Skip to main content

Fungal Diseases and Their Treatment: A Holistic Approach

  • Chapter
  • First Online:
Pathogenicity and Drug Resistance of Human Pathogens

Abstract

Fungal infections are one of the most common infections in humans and other animals. Fungal diseases are more common in tropical and subtropical countries. Worldwide more than a billion people suffer from fungal infections annually. Fungal pathogens (yeasts and molds) are diverse in their pathogenesis and they can cause mild infections to life-threatening fungal diseases. For the treatment of fungal infections, only a few classes of antifungal drugs are available because there are many similarities between fungal and human cells. Treatment of fungal infections is becoming more challenging because of the emergence of resistance to currently available drugs. Azole drug is the most common class of antifungal drug which is widely used for the treatment of superficial to systemic infections but unfortunately, many fungal pathogens (e.g., Candida, Aspergillus, Histoplasma, and Paracoccidioides etc.) have developed resistance. Most of the azole resistant fungi also develop resistance against the echinocandin class of drugs. The most common drug-resistance mechanisms include hyphal switching, alteration of drug targets, increased drug efflux by transporter proteins (ABC transporters or Facilitated diffusion superfamily transporter), and permeability barriers associated with biofilms. Thus, this area is in need of some outstanding work to control drug resistant fungal infections. Recently some new therapeutic approaches such as new formulations for antifungal agents, nanoparticle based drugs and immunotherapy (such as vaccines) are under trial to prevent and treat fungal diseases and inducing the production of host antimicrobial molecules. In this book chapter, we describe common fungal diseases, fungal pathogens, disease-causing factors, drug resistant fungal pathogens, mechanisms involved in the emergence of drug resistance, epidemiology of fungal diseases, advanced diagnostic techniques, current and future treatment plans and discuss new approaches for the management of fungal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, H. (2017). Gut microbiota: Intestinal fungi fuel the inflammatory fire in alcoholic liver disease. Nature Reviews. Gastroenterology & Hepatology, 14, 385. https://doi.org/10.1038/nrgastro.2017.78.

    Article  Google Scholar 

  2. Zhang, F., et al. (2018). The interactions between gut microbiota and entomopathogenic fungi: A potential approach for biological control of Blattella germanica (L.). Pest Management Science, 74, 438–447. https://doi.org/10.1002/ps.4726.

    Article  CAS  PubMed  Google Scholar 

  3. Grant, I. W. (1969). Human diseases attributable to fungi. Health Bulletin, 27, 26.

    CAS  PubMed  Google Scholar 

  4. Tap, R. M., et al. (2016). First two cases of fungal infections associated with multi-drug resistant yeast, Fereydounia khargensis. Mycopathologia, 181, 531–537. https://doi.org/10.1007/s11046-016-0002-y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reese, A. T., & Carmody, R. N. (2018). Thinking outside the cereal box: Non-carbohydrate routes for dietary manipulation of the gut microbiota. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.02246-18.

  6. Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2019). Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas, 119, 25–38. https://doi.org/10.1016/j.maturitas.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  7. Young, A. Y., Leiva Juarez, M. M., & Evans, S. E. (2017). Fungal pneumonia in patients with hematologic malignancy and hematopoietic stem cell transplantation. Clinics in Chest Medicine, 38, 479–491. https://doi.org/10.1016/j.ccm.2017.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Esposto, M. C., et al. (2018). Yeast-like filamentous fungi: Molecular identification and in vitro susceptibility study. Medical Mycology. https://doi.org/10.1093/mmy/myy133.

    Article  Google Scholar 

  9. Jiang, T. T., et al. (2017). Commensal fungi recapitulate the protective benefits of intestinal Bacteria. Cell Host & Microbe, 22, 809–816 e804. https://doi.org/10.1016/j.chom.2017.10.013.

    Article  CAS  Google Scholar 

  10. Fadhel, M., Patel, S., Liu, E., Levitt, M., & Asif, A. (2019). Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis and long term probiotic use. Medical Mycology Case Reports, 23, 23–25. https://doi.org/10.1016/j.mmcr.2018.11.003.

    Article  PubMed  Google Scholar 

  11. Clardy, J., Fischbach, M. A., & Currie, C. R. (2009). The natural history of antibiotics. Current biology : CB, 19(11), R437–R441. https://doi.org/10.1016/j.cub.2009.04.001.

    Article  CAS  PubMed  Google Scholar 

  12. McCluskey, K., & Baker, S. E. (2017). Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology, 8(2), 67–83. https://doi.org/10.1080/21501203.2017.1281849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riquelme, M., & Martinez-Nunez, L. (2016). Hyphal ontogeny in Neurospora crassa: A model organism for all seasons. F1000Research, 5, 2801. https://doi.org/10.12688/f1000research.9679.1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lopez Martinez, R., Ruiz Sanchez, D., Guadalupe Huerta, J., Esquenaze, A., & Alvarez, M. T. (1986). Seasonal variation of allergy-causing fungi in the southern part of Mexico City. Allergologia et Immunopathologia, 14, 43–48.

    Google Scholar 

  15. Dasgupta, A., Fuller, K. K., Dunlap, J. C., & Loros, J. J. (2016). Seeing the world differently: Variability in the photosensory mechanisms of two model fungi. Environmental Microbiology, 18, 5–20. https://doi.org/10.1111/1462-2920.13055.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rossmann, S. N., Cernoch, P. L., & Davis, J. R. (1996). Dematiaceous fungi are an increasing cause of human disease. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 22, 73–80.

    Google Scholar 

  17. Wright, D. E. (1968). Toxins produced by fungi. Annual Review of Microbiology, 22, 269–282. https://doi.org/10.1146/annurev.mi.22.100168.001413.

    Article  CAS  PubMed  Google Scholar 

  18. Dittrich, O., & Rieth, H. (1992). Fungal infections in humans. Part 1: Fungus classification and sources of fungal infection. Medizinische Monatsschrift fur Pharmazeuten, 15, 66–69.

    Google Scholar 

  19. Li, X., et al. (2018). Microfluidic system for rapid detection of airborne pathogenic fungal spores. ACS Sensors, 3, 2095–2103. https://doi.org/10.1021/acssensors.8b00615.

    Article  CAS  PubMed  Google Scholar 

  20. Veasey, J. V., Avila, R. B., Miguel, B. A. F., & Muramatu, L. H. (2017). White piedra, black piedra, tinea versicolor, and tinea nigra: Contribution to the diagnosis of superficial mycosis. Anais Brasileiros de Dermatologia, 92, 413–416. https://doi.org/10.1590/abd1806-4841.20176018.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hata, Y., & Nishikawa, T. (2015). Superficial mycosis. Medical Mycology Journal, 56, J69–J72. https://doi.org/10.3314/mmj.56.J69.

    Article  PubMed  Google Scholar 

  22. Slawinska, M., et al. (2018). The role of dermoscopy in the diagnosis of deep mycoses and systemic mycoses with cutaneous involvement: Comment on ‘Dermoscopy in disseminated sporotrichosis’. Journal of the European Academy of Dermatology and Venereology : JEADV. https://doi.org/10.1111/jdv.15155.

  23. Carrasco-Zuber, J. E., et al. (2016). Cutaneous involvement in the deep mycoses: A literature review. Part I-subcutaneous mycoses. Actas Dermo-Sifiliograficas, 107, 806–815. https://doi.org/10.1016/j.ad.2016.05.017.

    Article  CAS  PubMed  Google Scholar 

  24. Van Schalkwyk E., et.al.( 2019). Defining breakthrough invasive fungal infection-Position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology. Mycoses, 62(9):716–729. https://doi.org/10.1111/myc.12960.

  25. Mathur, P., et al. (2018). Five-year profile of candidaemia at an Indian trauma centre: High rates of Candida auris blood stream infections. Mycoses. https://doi.org/10.1111/myc.12790.

    Article  CAS  PubMed  Google Scholar 

  26. Azanza, J. R., Sadaba, B., & Gomez-Guiu, A. (2014). Pharmacology of the antifungals used in the treatment of aspergillosis. Revista Iberoamericana de Micologia, 31, 255–261. https://doi.org/10.1016/j.riam.2014.05.001.

    Article  PubMed  Google Scholar 

  27. Brizendine, K. D., & Pappas, P. G. (2010). Cryptococcal meningitis: Current approaches to management in patients with and without AIDS. Current Infectious Disease Reports, 12, 299–305. https://doi.org/10.1007/s11908-010-0113-4.

    Article  PubMed  Google Scholar 

  28. Gupta, A. K., MacLeod, M. A., Foley, K. A., Gupta, G., & Friedlander, S. F. (2017). Fungal skin infections. Pediatrics in Review, 38, 8–22. https://doi.org/10.1542/pir.2015-0140.

    Article  PubMed  Google Scholar 

  29. Skin disease. Fighting athlete’s foot. Harvard health letter, 26, 5 (2001).

    Google Scholar 

  30. De Magalhaes Lima, K., et al. (2008). Non-dermatophytic moulds: Onychomycosis in four patients infected with the human immunodeficiency virus. Revista Iberoamericana de Micologia, 25, 45–49.

    Article  PubMed  Google Scholar 

  31. Awaad, A. S., Al-Mudhayyif, H. A., Al-Othman, M. R., Zain, M. E., & El-Meligy, R. M. (2017). Amhezole, a novel fungal secondary metabolite from Aspergillus terreus for treatment of microbial mouth infection. Phytotherapy Research : PTR, 31, 395–402. https://doi.org/10.1002/ptr.5760.

    Article  CAS  PubMed  Google Scholar 

  32. Kondo, T., & Terada, K. (2017). Candida esophagitis. The New England Journal of Medicine, 376, 1574. https://doi.org/10.1056/NEJMicm1614893.

    Article  PubMed  Google Scholar 

  33. Stuehler, C., et al. (2016). Immune recovery in HIV-infected patients after Candida esophagitis is impaired despite long-term antiretroviral therapy. AIDS, 30, 1923–1933. https://doi.org/10.1097/QAD.0000000000001126.

    Article  CAS  PubMed  Google Scholar 

  34. Shailaja, V. V., Pai, L. A., Mathur, D. R., & Lakshmi, V. (2004). Prevalence of bacterial and fungal agents causing lower respiratory tract infections in patients with human immunodeficiency virus infection. Indian Journal of Medical Microbiology, 22, 28–33.

    CAS  PubMed  Google Scholar 

  35. Jaeger, M., Plantinga, T. S., Joosten, L. A., Kullberg, B. J., & Netea, M. G. (2013). Genetic basis for recurrent vulvo-vaginal candidiasis. Current Infectious Disease Reports, 15, 136–142. https://doi.org/10.1007/s11908-013-0319-3.

    Article  PubMed  Google Scholar 

  36. Sturkenboom, M. C., et al. (1995). Vulvo-vaginal candidiasis associated with acitretin. Journal of Clinical Epidemiology, 48, 991–997.

    Article  CAS  PubMed  Google Scholar 

  37. Janiga, J., Kentley, J., Nabhan, C., & Abdulla, F. (2018). Current systemic therapeutic options for advanced mycosis fungoides and Sezary syndrome. Leukemia & Lymphoma, 59, 562–577. https://doi.org/10.1080/10428194.2017.1347650.

    Article  CAS  Google Scholar 

  38. Chen, Y., et al. (2018). Emergency of fungemia cases caused by fluconazole-resistant Candida auris in Beijing, China. The Journal of Infection. https://doi.org/10.1016/j.jinf.2018.09.002.

    Article  PubMed  Google Scholar 

  39. Noginskiy, I., Samra, A., Nielsen, K., & Kalavar, M. R. (2018). A case of multiple myeloma presenting as Streptococcus pneumoniae meningitis with Candida auris Fungemia. Case Reports in Oncology, 11, 705–710. https://doi.org/10.1159/000493852.

  40. Suleyman, G., & Alangaden, G. J. (2016). Nosocomial fungal infections: Epidemiology, infection control, and prevention. Infectious Disease Clinics of North America, 30, 1023–1052. https://doi.org/10.1016/j.idc.2016.07.008.

    Article  PubMed  Google Scholar 

  41. Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. Journal of fungi (Basel, Switzerland), 3(4), 57. https://doi.org/10.3390/jof3040057.

    Article  PubMed Central  Google Scholar 

  42. Lelievre, L., & Lanternier, F. (2015). The challenge of nosocomial fungal infections. La Revue du Praticien, 65, 1324.

    Google Scholar 

  43. Du, B., Zhang, H., & Chen, D. (1996). Invasive fungal infection in 3447 autopsy cases. Zhonghua Yi Xue Za Zhi, 76, 352–354.

    CAS  PubMed  Google Scholar 

  44. Makinen, A., Nawaz, A., Makitie, A., & Meurman, J. H. (2018). Role of non-albicans Candida and Candida albicans in Oral squamous cell Cancer patients. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 76, 2564–2571. https://doi.org/10.1016/j.joms.2018.06.012.

    Article  PubMed  Google Scholar 

  45. Sangoi, A. R., et al. (2009). Challenges and pitfalls of morphologic identification of fungal infections in histologic and cytologic specimens: A ten-year retrospective review at a single institution. American Journal of Clinical Pathology, 131, 364–375. https://doi.org/10.1309/AJCP99OOOZSNISCZ.

    Article  PubMed  Google Scholar 

  46. Marques, M. B., Waites, K. B., Jaye, D. L., Kilby, J. M., & Reddy, V. V. (2000). Histologic examination of bone marrow core biopsy specimens has limited value in the diagnosis of mycobacterial and fungal infections in patients with the acquired immunodeficiency syndrome. Annals of Diagnostic Pathology, 4, 1–6. https://doi.org/10.1053/adpa.2000.0001.

    Article  CAS  PubMed  Google Scholar 

  47. Ishimaru, T., et al. (2018). Laser microdissection-based tissue specific transcriptome analyses reveals novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant & Cell Physiology. https://doi.org/10.1093/pcp/pcy233.

    Article  PubMed Central  Google Scholar 

  48. Jenks, J. D., et al. (2018). Bronchoalveolar lavage Aspergillus galactomannan lateral flow assay versus Aspergillus-specific lateral flow device test for diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies. The Journal of Infection. https://doi.org/10.1016/j.jinf.2018.10.014.

    Article  PubMed  Google Scholar 

  49. Kumar, J., Singh, A., Seth, R., Xess, I., & Kabra, S. K. (2018). Galactomannan antigen test for early diagnosis of invasive Aspergillus infection in pediatric febrile neutropenia. Indian Pediatrics, 55, 257–258.

    Google Scholar 

  50. Theel, E. S., & Doern, C. D. (2013). Beta-D-glucan testing is important for diagnosis of invasive fungal infections. Journal of Clinical Microbiology, 51, 3478–3483. https://doi.org/10.1128/JCM.01737-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huppler, A. R., Fisher, B. T., Lehrnbecher, T., Walsh, T. J., & Steinbach, W. J. (2017). Role of molecular biomarkers in the diagnosis of invasive fungal diseases in children. Journal of the Pediatric Infectious Diseases Society, 6, S32–S44. https://doi.org/10.1093/jpids/pix054.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Armstrong-James, D., et al. (2017). Immunotherapeutic approaches to treatment of fungal diseases. The Lancet Infectious Diseases, 17, e393–e402. https://doi.org/10.1016/S1473-3099(17)30442-5.

    Article  CAS  PubMed  Google Scholar 

  53. Cornely, O. A., et al. (2018). Isavuconazole for treatment of rare invasive fungal diseases. Mycoses, 61, 518–533. https://doi.org/10.1111/myc.12778.

    Article  CAS  PubMed  Google Scholar 

  54. Morschhauser, J. (2010). Regulation of multidrug resistance in pathogenic fungi. Fungal Genetics and Biology : FG & B, 47, 94–106. https://doi.org/10.1016/j.fgb.2009.08.002.

    Article  CAS  Google Scholar 

  55. Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2014). Mechanisms of antifungal drug resistance. Cold Spring Harbor Perspectives in Medicine, 5(7), a019752. https://doi.org/10.1101/cshperspect.a019752.

    Article  CAS  PubMed  Google Scholar 

  56. Cowen, L. E. (2009). Hsp90 orchestrates stress response Signaling governing fungal drug resistance. PLoS Pathogens, 5(8), e1000471. https://doi.org/10.1371/journal.ppat.1000471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Srinivasan, A., Lopez-Ribot, J. L., & Ramasubramanian, A. K. (2014). Overcoming antifungal resistance. Drug Discovery Today. Technologies, 11, 65–71. https://doi.org/10.1016/j.ddtec.2014.02.005.

    Article  PubMed  Google Scholar 

  58. Wiederhold, N. P. (2017). Antifungal resistance: Current trends and future strategies to combat. Infection and Drug Resistance, 10, 249–259. https://doi.org/10.2147/IDR.S124918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wiederhold, N. P. (2018). The antifungal arsenal: Alternative drugs and future targets. International Journal of Antimicrobial Agents, 51(3), 333–339. https://doi.org/10.1016/j.ijantimicag.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge CSIR (Council for Scientific and Industrial Research) and CSIR-CDRI (Central Drug Research Institute, Lucknow) for funding and providing the logistics for writing this article. This manuscript will bear a CDRI communication number upon acceptance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Jain, T., Banerjee, D. (2019). Fungal Diseases and Their Treatment: A Holistic Approach. In: Hameed, S., Fatima, Z. (eds) Pathogenicity and Drug Resistance of Human Pathogens. Springer, Singapore. https://doi.org/10.1007/978-981-32-9449-3_6

Download citation

Publish with us

Policies and ethics