Skip to main content

MIMO Systems and Antennas for Terminals

  • Living reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

MIMO technology has facilitated tremendous performance improvements in wireless communications, allowing the data rate to increase linearly with the number of antennas used, at no additional expense in transmit power or spectrum. However, the tremendous performance gain can only be achieved by multi-antenna designs that provide low coupling and correlation, as well as high total efficiency. Such design criteria are especially challenging for small terminal devices. The situation becomes even more complicated with increasing bandwidth requirements for terminals in existing and upcoming mobile communication standards. Beginning with the history of MIMO terminal antenna and its evaluation methods, this chapter is geared towards providing useful guidelines to researchers and practitioners alike on how to design efficient MIMO antennas for terminals. The focus is on decoupling and decorrelation techniques, including RF circuit level decoupling, antenna structure decoupling and characteristic mode based decoupling. Future directions in MIMO antenna design and some corresponding open problems are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • 3GPP TS 36.101 (2014) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception. Version 11.9.0, Release 11

    Google Scholar 

  • Ahn D, Park JS, Kim CS, Qian Y, Itoh T (2001) A design of the low pass filter using the novel microstrip defected ground plane structure. IEEE Trans Microwave Theory Tech 49:86–93

    Article  Google Scholar 

  • Alsath MGN, Kanagasabai M, Balasubramanian B (2013) Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna array. IEEE Antennas Wirel Propag Lett 12:15–18

    Article  Google Scholar 

  • Antonino-Daviu E, Cabedo-Fabres M, Ferrando-Bataller M, Herranz-Herruzo JI (2004) Analysis of the coupled chassis-antenna modes in mobile handsets. IEEE Antennas Propag Soc Int Symp 3:2751–2754

    Google Scholar 

  • Antonino-Daviu E, Cabedo-Fabres M, Ferrando-Bataller M, Valero-Nogueira A, Martinez-Vazquez M (2005) Novel antenna for mobile terminals based on the chassis-antenna coupling. IEEE Antennas Propag Soc Int Symp 1A:503–506

    Google Scholar 

  • Ban YL, Yang S, Chen Z, Kang K, Li JL (2014) Decoupled planar WWAN antennas with T-shaped protruded ground for smartphone applications. IEEE Antennas Wirel Propag Lett 13:482–486

    Google Scholar 

  • Best SR (2009) The significance of ground-plane size and antenna location in establishing the performance of ground-plane-dependent antennas. IEEE Antennas Propag Mag 51:29–42

    Article  Google Scholar 

  • Blanch S, Romeu J, Corbella I (2003) Exact representation of antenna system diversity performance from input parameter description. Electron Lett 39:705–707

    Article  Google Scholar 

  • Cabedo-Fabres M, Valero-Nogueira A, Antonino-Daviu E, Ferrando-Bataller M (2006) Modal analysis of a radiating slotted PCB for mobile handsets. In: 1st European conference on antennas and propagation (EuCAP 2006), Nice, France

    Google Scholar 

  • Chaudhury SK, Schroeder WL, Chaloupka HJ (2007) Multiple antenna concept based on characteristic modes of mobile phone chassis. In: 2nd European conference on antennas and propagation(EUCAP2007), Edinburgh, UK

    Google Scholar 

  • Chebihi A, Luxey C, Diallo A, Thuc P, Staraj R (2008) A novel isolation technique for closely spaced PIFAs for UMTS mobile phones. IEEE Antennas Wirel Propag Lett 7:665–668

    Article  Google Scholar 

  • Chen SC, Wang YS, Chung SJ (2008) A decoupling technique for increasing the port isolation between two strongly coupled antennas. IEEE Trans Antennas Propag 56:3650–3658

    Article  Google Scholar 

  • Chiu CY, Cheng CH, Murch RD, Rowell CR (2007) Reduction of mutual coupling between closely-packed antenna elements. IEEE Trans Antennas Propag 55:1732–1738

    Article  Google Scholar 

  • Chung K, Yoon JH (2007) Integrated MIMO antenna with high isolation characteristics. IET Electron Lett 43:199–201

    Article  Google Scholar 

  • Coetzee JC, Yu Y (2008a) Closed-form design equation for decoupling networks of small arrays. Electron Lett 44:1441–1442

    Article  Google Scholar 

  • Coetzee JC, Yu Y (2008b) Port decoupling for small arrays by means of an eigenmode feed network. IEEE Trans Antennas Propag 56:1587–1593

    Article  Google Scholar 

  • Costa KQ, Dmitriev V, Nascimento DC, Lacava JCS (2007) Broadband L-porbe fed patch antenna combined with passive loop elements. IEEE Antennas Wirel Propag Lett 6:100–102

    Article  Google Scholar 

  • Diallo A, Luxey C, Thuc PL, Staraj R, Kossiavas G (2006) Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands. IEEE Trans Antennas Propag 54:3063–3074

    Article  Google Scholar 

  • Diallo A, Luxey C, Thuc PL, Staraj R, Kossiavas G (2008) Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals. IET Microw Antennas Propag 2:93–101

    Article  Google Scholar 

  • Dossche S, Blanch S, Romeu J (2004) Optimum antenna matching to minimise signal correlation on a two-port antenna diversity system. Electron Lett 40:1164–1165

    Article  Google Scholar 

  • Dossche S, Blanch S, Romeu J (2005) Decorrelation of a closely spaced four element antenna array. IEEE Antennas Propag Soc Int Symp 1:803–806

    Google Scholar 

  • Elsheakh DA, Elsadek HA, Abdalllah EA, Iskander MF, Elhenawy H (2010) Low mutual coupling 2 × 2 microstrip patch array antenna by using novel shapes of defect ground structure. Microw Opt Technol Lett 52:1208–1215

    Article  Google Scholar 

  • Ethier J (2008) MIMO antenna design using characteristic mode concepts. Master’s thesis, University of Ottawa

    Google Scholar 

  • Falconer DD, Adachi F, Gudmundson B (1995) Time division multiple access methods for wireless personal communications. IEEE Commun Mag 33:50–57

    Article  Google Scholar 

  • Gao Y, Chen X, Ying Z, Parini CG (2007) Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminals. IEEE Trans Antennas Propag 53:3433–3441

    Article  Google Scholar 

  • Garbacz RJ (1968) A generalized expansion for radiated and scattered fields. PhD thesis, Department of Electrical Engineering, Ohio State University

    Google Scholar 

  • Garbacz RJ, Turpin R (1971) A generalized expansion for radiated and scattered field. IEEE Trans Antennas Propag 19:662–668

    Article  Google Scholar 

  • Gesbert D, Shafi M, Shiu DS, Smith PJ, Naguib A (2003) From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J Sel Areas Commun 21:281–302

    Article  Google Scholar 

  • Guha D, Biswas M, Antar YMM (2005) Microstrip patch antennas with defected ground structure for cross polarization suppression. IEEE Antennas Wirel Propag Lett 4:455–458

    Article  Google Scholar 

  • Guha D, Biswas S, Joseph T, Sebastian MT (2008) Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas. Electron Lett 44:836–837

    Article  Google Scholar 

  • Hallbjörner P (2005) The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas. IEEE Antennas Wirel Propag Lett 4:97–99

    Article  Google Scholar 

  • Harrington RF, Mautz JR (1971) Theory of characteristic modes for conducting bodies. IEEE Trans Antennas Propag 19:622–628

    Article  Google Scholar 

  • Harrington RF, Mautz JR, Chang Y (1972) Characteristic modes for dielectric and magnetic bodies. IEEE Trans Antennas Propag 20:194–198

    Article  Google Scholar 

  • Huang SY, Lee YH (2009) A compact E-shaped patterned ground structure. IEEE Trans Microwave Theory Tech 57:657–665

    Article  Google Scholar 

  • Hsu CC, Lin KH, Su HL (2011) Implementation of broadband isolator using metamaterial-inspired resonators and a T-shaped branch for MIMO antennas. IEEE Trans Antennas Propag 59:3936–3939

    Article  MathSciNet  Google Scholar 

  • Iglesias ER, Teruel OQ, Sanchez LI (2008) Mutual coupling reduction in patch antenna arrays by using a planner EBG structure and a multilayer bioelectric substrate. IEEE Trans Antennas Propag 56:1648–1655

    Article  Google Scholar 

  • Iglesias ER, Teruel OQ, Sanchez LI (2009) Planar soft surface and their application to mutual coupling reduction. IEEE Trans Antennas Propag 57:3852–3859

    Article  Google Scholar 

  • Inclan-Sanchez L, Roy JLV, Iglesias ER (2007) High isolation proximity coupled multilayer patch antenna for dual-frequency operation. IEEE Trans Antennas Propag 56:1180–1183

    Article  Google Scholar 

  • Kermoal JP, Schmacher L, Pedersen KI, Mogensen PE, Frederiksen F (2002) A stochastic MIMO radio channel model with experimental validation. IEEE J Sel Areas Commun 20:1211–1226

    Article  Google Scholar 

  • Kin CS, Lim JS, Nam S, Kang KY, Ahn D (2002) Equivalent circuit modeling of spiral defected ground structure for microstrip line. Electron Lett 38:1109–1120

    Article  Google Scholar 

  • Kishor KK, Hum SV (2013) A two-port chassis-mode MIMO antenna. IEEE Antennas Wirel Propag Lett 12:690–693

    Article  Google Scholar 

  • Kishor KK, Hum SV (2014) A pattern reconfigurable chassis-mode MIMO antenna. IEEE Trans Antennas Propag 62:3290–3298

    Article  Google Scholar 

  • Kobayashi K, Chiba K, Takami T (1994) 1.5 GHz band portable telephone for personal digital cellular system. In: Proceedings of the IEEE 44th vehicular technology conference, Stockholm, Sweden, vol 1, pp 508–511

    Google Scholar 

  • Kokkinos T, Liakou E, Feresidis AP (2008) Decoupling antenna elements of PIFA arrays on handheld devices. Electron Lett 44:1442–1444

    Article  Google Scholar 

  • Lau BK, Andersen JB (2007) An antenna system and a method for operating an antenna system. PCT Filed (Pub. No. WO/2008/030165)

    Google Scholar 

  • Lau BK, Andersen JB (2009) Unleashing multiple antenna systems in compact terminal devices. In: International workshop on antennas technology, Santa Monica

    Google Scholar 

  • Lau BK, Andersen JB (2012) Simple and efficient decoupling of compact arrays with parasitic scatterers. IEEE Trans Antennas Propag 60:464–472

    Article  MathSciNet  Google Scholar 

  • Lee CH, Chen SY, Hsu P (2009) Integrated dual planar inverted-F antenna with enhanced isolation. IEEE Antennas Wirel Propag Lett 8:963–965

    Article  Google Scholar 

  • Lee B, Harackiewicz FJ, Wi H (2014) Closely mounted mobile handset MIMO antenna for LTE 13 band application. IEEE Antennas Wirel Propag Lett 13:411–414

    Article  Google Scholar 

  • Li H, Xiong J, He S (2009a) A compact MIMO antenns system of four elements with similar radiation characteristics and isolation structure. IEEE Antennas Wirel Propag Lett 8:1107–1110

    Article  Google Scholar 

  • Li H, Xiong J, He S (2009b) Extremely compact dual-band PIFAs for MIMO application. Electron Lett 45:869–870

    Article  Google Scholar 

  • Li H, Xiong J, Ying Z, He S (2010) High isolation compact four-port MIMO antenna systems with built-in filters as isolation structure. In: European conference on antennas and propagation (EUCAP), Barcelona, Spain

    Google Scholar 

  • Li H, Tan Y, Lau BK, Ying Z, He S (2012a) Characteristic mode based tradeoff analysis of antenna-chassis interactions for multiple antenna terminals. IEEE Trans Antennas Propag 60:490–502

    Article  Google Scholar 

  • Li H, Lau BK, Ying Z, He S (2012b) Decoupling of multiple antennas in terminals with chassis excitation using polarization diversity, angle diversity and current control. IEEE Trans Antennas Propag 60:5947–5957

    Article  Google Scholar 

  • Li H, Lin X, Lau BK, He S (2013a) Equivalent circuit based calculation of signal correlation in lossy MIMO antennas. IEEE Trans Antennas Propag 61:5214–5222

    Article  MathSciNet  Google Scholar 

  • Li H, Miers Z, Lau BK (2013b) Generating multiple characteristic modes below 1 GHz in small terminals for MIMO antenna design. In: Proceedings of the IEEE international symposium on antennas and propagation, Lake Buena Vista

    Google Scholar 

  • Li H, Miers Z, Lau BK (2014) Design of orthogonal MIMO handset antennas based on characteristic mode manipulation at frequency bands below 1 GHz. IEEE Trans Antennas Propag 62:2756–2766

    Article  Google Scholar 

  • Lim S, Ling H (2010) Design of electrically small, pattern reconfigurable Yagi antenna. Electron Lett 43:1326–1327

    Article  Google Scholar 

  • Lin KC, Wu CH, Lai CH, Ma TG (2012a) Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines. IEEE Trans Antennas Propag 60:5118–5128

    Article  MathSciNet  Google Scholar 

  • Lin X, Li H, He S (2012b) A decoupling technique for increasing the port isolation between two closely packed antennas. In: Proceedings of the IEEE antennas and propagation society international symposium, Chicago, US

    Google Scholar 

  • Ling X, Li R (2011) A novel dual band MIMO antenna array with low mutual coupling for portable wireless devices. IEEE Antennas Wirel Propag Lett 10:1039–1042

    Article  Google Scholar 

  • Mak ACK, Rowel CR, Murch RD (2008) Isolation enhancement between two closely packed antennas. IEEE Trans Antennas Propag 56:3411–3419

    Article  Google Scholar 

  • Martens R, Safin E, Manteuffel D (2010) Inductive and capacitive excitation of the characteristic modes of small terminals. In: EUCAP2010, Barcelona

    Google Scholar 

  • Miers Z, Li H, Lau BK (2013) Design of bandwidth enhanced and multiband MIMO antennas using characteristic modes. IEEE Antennas Wirel Propag Lett 12:1696–1699

    Article  Google Scholar 

  • Miers Z, Li H, Lau BK (2014) Design of bezel antennas for multiband MIMO terminals using characteristic modes. In: Proceedings of the 5th European conference on antennas and propagation (EUCAP), The Hague, Netherlands

    Google Scholar 

  • Min KS, Kim DJ, Moon YM (2005) Improved MIMO antenna by mutual coupling suppression between elements. In: The European conference on wireless technology, Paris, France pp 125–128

    Google Scholar 

  • Minz L, Garg R (2010) Reduction of mutual coupling between closely spaced PIFAs. Electron Lett 46:392–394

    Article  Google Scholar 

  • Paulraj A, Nabar R, Gore D (2003) Introduction to space-time wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  • Peng HL, Tao R, Yin WY, Mao JF (2013) A novel compact dual-band antenna array with high isolations realized using the neutralization technique. IEEE Trans Antennas Propag 61:1956–1962

    Article  Google Scholar 

  • Perahia E (2008) IEEE 802.11n development: history, process, and technology. IEEE Commun Mag 46:48–55

    Article  Google Scholar 

  • Peterson HO, Beverage HH, Moore JB (1931) Diversity telephone receiving system of RCA communications, Inc. Proc IRE 19(4):562–584

    Article  Google Scholar 

  • Plicanic V, Lau BK, Derneryd A, Ying Z (2009) Actual diversity performance of a multiband diversity antenna with hand and head effects. IEEE Trans Antennas Propag 57:1547–1556

    Article  Google Scholar 

  • Plicanic V, Asplund H, Lau BK (2012) Performance of handheld MIMO terminals in noise- and interference-limited urban macrocellular scenarios. IEEE Trans Antennas Propag 60:3901–3912

    Article  Google Scholar 

  • Ranvier S, Luxey C, Le Thuc P, Staraj R, Kossiavas G, Vainikainen P, Icheln C (2006) Mutual coupling reduction for patch antenna array. In: Proceedings of the 1st European conference on antennas and propagation (EUCAP 2006), Nice, France

    Google Scholar 

  • Rao AM, Weber A, Gollamudi S, Soni R (2009) LTE and HSPA: revolutionary and evolutionary solutions for global mobile broadband. Bell Labs Tech J 13:7–34

    Article  Google Scholar 

  • Salonen I, Icheln C, Vainikainen P (2005) The dependency of pattern correlation on mutual coupling and losses in antenna arrays. Microw Opt Technol Lett 47:145–147

    Article  Google Scholar 

  • Schroeder WL, Famdie CT, Solbach K (2005) Utilisation and tuning of the chassis modes of a handheld terminal for the design of multiband radiation characteristics. In: Proceedings of the IEE wideband multi-band antennas arrays, Birmingham, UK pp 117–121

    Google Scholar 

  • Schroeder WL, Vila AA, Thome C (2006) Extremely small, wide-band mobile phone antennas by inductive chassis mode coupling. In: Proceedings of the 9th European conference on wireless technology, Manchester, UK pp 407–410

    Google Scholar 

  • Shaker G, Rafi G, Safavi-Naeini S, Sangary N (2008) A synthesis technique for reducing mutual coupling between closely separated patch antennas. In: Proceedings of the IEEE antennas and propagation society international symposium, San Diego

    Google Scholar 

  • Stein S (1962) On cross coupling in multiple-beam antennas. IRE Trans Antennas Propag 10:548–557

    Article  Google Scholar 

  • Sonkki M, Daviu EA, Fabres MC, Bataller MF, Salonen ET (2012) Improved planar wideband antenna element and its usage in a mobile MIMO system. IEEE Antennas Wirel Propag Lett 11:826–829

    Article  Google Scholar 

  • Stjernman A (2005) Relationship between radiation pattern correlation and scattering matrix of lossless and lossy antennas. Electron Lett 41:678–680

    Article  Google Scholar 

  • Su SW (2010) High-gain dual-loop antennas for MIMO access points in the 2.4/5.2/5.8 GHz bands. IEEE Trans Antennas Propag 58:2412–2419

    Article  Google Scholar 

  • Sung YJ, Kim M, Kin YS (2003) Harmonics reduction with defected ground plane structure for a microstrip patch antenna. IEEE Antennas Wirel Propag Lett 2:111–113

    Article  Google Scholar 

  • Taga T, Tsunekawa K (1986) A built in diversity antenna for 800 MHz band portable radio units. IEEE Antennas Propag Soc Int Symp 24:705–708

    Google Scholar 

  • Taga T, Tsunekawa K (1987) Performance analysis of a built-In planar inverted-F antenna for 800 MHz band portable radio units. IEEE J Sel Areas Commun 5:921–929

    Article  Google Scholar 

  • Taga T (1990) Analysis for mean effective gain of mobile antenna in land mobile radio environment. IEEE Trans Veh Technol 39:117–131

    Article  Google Scholar 

  • Telatar IE (1999) Capacity of multi-antenna Gaussian channels. Eur Trans Telecommun 10:585–595

    Article  Google Scholar 

  • Thaysen J, Jakobsen K (2006) Envelope correlation in (n, n) mimo antenna array from scattering parameters. Microw Opt Technol Lett 48:832–834

    Article  Google Scholar 

  • Tian R, Lau BK, Ying Z (2011) Multiplexing efficiency of MIMO antennas. IEEE Antennas Wirel Propag Lett 10:183–186

    Article  Google Scholar 

  • Valkonen R, Kaltiokallio M, Icheln C (2013) Capacitive coupling element antennas for multi-standard mobile handsets. IEEE Trans Antennas Propag 61:2783–2791

    Article  Google Scholar 

  • Volmer C, Weber J, Stephan R, Blau K, Hein MA (2008) An eigen-analysis of compact antenna arrays and its application to port decoupling. IEEE Trans Antennas Propag 56:360–370

    Article  Google Scholar 

  • Wallace JW, Jensen MA (2004) Mutual coupling in MIMO wireless systems: a rigorous network theory analysis. IEEE Trans Antennas Propag 3:1317–1325

    Google Scholar 

  • Wang Y, Du Z (2014) A wideband printed dual-antenna with three neutralization lines for mobile terminals. IEEE Trans Antennas Propag 62:1495–1500

    Article  MathSciNet  Google Scholar 

  • Weber J, Volmer C, Blau K, Stephan R, Hein MA (2006) Miniaturized antenna arrays using decoupling networks with realistic elements. IEEE Trans Microwave Theory Tech 54:2733–2740

    Article  Google Scholar 

  • Winters J (1987) On the capacity of radio communication systems with diversity in a Rayleigh fading environment. IEEE J Sel Areas Commun 5:871–878

    Article  Google Scholar 

  • Xiong J, Zhao M, Li H, Ying Z, Wang B (2012) Collocated electric and magnetic dipoles with extremely low correlation as a reference antenna for polarization diversity MIMO applications. IEEE Antennas Wirel Propag Lett 11:423–426

    Article  Google Scholar 

  • Yang F, Rahmat-Samii Y (2003) Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans Antennas Propag 51:2936–2946

    Article  Google Scholar 

  • Zhang S, Khan SN, He S (2010) Reducing mutual coupling for an extremely closely-packed tunable dual-element PIFA array through a resonant slot antenna formed in-between. IEEE Trans Antennas Propag 58:2771–2776

    Article  Google Scholar 

  • Zhang S, Lau BK, Tan Y, Ying Z, He S (2012a) Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals. IEEE Trans Antennas Propag 60:1521–1531

    Article  Google Scholar 

  • Zhang S, Lau BK, Sunesson A, He S (2012b) Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications. IEEE Trans Antennas Propag 60:4372–4380

    Article  Google Scholar 

  • Zhu FG, Xu JD, Xu Q (2009) Reduction of mutual coupling between closely-packed antenna elements using defected ground structure. Electron Lett 45:1–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Li, H., Lau, B.K. (2015). MIMO Systems and Antennas for Terminals. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_99-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_99-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics