Skip to main content

Thermoelectric Transport from First-Principles—Biphenyl-Based Single-Molecule Junctions

  • Chapter
  • First Online:
Materials for Energy Infrastructure

Abstract

Using first-principles electronic structure methods in conjunction with nonequilibrium Green function (NEGF) techniques, we study the thermoelectric transport through biphenyl-based single-molecule junctions. We show, based on our recently published works and their present extension to include also the electron energy current, that the single-molecule conductance, junction thermopower, and electron thermal conductance strongly depend on the choice of the molecular anchor group and on the geometry of the investigated gold-biphenyl-gold contacts. We compare two different anchor groups, sulfur and cyano. The electron-donating S anchor group gives rise to a positive thermopower, while the electron-withdrawing cyano anchor results in a negative thermopower. For the S-terminated biphenyl a strong variation of the transport coefficients with respect to the binding motif is observed, for CN-terminated biphenyl such variations remain small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252

    Article  Google Scholar 

  2. Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Löhneysen Hv (2002) Phys Rev Lett 88(17): 176804

    Google Scholar 

  3. Xu B, Tao NJ (2003) Science 301:1221

    Article  Google Scholar 

  4. Mishchenko A, Vonlanthen D, Meded V, Bürkle M, Li C, Pobelov IV, Bagrets A, Viljas JK, Pauly F, Evers F, Mayor M, Wandlowski T (2010) Nano Lett 10:156

    Article  Google Scholar 

  5. Mishchenko A, Zotti LA, Vonlanthen D, Bürkle M, Pauly F, Cuevas JC, Mayor M, Wandlowski T (2011) J Am Chem Soc 133:184

    Article  Google Scholar 

  6. Reddy P, Jang S-Y, Segalman RA, Majumdar A (2007) Science 315:1568

    Article  Google Scholar 

  7. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nature 442:904

    Article  Google Scholar 

  8. Strange M, Rostgaard C, Häkkinen H, Thygesen KS (2011) Phys Rev B 83:115108

    Article  Google Scholar 

  9. Hybertsen MS, Venkataraman L, Klare JE, Whalley AC, Steigerwald ML, Nuckolls C (2008) J Phys Condens Matter 20:374115

    Article  Google Scholar 

  10. Bürkle M, Viljas JK, Vonlanthen D, Mishchenko A, Schön G, Mayor M, Wandlowski T, Pauly F (2012) Phys Rev B 85:7

    Article  Google Scholar 

  11. Bürkle M, Zotti LA, Viljas JK, Vonlanthen D, Mishchenko A, Wandlowski T, Mayor M, Schön G, Pauly F (2012) Phys Rev B 86:11

    Article  Google Scholar 

  12. Pauly F, Viljas JK, Huniar U, Häfner M, Wohlthat S, Bürkle M, Cuevas JC, Schön G (2008) New J Phys 10:125019

    Article  Google Scholar 

  13. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  14. Sivan U, Imry Y (1986) Phys Rev B 33:551

    Article  Google Scholar 

  15. Esfarjani K, Zebarjadi M, Kawazoe Y (2006) Phys Rev B 73:8

    Article  Google Scholar 

  16. Müller K-H (2008) J Chem Phys 129:044708

    Article  Google Scholar 

  17. TURBOMOLE:V6.4, TURBOMOLE GmbH Karlsruhe, http://www.turbomole.de. (TURBOMOLE is a development of University of Karlsruhe and Forschungszentrum Karlsruhe 1989–2007, TURBOMOLE GmbH since 2007)

  18. Becke AD (1988) Phys Rev A 38:3098

    Article  Google Scholar 

  19. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  20. Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  21. Weigend F (2006) Phys Chem Chem Phys 8:1057

    Article  Google Scholar 

  22. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  Google Scholar 

  23. Yu M, Bovet N, Satterley CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) Phys Rev Lett 97:166102

    Article  Google Scholar 

  24. Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nano Lett 6:458

    Article  Google Scholar 

  25. Paulsson M, Datta S (2003) Phys Rev B 67:241403

    Article  Google Scholar 

  26. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a FY2012 (P12501) Postdoctoral Fellowship for Foreign Researchers from the Japan Society for Promotion of Science (JSPS) and by a JSPS KAKENHI, i.e. ‘Grant-in-Aid for JSPS Fellows’, grant no. 24·02501.

F.P. gratefully acknowledges financial support from the Carl Zeiss Foundation as well as the collaborative research center of the German science foundation, SFB 767, through project C13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Bürkle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bürkle, M., Pauly, F., Asai, Y. (2016). Thermoelectric Transport from First-Principles—Biphenyl-Based Single-Molecule Junctions. In: Udomkichdecha, W., Mononukul, A., Böllinghaus, T., Lexow, J. (eds) Materials for Energy Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-287-724-6_5

Download citation

Publish with us

Policies and ethics