Skip to main content
Log in

An integrated approach to hydropower impact assessment. I. Environmental features of some Norwegian hydro-electric lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This paper launches concepts instrumental to environmental impact assessment (EIA) studies on hydropower schemes and lake regulations. Norwegian hydro-electric lakes (hydrolakes) and their environmental features are described, and evaluated against non-manipulated waters. A tentative classification of hydrolakes vs. natural waters is proposed. The need for a multiple approach to habitat classification is emphasized. Recommendations for future biological impact assessment approaches are suggested.

Hydrolakes differ broadly from natural lakes by combining physical features not ordinarily co-occurring in non-manipulated water bodies. Storage type hydrolakes (reservoirs) feature winter draw-downs and enhancement of yearly level fluctuations; whereas other types of hydro-electric lakes have elevated water levels throughout winter. Hydrochemistry and optics of the studied hydrolakes exhibited no clear differences to non-impacted Norwegian inland waters. All lakes had signs of sublacustrine erosional activity related to internal waves and thermocline movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aass, P., 1973. Some effects of lake impoundment on salmonids in Norwegian hydroelectric reservoirs. Abstr. Uppsala Diss. 234, 14 pp.

  • Aass, P., 1986. Utvidet senkning i regulerte innsjøef - effekt på fisket. [In Norwegian]. Fauna 39: 85–91.

    Google Scholar 

  • Baxter, R. M., 1977. Environmental effects of dams and impoundments. Annu. Rev. Ecol. Syst. 8: 255–283.

    Google Scholar 

  • Bodaly, R. A., D. M. Rosenberg, M. N. Gaboury, R. E. Hecky, R. W. Newbury & K. Patalas, 1984. Ecological effects of hydroelectric development in Northern Manitoba, Canada: The Churchill — Nelson River Diversion. In Sheehan, P. J., D. R. Miller, G. C. Butler & P. Bourdeau (eds), Effects of Pollutants at the Ecosystem level. Wiley, London: 274–309.

    Google Scholar 

  • Brillinger, D. R., 1981. Time Series: Data Analysis and Theory. Holden-Day, San Francisco, 540 pp.

    Google Scholar 

  • Canfield, D. E., K. A. Langeland, S. B. Linda & W. T. Hailer, 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes. J. Aquat. Plant Manage. 23: 25–28.

    Google Scholar 

  • Canter, L. W., 1985. Environmental impact of water resources projects. Lewis Publishers, Chelsea, Michigan, 352 pp.

    Google Scholar 

  • Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci. 42: 701–709.

    Google Scholar 

  • Cyberski, J. 1973. Erosion of banks of storage reservoirs in Poland. Hydrol. Sci. Bull. 18: 317–320.

    Google Scholar 

  • Duarte, C. M., J. Kalff & R. H. Peters, 1986. Patterns in biomass and cover of aquatic macrophytes in lakes. Can. J. Fish. Aquat. Sci. 43: 1900–1908.

    Google Scholar 

  • Gerritsen, J. & B. C. Patten, 1985. System theory formulation of ecological disturbance. Ecol. Modelling 29: 383–397.

    Google Scholar 

  • Godshalk, G. L. & J. W. Barko, 1985. Vegetative succession and decomposition in reservoirs. In Gunnison, D. (ed.), Microbial Processes in Reservoirs. Junk, Dordrecht: 59–77.

    Google Scholar 

  • Grahn, O., 1985. Macrophyte biomass and production in Lake Gårdsjön — an acidified clearwater lake in SW Sweden. Ecol. Bull. 37: 203–212.

    Google Scholar 

  • Granju, J. P., J. Garrison & J. Price, 1973. Hydraulic transients in man-made lakes. In: Ackermann, W. C., G. F. White & E. B. Worthington (eds), Man-made Lakes: Their Problems and Environmental Effects. Geophysical Monograph Series 17, American Geophysical Union, Washington, D.C.: 320–326.

    Google Scholar 

  • Grelsson, G., 1986. Vegetational changes on two eroding banks of a short-term regulated river reservoir in northern Sweden. Nord. J. Bot. 5: 581–614.

    Google Scholar 

  • Grimås, U., 1962. The effect of increased water level fluctuation upon the bottom fauna in Lake Blåsjön, northern Sweden. Rept. Inst. Freshwater. Res. Drottningholm 44: 14–41.

    Google Scholar 

  • Grime, J. P., 1979. Plant strategies and vegetation processes. Wiley, Chichester, 222 pp.

    Google Scholar 

  • Håkanson, L., 1977. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Google Scholar 

  • Håkanson, L., 1981. On lake bottom dynamics — the energytopography factor. Can. J. Earth Sci. 18: 899–909.

    Google Scholar 

  • Håkanson, L., 1982. Bottom dynamics of lakes. Hydrobiologia 91: 9–22.

    Google Scholar 

  • Hecky, R. E., 1984. Thermal and optical characteristics of Southern Indian Lake before, during, and after impoundment and Churchill River diversion. Can. J. Fish. Aquat. Sci. 41: 579–590.

    Google Scholar 

  • Hecky, R. E. & G. K. McCullough, 1984. Effect of impoundment and diversion on the sediment budget and nearshore sedimentation of Southern Indian Lake. Can. J. Fish. Aquat. Sci. 41: 567–578.

    Google Scholar 

  • Hecky, R. E., R. W. Newbury, R. A. Bodaly, K. Patalas & D. M. Rosenberg, 1984. Environmental impact prediction and assessment: the Southern Indian Lake experience. Can. J. Fish. Aquat. Sci. 41: 720–732.

    Google Scholar 

  • Holtan, H., 1973. Temperature distribution and water circulation in Lake Mjøsa. Proc. Helsinki Symposium. IAHS Publ. 109: 42–48.

    Google Scholar 

  • Howard-Williams, C. & W. F. Vincent, 1984. Optical properties of New Zealand lakes. I. Attenuation, scattering, and a comparison of downwelling and scalar irradiances. Arch. Hydrobiol. 99: 318–330.

    Google Scholar 

  • Huston, M., 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–101.

    Google Scholar 

  • Hutchinson, G. E., 1957. A Treatise on Limnology. I:1. Geography, Physics, and Chemistry. Wiley, New York, 672 pp.

    Google Scholar 

  • Hutchinson, G. E., 1975. A Reatise on Limnology. 3. Limnological Botany. Wiley, New York, 660 pp.

    Google Scholar 

  • Jenkins, G. M. & D. G. Watts, 1968: Spectral analysis and its applications. Holden-Day, San Francisco, 525.

    Google Scholar 

  • Johnson, T. C., 1980. Sediment redistribution by waves in lakes, reservoirs and embayments. Proc. Symposium Surface Water Impoundments, Minneapolis 1980, ASCE Publ.: 1307–1317.

  • Kachugin, E. G., 1966. The destructive action of waves on the water reservoir banks. Proc. Symposium de Garda, IAHS Publ. 70: 511–517.

    Google Scholar 

  • Keddy, P. A., 1982. Quantifying within-lake gradients of wave energy: interrelationships of wave energy, substrate particle size and shoreline plants in Axe Lake, Ontario. Aquat. Bot. 14: 41–58.

    Google Scholar 

  • Keddy, P. A., 1983. Shoreline vegetation in Axe lake, Ontario: effects of exposure on zonation patterns. Ecology 64: 331–344.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Systems. Cambridge University Press, Cambridge, 401 pp.

    Google Scholar 

  • Kirk, R. M. & P. R. Henriques, 1986. Physical and biological aspects of shoreline change: Lake Ohau, South Island, New Zealand. J. Shoreline Manage. 2: 305–326.

    Google Scholar 

  • Komar, P. D., 1976. Beach Processes and Sedimentation. Prentice-Hall, Englewood Cliffs, New Jersey, 429 pp.

    Google Scholar 

  • Kondrachev, N. E., 1966. Bank formation of newly established reservoirs. Proc. Symposium de Garda, IAHS Publ. 70: 804–811.

    Google Scholar 

  • Kuusisto, E. [E.], 1984. Filling in the gap between hydrology and hydrobiology — the viewpoint of a hydrologist. Aqua Fenn. 14: 155–169.

    Google Scholar 

  • Kuusisto, E. E., 1985. Lakes: Their physical aspects. In J. C. Rodda (ed.), Facets of Hydrology, II. Wiley, Chichester: 153–181.

    Google Scholar 

  • Lindström, T., 1973. Life in a lake reservoir: fewer options, decreased production. Ambio 2: 145–153.

    Google Scholar 

  • Liu, P. C., 1985. Testing parametric correlations for wind waves in the Great Lakes. J. Great Lakes Res. 11: 478–491.

    Google Scholar 

  • Lohammar, G., 1965. The vegetation of Swedish lakes. Acta Phytogeogr. Suec. 50: 28–48.

    Google Scholar 

  • Newbury, R. W. & G. K. McCullough, 1984. Shoreline erosion and restabilization on the Southern Indian Lake reservoir. Can. J. Fish. Aquat. Sci. 41: 558–565.

    Google Scholar 

  • Nilsson, C., 1981. Dynamics of the shore vegetation of a North Swedish hydro-electric reservoir during a 5-year period. Acta Phytogeogr. Suec. 69: 1–94.

    Google Scholar 

  • Nilsson, C., 1984. Effects of stream regulation on riparian vegetation. In Lillehammer, A. & S. J. Saltveit (eds), Regulated rivers. Universitetsforlaget, Oslo: 93–106.

    Google Scholar 

  • Nisbet, R. M. & W. S. C. Gurney, 1982. Modelling Fluctuating Populations. Wiley, Chichester, 379 pp.

    Google Scholar 

  • Magadza, C. H. D., 1979. Physical and chemical ecology of six hydroelectric lakes on the Waikato River, 1970–72. New Zeal. J. Mar. Freshwater. Res. 13: 561–572.

    Google Scholar 

  • Matarzin, Y. M. & I. A. Pechorkin, 1973. The role of hydrological and geological processes in the formation of shores and beds of large storage reservoirs. Proc. Helsinki Symposium, IAHS Publ. 109: 423–427.

    Google Scholar 

  • Mortimer, C. H., 1961. Motion in thermoclines. Verh. int. Ver. Limnol. 14: 79–82.

    Google Scholar 

  • Mortimer, C. H., 1974. Lake hydrodynamics. Mitt. int. Ver. Limnol. 20: 124–197.

    Google Scholar 

  • Patalas, K., 1984. Mid-summer mixing depths of lakes of different latitudes. Verh. int. Ver. Limnol. 22: 97–102.

    Google Scholar 

  • Pimm, S. L., 1984. The complexity and stability of ecosystems. Nature (London) 307: 321–326.

    Google Scholar 

  • Quennerstedt, N., 1958. Effects of water level fluctuations on lake vegetation. Verh. int. Ver. Limnol. 13: 901–906.

    Google Scholar 

  • Ragotzkie, R. A., 1978. Heat budgets of lakes. In Lerman, A. (ed.), Lakes-chemistry, geology, physics. Springer-Verlag, New York: 1–19.

    Google Scholar 

  • Rohde, W., 1964. Effects of impoundment on water chemistry and plankton in Lake Ransaren (Swedish Lappland). Verh. int. Ver. Limnol. 15: 437–443.

    Google Scholar 

  • Rørslett, B., 1984. Environmental factors and aquatic macrophyte response in regulated lakes — a statistical approach. Aquat. Bot. 19: 199–220.

    Google Scholar 

  • Rørslett, B., 1985a. Regulation impact on submerged macrophytes in the oligotrophic lakes of Setesdal, South Norway. Verh. int. Ver. Limnol. 22: 2927–2936.

    Google Scholar 

  • Rørslett, B., 1985b. Death of submerged macrophytes — actual field observations and some implications. Aquat. Bot. 22: 7–19.

    Google Scholar 

  • Rørslett, B., 1987a. Statistics of the underwater light field: an empirical model. Int. Revue ges. Hydrobiol. 72: 1–25.

    Google Scholar 

  • Rørslett, B., 1987b. A generalized spatial niche model for aquatic macrophytes. Aquat. Bot. 29: 63–81.

    Google Scholar 

  • Rørslett, B., 1987c. Niche statistics of submerged macrophytes in Tyrifjord, a large oligotrophic Norwegian lake. Arch. Hydrobiol. (in press).

  • Rørslett, B., 1987d. Niche extension of aquatic macrophytes in hydrolakes: predictive assessment of environmental impacts. Submitted to Int. Revue ges. Hydrobiol.

  • Rørslett, B. & M. Agami, 1987. Downslope limits of aquatic macrophytes: a test of the transient niche hypothesis. Aquat. Bot. 29: 83–95.

    Google Scholar 

  • Rørslett, B., D. Berge & S. W. Johansen, 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340.

    Google Scholar 

  • Rørslett, B., N. W. Green & K. Kvalvågnæs, 1978. Stereophotography as a tool in aquatic biology. Aquat. Bot. 4: 73–81.

    Google Scholar 

  • Rott, E., 1986. The light climate of a small deep lake (Piburger See, Austria) and its influence on phytoplankton production. Arch. Hydrobiol. 107: 89–117.

    Google Scholar 

  • Rustamov, S. G. & S. B. Kchalilov, 1973. The shore dynamics of a mountain plain reservoir of the Azerbaijan SSR. Proc. Helsinki Symposium, IAHS Publ. 109: 417–422.

    Google Scholar 

  • Ryder, R. A., 1978. Ecological heterogeneity between north-temperate reservoirs and glacial lake systems due to differing succession rates and cultural uses. Verh. int. Ver. Limnol. 20: 1568–1574.

    Google Scholar 

  • Rykiel, E. J., 1985. Towards a definition of ecological disturbance. Austr. J. Ecol. 10: 361–365.

    Google Scholar 

  • Sand-Jensen, K. & M. Søndergaard, 1981. Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Revue ges. Hydrobiol. 66: 529–552.

    Google Scholar 

  • Sly, P. G., 1978. Sedimentary processes in lakes. In Lerman, A. (ed.), Lakes — chemistry, geology, physics. Springer-Verlag, New York: 65–89.

    Google Scholar 

  • Smith, I. R. & I. J. Sinclair, 1972. Deep water waves in lakes. Freshwat. Biol. 2: 387–399.

    Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12: 37–125.

    Google Scholar 

  • Statistisk Sentralbyrå, 1983. Naturressurser 1982. (Norwegian Nature Resources 1982. In Norwegian). Central Bureau of Statistics of Norway, Report 83/1: 1–62.

    Google Scholar 

  • Thunmark, S., 1931. Der See Fiolen und seine Vegetation. Acta Phytogeogr. Suec. 2: 1–198.

    Google Scholar 

  • Vogt, H., 1978. An ecological and environmental survey of the humic man-made lakes in Finland. Aqua Fenn. 8: 12–24.

    Google Scholar 

  • Wassén, G., 1966. Gardiken. Vegetation und Flora eines lapplän-dischen Seeufers. K. Sv. Vetenskapsakad. Avh. Naturskyddsärend 22: 1–142.

    Google Scholar 

  • Welch, P. D., 1967. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electro-acoustics, Vol. AU-15, no.2, June 1967.

  • Wright, R. F., 1984. Water chemistry: Interaction of stream regulation and acid precipitation. In Lillehammer, A. & S. J. Saltveit (eds), Regulated Rivers. Universitetsforlaget, Oslo: 71–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rørslett, B. An integrated approach to hydropower impact assessment. I. Environmental features of some Norwegian hydro-electric lakes. Hydrobiologia 164, 39–66 (1988). https://doi.org/10.1007/BF00014349

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014349

Key words

Navigation