Skip to main content

Direct C–H Oxidation of Aromatic Substrates in the Presence of Biomimetic Iron Complexes

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter is dedicated to one of the most challenging areas of oxidation catalysis—direct oxidation of aromatic C–H groups. The development of environmentally friendly catalyst systems for the direct hydroxylation of aromatic hydrocarbons is an important task of modern catalysis. Biomimetic approach, based on the functional modeling of enzymes by iron complexes of a relatively simple structure, is considered as a promising approach for designing catalyst systems for direct aromatic hydroxylation, relying on nontoxic hydrogen peroxide used as the oxidant. The mechanism of catalytic performance of biomimetic systems is a question of primary importance; deep insight into this issue can both substantially rationalize the development of novel practical catalyst systems for the direct oxidation of aromatic hydrocarbons and enrich our knowledge on the mechanisms of natural metalloenzyme-mediated oxidations. In this chapter, the state-of-the-art in this area is provided, with the mechanistic part based mostly on the authors’ own works.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CHP:

Cumene hydroperoxide

EHA:

2-Ethylhexanoic acid

DFT:

Density functional theory

EPR:

Electron paramagnetic resonance

GC:

Gas chromatography

IBA:

Isobutyric acid

IVA:

Isovaleric acid

Me3HQ:

2,3,5-Trimethylhydroquinone

NHC:

N-heterocyclic carbene(s) ligand

PDP:

N,N′-bis(2-pyridylmethyl)-(S,S)-2,2′-bipyrrolidine ligand

PhSH:

Thioanisole

TPA:

Tris(2-pyridylmethyl)amine ligand

TOF:

Turnover frequency of the catalyst

TN:

Turnover number of the catalyst

UV-Vis:

Ultraviolet-visible spectroscopy

References

  1. Sheldon RA, Arends IWCE, Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Bryliakov KP (2017) Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem Rev 117(17):11406–11459. https://doi.org/10.1021/acs.chemrev.7b00167

    Article  CAS  PubMed  Google Scholar 

  3. Sun CL, Li BJ, Shi ZJ (2011) Direct C–H transformation via iron catalysis. Chem Rev 111(3):1293–1314. https://doi.org/10.1021/cr100198w

    Article  CAS  PubMed  Google Scholar 

  4. Talsi EP, Bryliakov KP (2012) Chemo- and stereoselective C–H oxidations and epoxidations/cis-dihydroxylations with H2O2, catalyzed by non-heme iron and manganese complexes. Chem Soc Rev 256(13–14):1418–1434. https://doi.org/10.1016/j.ccr.2012.04.005

    Article  CAS  Google Scholar 

  5. Cussó O, Ribas X, Costas M (2015) Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives. Chem Commun 51:14285–14298. https://doi.org/10.1039/c5cc05576h

    Article  Google Scholar 

  6. Olivo G, Cussó O, Costas M (2016) Biologically inspired C–H and C=C oxidations with hydrogen peroxide catalyzed by iron coordination complexes. Chem Asian J 11(22):3148–3158. https://doi.org/10.1002/asia.201601170

    Article  CAS  PubMed  Google Scholar 

  7. Weber M, Weber M, Kleine-Boymann M (2004) Phenol. In: Ullmann’s encyclopedia of industrial chemistry, vol. 26. Wiley-VCH, Weinheim, pp 503–519. https://doi.org/10.1002/14356007.a19_299.pub2

  8. Fiege H (2000) Cresols and xylenols. In: Ullmann’s encyclopedia of industrial chemistry, vol. 10. Wiley-VCH, Weinheim, pp 419–461. https://doi.org/10.1002/14356007.a08_025

  9. Davico GE, Bierbaum VM, DePuy CH, Barney Ellison G, Squires RR (1995) The C–H bond energy of benzene. J Am Chem Soc 117(9):2590–2599. https://doi.org/10.1021/ja00114a023

    Article  CAS  Google Scholar 

  10. Cornils B, Herrmann WA (2003) Concepts in homogeneous catalysis: the industrial view. J Catal 216(1–2):23–31. https://doi.org/10.1016/S0021-9517(02)00128-8

    Article  CAS  Google Scholar 

  11. Si Niwa, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba Y, Mizukami F (2002) A one-step conversion of benzene to phenol with a palladium membrane. Science 295(5552):105–107. https://doi.org/10.1126/science.1066527

    Article  Google Scholar 

  12. Enthaler S, Company A (2011) Palladium-catalysed hydroxylation and alkoxylation. Chem Soc Rev 40(10):4912–4924. https://doi.org/10.1039/c1cs15085e

    Article  CAS  PubMed  Google Scholar 

  13. Tanev PT, Chlbwe M, Pinnavaia TJ (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368:321–323. https://doi.org/10.1038/368321a0

    Article  CAS  PubMed  Google Scholar 

  14. Lücke B, Narayana KV, Martin A, Jähnisch K (2004) Oxidation and ammoxidation of aromatics. Adv Synth Catal 346(12):1407–1424. https://doi.org/10.1002/adsc.200404027

    Article  CAS  Google Scholar 

  15. Kamata K, Yamaura Y, Mizuno N (2012) Chemo- and regioselective direct hydroxylation of arenes with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate. Angew Chem Int Ed 51(29):7275–7278. https://doi.org/10.1002/anie.201201605

    Article  CAS  Google Scholar 

  16. Morimoto Y, Bunno S, Fujieda N, Sugimoto H, Itoh S (2015) Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands. J Am Chem Soc 137(18):5867–5870. https://doi.org/10.1021/jacs.5b01814

    Article  CAS  PubMed  Google Scholar 

  17. Wienhöfer G, Schröder K, Möller K, Junge K, Beller M (2010) A novel process for selective ruthenium-catalyzed oxidation of naphthalenes and phenols. Adv Synth Catal 352(10):1615–1620. https://doi.org/10.1002/adsc.201000137

    Article  CAS  Google Scholar 

  18. Roslan N, Endud S, Ramli Z, Lintang HO (2016) Copper(II) porphyrin as biomimetic catalyst for oxidation of trimethylphenol. Mater Sci Forum 846:706–711. https://doi.org/10.4028/www.scientific.net/MSF.846.706

    Article  Google Scholar 

  19. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64(3):271–293. https://doi.org/10.1007/s00018-007-6362-1

    Article  CAS  PubMed  Google Scholar 

  20. Mansuy D, Battioni P (1999) Dioxygen activation at heme centers in enzymes and synthetic analogs. In: Reedijk J, Bouwman E (eds) Bioinorganic catalysis, 2nd edn. Marcel Dekker, New York, pp 323–354. https://doi.org/10.1201/9780203908457

    Google Scholar 

  21. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105(6):2253–2277. https://doi.org/10.1021/cr0307143

    Article  CAS  PubMed  Google Scholar 

  22. Ortiz de Montellano PR (2015) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450 structure, mechanism and biochemistry, 4th edn. Springer, Heidelberg, pp 111–176. https://doi.org/10.1007/978-3-319-12108-6

    Google Scholar 

  23. Green J, Dalton H (1989) Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J Biol Chem 264(30):17698–17703

    CAS  PubMed  Google Scholar 

  24. Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399

    Article  CAS  PubMed  Google Scholar 

  25. Whited GM, Gibson DT (1991) Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J Bacteriol 173(9):3010–3016. https://doi.org/10.1128/jb.173.9.3010-3016.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tao Y, Fishman A, Bentley WE, Wood TK (2004) Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. J Bacteriol 186(14):4705–4713. https://doi.org/10.1128/JB.186.14.4705-4713.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitchell KH, Rogge CE, Gierahn T, Fox BG (2003) Insight into the mechanism of aromatic hydroxylation by toluene 4-monooxygenase by use of specifically deuterated toluene and p-xylene. Proc Natl Acad Sci 100(7):3784–3789. https://doi.org/10.1073/pnas.0636619100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kejriwal A, Bandyopadhyay P, Biswas AN (2015) Aromatic hydroxylation using an oxo-bridged diiron(III) complex: a bio-inspired functional model of toluene monooxygenases. Dalton Trans 44(39):17261–17267. https://doi.org/10.1039/c5dt01773d

    Article  CAS  PubMed  Google Scholar 

  29. Bartoli JF, Lambert F, Morgenstern-Badarau I, Battioni P, Mansuy D (2002) Unusual efficiency of a non-heme iron complex as catalyst for the hydroxylation of aromatic compounds by hydrogen peroxide: comparison with iron porphyrins. C R Chimie 5(4):263–266. https://doi.org/10.1016/S1631-0748(02)01375-9

    Article  CAS  Google Scholar 

  30. Bianchi D, Bertoli M, Tassinari R, Ricci M, Vignola R (2003) Direct synthesis of phenols by iron-catalyzed biphasic oxidation of aromatic hydrocarbons with hydrogen peroxide. J Mol Catal A: Chem 200(1–2):111–116. https://doi.org/10.1016/S1381-1169(03)00041-4

    Article  CAS  Google Scholar 

  31. Bianchi D, Bertoli M, Tassinari R, Ricci M, Vignola R (2003) Ligand effect on the iron-catalysed biphasic oxidation of aromatic hydrocarbons by hydrogen peroxide. J Mol Catal A: Chem 204–205:419–424. https://doi.org/10.1016/S1381-1169(03)00323-6

    Article  CAS  Google Scholar 

  32. Thibon A, Bartoli JF, Guillot R, Sainton J, Martinho M, Mansuy D, Banse F (2008) Non-heme iron polyazadentate complexes as catalysts for aromatic hydroxylation by H2O2: particular efficiency of tetrakis(2-pyridylmethyl) ethylenediamine–iron(II) complexes. J Mol Catal A: Chem 287(1–2):115–120. https://doi.org/10.1016/j.molcata.2008.03.006

    Article  CAS  Google Scholar 

  33. Raba A, Cokoja M, Herrmann WA, Kühn FE (2014) Catalytic hydroxylation of benzene and toluene by an iron complex bearing a chelating di-pyridyl-di-NHC ligand. Chem Commun 50:11454–11457. https://doi.org/10.1039/c4cc02178a

    Article  CAS  Google Scholar 

  34. Rogers MM, Stahl SS (2007) N-Heterocyclic carbenes as ligands for high-oxidation-state metal complexes and oxidation catalysis. Top Organomet Chem 21:21–46. https://doi.org/10.1007/3418_025

    Article  CAS  Google Scholar 

  35. Strassner T (2007) The role of NHC ligands in oxidation catalysis. Top Organomet Chem 22:125–148. https://doi.org/10.1007/3418_040

    Article  CAS  Google Scholar 

  36. Carneiro L, Silva AR (2016) Selective direct hydroxylation of benzene to phenol with hydrogen peroxide by iron and vanadyl based homogeneous and heterogeneous catalysts. Catal Sci Technol 6(22):8166–8176. https://doi.org/10.1039/c6cy00970k

    Article  CAS  Google Scholar 

  37. Capocasa G, Olivo G, Barbieri A, Lanzalunga O, Di Stefano S (2017) Direct hydroxylation of benzene and aromatics with H2O2 catalyzed by a self-assembled iron complex: evidence for a metal-based mechanism. Catal Sci Technol 7(23):5677–5686. https://doi.org/10.1039/c7cy01895a

    Article  CAS  Google Scholar 

  38. Lyakin OY, Zima AM, Tkachenko NV, Bryliakov KP, Talsi EP (2018) Direct evaluation of the reactivity of nonheme iron(V)−pxo intermediates toward arenes. ACS Catal 8(6):5255–5260. https://doi.org/10.1021/acscatal.8b00661

    Article  CAS  Google Scholar 

  39. Zima AM, Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2016) Dramatic effect of carboxylic acid on the electronic structure of the active species in Fe(PDP)-catalyzed asymmetric epoxidation. ACS Catal 6(8):5399–5404. https://doi.org/10.1021/acscatal.6b01473

    Article  CAS  Google Scholar 

  40. Zima AM, Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2017) Iron-catalyzed enantioselective epoxidations with various oxidants: evidence for different active species and epoxidation mechanisms. ACS Catal 7(1):60–69. https://doi.org/10.1021/acscatal.6b02851

    Article  CAS  Google Scholar 

  41. Lyakin OY, Zima AM, Samsonenko DG, Bryliakov KP, Talsi EP (2015) EPR spectroscopic detection of the elusive FeV=O intermediates in selective catalytic oxofunctionalizations of hydrocarbons mediated by biomimetic ferric complexes. ACS Catal 5(5):2702–2707. https://doi.org/10.1021/acscatal.5b00169

    Article  CAS  Google Scholar 

  42. Tkachenko NV, Ottenbacher RV, Lyakin OY, Zima AM, Samsonenko DG, Talsi EP, Bryliakov KP (2018) Highly efficient aromatic C–H oxidation with H2O2 in the presence of iron complexes of the PDP family. ChemCatChem 10(18):4052–4057. https://doi.org/10.1002/cctc.201800832

    Article  CAS  Google Scholar 

  43. Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2012) Asymmetric epoxidations with H2O2 on Fe and Mn aminopyridine catalysts: Probing the nature of active species by combined electron paramagnetic resonance and enantioselectivity study. ACS Catal 2(6):1196–1202. https://doi.org/10.1021/10.1021/cs300205n

    Article  CAS  Google Scholar 

  44. Tkachenko NV, Lyakin OY, Zima AM, Talsi EP, Bryliakov KP (2018) Effect of different carboxylic acids on the aromatic hydroxylation with H2O2 in the presence of an iron aminopyridine complex. J Organomet Chem 871:130–134. https://doi.org/10.1016/j.jorganchem.2018.07.016

    Article  CAS  Google Scholar 

  45. Lindhorst AC, Drees M, Bonrath W, Schütz J, Netscher T, Kühn FE (2017) Mechanistic insights into the biomimetic catalytic hydroxylation of arenes by a molecular Fe(NHC) complex. J Catal 352:599–605. https://doi.org/10.1016/j.jcat.2017.06.018

    Article  CAS  Google Scholar 

  46. Makhlynets OV, Rybak-Akimova EV (2010) Aromatic hydroxylation at a non-heme iron center: Observed intermediates and insights into the nature of the active species. Chen Eur J 16(47):13995–14006. https://doi.org/10.1002/chem.201002577

    Article  CAS  Google Scholar 

  47. Van Heuvelen KM, Fiedler AT, Shan X, De Font RF, Meier KK, Bominaar EL, Münck E, Que L Jr (2012) One-electron oxidation of an oxoiron(IV) complex to form an [O=FeV=NR]+ center. Proc Natl Acad Sci USA 109(30):11933–11938. https://doi.org/10.1073/pnas.1206457109

    Article  PubMed  PubMed Central  Google Scholar 

  48. Serrano-Plana J, Oloo WN, Acosta-Rueda L, Meier KK, Verdejo B, García-España E, Basallote MG, Münck E, Que L Jr, Company A, Costas M (2015) Trapping a highly reactive nonheme iron intermediate that oxygenates strong C–H bonds with stereoretention. J Am Chem Soc 137(50):15833–15842. https://doi.org/10.1021/jacs.5b09904

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Lyakin O.Y. thanks the Russian Foundation for Basic Research, project 18-33-20078, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Y. Lyakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyakin, O.Y., Talsi, E.P. (2019). Direct C–H Oxidation of Aromatic Substrates in the Presence of Biomimetic Iron Complexes. In: Bryliakov, K. (eds) Frontiers of Green Catalytic Selective Oxidations. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9751-7_10

Download citation

Publish with us

Policies and ethics