94.9 95.0 94.9 95.8 + 95.8 94.9 95.4 + 96.6 
KRK 160e 20c 88.6 89.6 89.6 896 90.3 90.5 90.7 91.1 + 90.9 90.2 + 91.4 91.3 
KRK 320e 20c 91.7 92.5 92.6 92.5 92.6 92.8 93.0 93.4 + 93.5 92.8 93.6 + 94.1 
led 20a 92.7 94.3 93.0 94.3 93.7 94.3 93.7 94.7 940  94 3 94.3 95. 
led 40a 81.0 85.7 82.0 85.0 84.7 87.0 85.3 877 86.0 84.7 85.3 86.7 

dna 59.4 67.9 679 67.9 + 868 + 906  + 877 + 86.8 + 84.0 + 80.2 + 85.8 + 85.8 
splice 824  853 85.3 853 +92.5 +91.1 +92.3 + 9 2 5  +91.0 + 9 0 6  +91.0 + 9 0 9  

mushroom 97.4 97.4 97.5 974 98.0 98.0 96.8 97.3 981 97.4 -95.5 975 
hypothyroid 97.4 97.4 97.4 95 3 97.8 97,6 97.4 + 97,8 97.8 97.9 97.7 + 97.5 
wisc 92.5 93.5 93.6 935 +95.8 +95.5 +94.9 +96.1 +95.1 +95.1 937 +95.5 
voting 93.1 93.5 93,4 93.5 + 942 94. I + 94.6 + 94.4 + 94.4 94. I + 94.6 + 94.5 
wine 92.3 93.3 93.4 93.3 + 98.7 + 98.2 + 98.5 + 98.7 + 97.0 + 97 1 + 97.5 + 96.5 
iris 90.2 91.4 91.1 91.4 + 92.8 926 92.2 924  908  915 90,1 91.7 
soybean 84.6 88.5 88.5 88.5 + 91.6 + 91 6 + 91 0 + 922 + 90.8 + 90.8 + 90.3 + 91.5 
colic 82.3 83.2 833 83.2 + 867 + 86.0 + 87.7 + 87.0 + 87.2 + 86.1 + 86.4 + 87 8 
hepa. 78.8 78.9 78+8 788 80.2 789  79.4 79.5 79.8 78.9 78 0 79.1 
lymph 76.6 78.1 78.5 77.9 + 83.8 + 82.6 + 82.4 + 83.8 + 78.9 80.4 803 80.1 
audio. 71.5 72.1 72.0 721 +80.5 +79.3 +78.3 +80.3 +78.3 +78.3 +77.0 +78.7 
diabetes 70.6 72.0 72. I 72.0 73.2 72.8 74.4 73.6 73.4 72.4 74.5 73.8 
cancer 69.9 69.9 69.8 69.9 68.6 68.1 70.2 -67.3 69.4 685 + 72.0 685 
heart 54.2 54.3 54.2 54.3 56.0 557 + 57.6 55 I + 563 549 + 57.4 55.3 
prim. 37.5 38.8 39.2 388 387 403 + 4 2 8  383 373 39.1 41.0 -361 

where Bc is the C-dimensional beta function and o. is a parameter which denotes the 
"weight" (in number of examples) that should be associated with the prior estimate (1/C) 
of Oj.k: Putting equations 2.3 and 2.4 together, we get: 

V BC(nl ,  # + o~, . . . , lzc.k + c_~) 

k = l  

(2.5) 

Since, p(£, c~T) can be computed, then using Equation 2.1, the posterior probability, 
p(Tf£, ~ can be calculated, so (using Equation 3) the final quantity of interest, the ex- 
pected posterior probability, can be calculated. 

The foregoing discussion is enough to calculate posterior probabilities of models that are 
decision trees. It depends on the observation that the training examples can be partitioned 
into V disjoint subsets. We adapt it for the types of models considered in this paper in which 
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a separate description is learned for each class by observing that such a model partitions 
the training examples C (number of classes) times. This is because each class description 
partitions all the training examples since each description contains a "default rule" - one 
whose body is the literal true. Then in order to compute the posterior probability of such a 
model, we simply take the geometric average of the posterior probabilities of all the class 
descriptions: 

p(Tl i ,  c-) ~ p(Y) × 1--[ B(nx#j + ~, n2#y + ~) 
i=a ~jeR, B(c~, ~) (2.6) 

R~ denotes the i-th class description in model T and i j  indexes individual rules. Since, 
within the class description for the i-th class, classes are grouped into two pseudo-classes 
(class i is called the "positive" class, all the other classes are combined into the "negative" 
class), we can use k = 2 in Equation 2.4 to obtain the Beta function terms in Equation 2.6. 

Notes 

1. Actually, we use a form of clause that is an extension of a Horn clause since we allow negated literals in the 
body of clauses and Horn clauses do not. 

2. Although FO1L is an algorithm that learns class descriptions consisting of relational (first-order) clauses, in 
this paper we are not concerned with issues pertaining to relational learning or inductive logic programming 
(e.g. Dzeroski & Bratko, 1992). We present results on the interaction of inductive logic programming and 
learning multiple models in (Ali & Pazzani, 1995b). 

3. Ali & Pazzani (1995b) presents details on how to deal with recursive concepts in the "'single, most reliable 
rule" framework. 

4. King-Rook-King is a fully determinate domain so it can be converted into attribute-value form as is done by 
Lavrac & Dzeroski (1992). However, in this paper, that knowledge is not utilized by the learning programs 
so the domain has to be treated as a relational domain. FOIL and HYDRA can also run on non-determinate 
domains. 

5. x% class noise means that the class assignments of x% of the examples were randomly reassigned - for a two 
class problem, this means 2% of the examples will bear incorrect class labels. 

6. The r e's between E~ and 0r without the significant error reduction restriction are: 50.7% (Uniform), 33.7% 
(Bayes), 6.8% (Distribution) and 31.6% (Likelihood). The Mushroom data set causes a problem for the 
Distribution combination strategy because both the ensemble error and multiple models error are close to 0 so 
the ratio cannot be reliably estimated. The r 2 for Distribution increases to 21.1% without Mushroom. 
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