Skip to main content

Body Color Expression in Birds

  • Chapter
  • First Online:
Pigments, Pigment Cells and Pigment Patterns

Abstract

Birds display various body colors and patterns; some of them exhibit very beautiful colors and complex patterns. The main part in birds that shows body color is feathers. There are three known systems for the expression of plumage colors: (1) eumelanin and pheomelanin produced by integumental melanocytes, (2) accumulation of dietary pigments such as carotenoids, pterin, and psittacofulvins, from foods; and (3) structural colors as a result of fine structure of feathers and without special pigments. The pigment cell type in the trunk region of birds is the only melanocyte that produces melanin (eumelanin and pheomelanin), which is the same as in mammals. Since birds have additional two mechanisms (2 and 3) as noted above, they exhibit colorful body colors that are not shown in mammals. Based on the contents and ratio of eumelanin and pheomelanin, the feathers exhibit white, orange, yellow, brown, gray, or black colors. Other colors such as bright yellow, red, or glossy metallic colors of red, blue, green, or purple, are derived by the second and third mechanisms. The body and feather color patterns and color combinations are determined in the feather root, during the feather developmental process. Body colors and patterns in birds often exhibit differences in body parts, age, sex, and season. Although during evolution, birds lost the colorful erythrophore, xanthophore, and iridophores found in lower vertebrates, they obtain dietary pigments from foods and show structural color due to the fine structure of feathers. With these colorations, feathers in birds often show amazing complex patterns. The diversity of body colors and patterns in birds are very important for their survival strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama T, Shinomiya A (2013) Overview on the melanocyte precursor migration from the neural crest. In: Smith JB, Haworth MB (eds) Skin pigmentation. Nova Science Publishers, Inc., New York, pp 175–196

    Google Scholar 

  • Akiyama T, Whitaker B, Federspiel M, Hughes S, Yamamoto H, Takeuchi T, Brumbaugh JA (1994) Tissue-specific expression of mouse tyrosinase gene in cultured chicken cells. Exp Cell Res 214:154–162

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of cDNA encoding an endothelin receptor. Nature 348:730–732

    Article  CAS  PubMed  Google Scholar 

  • Bateson W, Punnett R (1911) The inheritance of the peculiar pigmentation of the silky fowl. J Genet 1:185–203

    Article  Google Scholar 

  • Baynash AG, Hosoda A, Giaid JA, Richardson N, Emoto RE, Hammer M, Yanagisawa M (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Boissy RE (2003) Melanosome transfer to and translocation in the keratinocyte. Exp Dermatol 12:5–12

    Article  PubMed  Google Scholar 

  • Boissy RE, Hornyak TJ (2006) Extracutaneous melanocytes. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS, Ortonne JP (eds) The pigmentary system: physiology and pathophysiology, 2nd edn. Oxford University Press, New York, pp 91–107

    Chapter  Google Scholar 

  • Boissy RE, Moellmann G, Trainer AT, Smyth JR Jr, Lerner AB (1986) Delayed-amelanotic (DAM or Smyth) chicken: melanocyte dysfunction in vivo and in vitro. J Invest Dermatol 86(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Braasch I, Volff JN, Schartl M (2009) The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication. Mol Biol Evol 26:783–799

    Article  CAS  PubMed  Google Scholar 

  • Brumbaugh JA, Barger TW, Oetting WS (1983) A “new” allele at the C pigment locus in the fowl. J Hered 74:331–336

    Article  Google Scholar 

  • Burtt EH, Schroeder MR, Smith LA, Sroka JE, McGraw KJ (2010) Colourful parrot feathers resist bacterial degradation. Biol Lett. https://doi.org/10.1098/rsbl.2010.0716

  • Carlson BM (1988) The skin and its derivatives. In: Pattern’s foundations of embryology, 5th edn. McGraw-Hill Publishing Company, New York, p 363

    Google Scholar 

  • Chang CM, Coville JL, Coquerelle G, Gourichon D, Oulmouden A, Tixier-Boichard M (2006) Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genomics 7:19–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford RD (1990) Poultry breeding and genetics. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Delhey K, Szecsenyi B, Nakagawa S, Peters A (2017) Conspicuous plumage colours are highly variable. Proc Biol Sci 284(1847):20162593. https://doi.org/10.1098/rspb.2016.2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Dharmayanthi AB, Terai Y, Sulandari S, Zein MS, Akiyama T, Satta Y (2017) The origin and evolution of fibromelanosis in domesticated chickens: genomic comparison of Indonesian Cemani and Chinese Silkie breeds. PLoS One 12(4):e0173147. https://doi.org/10.1371/journal.pone.0173147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorshorst B, Molin AM, Rubin CJ, Johansson AM, Strömstedt L, Pham MH, Chen Hallböök F, Ashwell C, Andersson L (2011) A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genet 7(12):e1002412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn L, Jull M (1927) On the inheritance of some characters on the silky fowl. J Genet 19:27–63

    Article  Google Scholar 

  • Erf GF, Trejo-Skalli AV, Smyth JR (1995) T cells in regenerating feathers of Smyth line chickens with vitiligo. Clin Immunol Immunopathol 76(2):120–126

    Article  CAS  PubMed  Google Scholar 

  • Erickson CA (1993) From the crest to the periphery: control of pigment cell migration and lineage segregation. Pigment Cell Res 6:336–347

    Article  CAS  PubMed  Google Scholar 

  • Erickson CA, Goins TL (1995) Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development 121(3):915–924

    Article  CAS  PubMed  Google Scholar 

  • Esatbeyoglu T, Rimbach G (2017) Canthaxanthin: from molecule to function. Mol Nutr Food Res 61(6). https://doi.org/10.1002/mnfr.201600469

  • Faraco CD, Vaz SA, Pastor MV, Erickson CA (2001) Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev Dyn 220:212–225

    Article  CAS  PubMed  Google Scholar 

  • Gluckman T-L, Mundy NI (2017) The differential expression of MC1R regulators in dorsal and ventral quail plumages during embryogenesis: implications for plumage pattern formation. PLoS ONE 12(3):e0174714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffin DK, Robertson LB, Tempest HG, Vignal A, Fillon AV, Crooijmans RP, Groenen MA, Deryusheva S, Gaginskaya E, Carré W, Waddington D, Talbot R, Völker M, Masabanda JS, Burt DW (2008) Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution. BMC Genomics 9:168. https://doi.org/10.1186/1471-2164-9-168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnarsson U, Hellström AR, Tixier-Boichard M, Minvielle F, Bed'hom B, Ito S, Jensen P, Rattink A, Vereijken A, Andersson L (2007) Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175(2):867–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Haupaix N, Curantz C, Bailleul R, Beck S, Robic A, Manceau M (2018) The periodic coloration in birds forms through a prepattern of somite origin. Science 361(6408):eaar4777. https://doi.org/10.1126/science.aar.4777

    Article  PubMed  Google Scholar 

  • Hirata Y (1996) Endothelin peptides. Curr Opin Nephrol Hypertens 5:12–15

    Article  CAS  PubMed  Google Scholar 

  • Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M (1994) Targeted and natural (Piebald-Lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Hutt FB (1949) Genetics of the fowl. McGraw-Hill, New York

    Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Nature 432(7018):695–718

    Article  CAS  Google Scholar 

  • Jang H, Erf GF, Rowland KC, Kong BW (2014) Genome resequencing and bioinformatic analysis of SNP containing candidate genes in the autoimmune vitiligo Smyth line chicken model. BMC Genomics 15:707–728. https://doi.org/10.1186/1471-2164-15-707

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawasaki-Nishihara A, Nishihara D, Nakamura H, Yamamoto H (2011) ET3/Ednrb2 signaling is critically involved in regulating melanophore migration in Xenopus. Dev Dyn 240:1454–1466

    Article  CAS  PubMed  Google Scholar 

  • Kerje S, Sharma P, Gunnarsson U, Kim H, Bagchi S, Fredriksson R, Schützb K, Jensen P, Heijne GV, Okimoto R, Andersson L (2004) The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene. Genetics 168:1507–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita K, Akiyama T, Mizutani M, Shinomiya A, Ishikawa A, Hassan Younis HH, Tsudzuki M, Namikawa T, Matsuda Y (2014) Endothelin receptor B2 (EDNRB2) is responsible for the tyrosinase-independent recessive white (mow) and mottled (mo) plumage phenotypes in the chicken. PLoS One 9:1–14

    Google Scholar 

  • Kitamura K, Takiguchi-Hayashi K, Sezaki M, Yamamoto H, Takeuchi T (1992) Avian neural crest cells express a melanogenic trait during early migration from the neural tube; observations with the new monoclonal antibody, ‘MEBL-1’. Development 114:367–378

    Article  Google Scholar 

  • Lahav R, Ziller C, Dupin E, Le Douarin NM (1996) Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc Natl Acad Sci U S A 93:3892–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahav R, Dupin E, Lecoin L, Glavieux C, Champeval D, Ziller C, Le Douarin NM (1998) Endothelin 3 selectively promotes survival and proliferation of neural crest-derived glial and melanocytic precursors in vitro. Proc Natl Acad Sci U S A 95:14214–14219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamoreux ML, Delmas V, Larue L, Bennett DC (2010) The colors of mice. A model genetic network. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Le Douarin NM, Kalcheim C (2009) The neural crest. Cambridge University Press, Cambridge

    Google Scholar 

  • Lecoin L, Sakurai T, Ngo MN, Abe Y, Yanagisawa M, Le Douarin NM (1998) Cloning and characterization of a novel endothelin receptor subtype in the avian class. Proc Natl Acad Sci U S A 95:3024–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes RJ, Johnson JD, Toomey MB, Ferreira MS, Araujo PM, Melo-Ferreira J, Andersson L, Hill GE (2016) Genetic basis for red coloration in birds. Curr Biol 26(11):1427–1434. https://doi.org/10.1016/j.cub.2016.03.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281:8981–8990

    Article  CAS  PubMed  Google Scholar 

  • McCallion AS, Chakravarti A (2001) EDNRB/EDN3 and Hirschsprung disease type II. Pigment Cell Res 14:161–169

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Nogare MC (2005) Distribution of unique red feather pigments in parrots. Biol Lett 1(1):38–43

    Article  PubMed  PubMed Central  Google Scholar 

  • McGraw KJ, Hill GE, Navara KJ, Parker RS (2004) Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches. Physiol Biochem Zool 77(3):484–491

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Pinto MM, LaFountain AM, Stoddard MC, Prum RO, Frank HA, Robert B (2012) Variation in carotenoid-protein interaction in bird feathers produces novel plumage coloration. J R Soc Interface 9(77):3338–3350. https://doi.org/10.1098/rsif.2012.0471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metallinos DL, Bowling AT, Rine J (1998) A missense mutation in the endothelin-B receptor gene is associated with lethal white foal syndrome: an equine version of Hirschsprung disease. Mamm Genome 9:426–431

    Article  CAS  PubMed  Google Scholar 

  • Minvielle F, Bed'hom B, Coville J-L, Ito S, Inoue-Murayama M, Gourichon D (2010) The “silver” Japanese quail and the MITF gene: causal mutation, associated traits and homology with the “blue” chicken plumage. BMC Genet 11:15. https://doi.org/10.1186/1471-2156-11-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa M, Inoue-Murayama M, Kobayashi N, Kayang BB, Mizutani M, Takahashi H, Ito S (2006) Mapping of panda plumage color locus on the microsatellite linkage map of the Japanese quail. BMC Genet 7:2–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miwa M, Inoue-Murayama M, Aoki H, Kunisada T, Hiragaki T, Mizutani M, Ito S (2007) Endothelin receptor B2 (EDNRB2) is associated with the panda plumage color mutation in Japanese quail. Anim Genet 38:103–108

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Chiho K, Umezawa H, Kuramasu S (1974) Genetic analysis of a new plumage—panda in Japanese quail (in Japanese with English summary). Exp Anim 23:59–61

    Article  CAS  Google Scholar 

  • Mundy NI (2005) A window on the genetics of evolution: MC1R and plumage coloration in birds. Proc R Soc B 272:1633–1640. https://doi.org/10.1098/rspb.2005.3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mundy NI (2018) Colouration genetics: pretty polymorphic parrots. Curr Biol 28(3):R113–R114. https://doi.org/10.1016/j.cub.2017.12.045

    Article  CAS  PubMed  Google Scholar 

  • Nordlund JJ, Boissy RE, Hearing VJ, King CY, Oetting WS, Ortonne JP (2006) The pigmentary system: physiology and pathophysiology. Blackwell Publishing Ltd., Malden, p 1229

    Book  Google Scholar 

  • Opdecamp K, Kos L, Arnheiter H, Pavan WJ (1998) Endothelin signaling in the development of neural crest-derived melanocytes. Biochem Cell Biol 76:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Ortolani-Machado C, De Freitas P, Borges ME, Faraco C (2007) Special features of dermal melanocytes in WS chicken embryos. Anat Rec 291:55–64

    Article  Google Scholar 

  • Osman SAM, Sekino M, Nishibori M, Yamamoto Y, Tsudzuki M (2005) Genetic variability and relationships of native Japanese chickens assessed by microsatellite DNA profiling—Focusing on the breeds established in Kochi Prefecture, Japan. Asian-Australas J Anim Sci 18:755–761

    Article  CAS  Google Scholar 

  • Pavan WJ, Tilghman SM (1994) Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proc Natl Acad Sci U S A 91:7159–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid K, Turnley AM, Maxwell GD, Kurihara Y, Kurihara H, Bartlett PF, Murphy M (1996) Multiple roles for endothelin in melanocyte development: regulation of progenitor number and stimulation of differentiation. Development 122:3911–3919

    Article  CAS  PubMed  Google Scholar 

  • Rubanyli GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415

    Google Scholar 

  • Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348:732–735

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Yanagisawa M, Masaki T (1992) Molecular characterization of endothelin receptors. Trends Pharmacol Sci 13:103–108

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Otake T, Suzuki C, Saburi J, Kobayashi E (2007) Mapping of the recessive white locus and analysis of the tyrosinase gene in chickens. Poult Sci 86:2126–2133

    Article  CAS  PubMed  Google Scholar 

  • Shinomiya A, Kayashima Y, Kinoshita K, Mizutani M, Namikawa T, Matsuda Y, Akiyama T (2012) Duplication of the endothelin 3 gene is closely correlated with Fibromelanosis (Fm), the hypermelanization of the internal organs of Silky chickens. Genetics 190(2):627–638. https://doi.org/10.1534/genetics.111.136705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth JR Jr, McNeil M (1999) Alopecia areata and universalis in the Smyth chicken model for spontaneous autoimmune vitiligo. J Investig Dermatol Symp Proc 4:211–215. https://doi.org/10.1038/sj.jidsp.5640213

    Article  PubMed  Google Scholar 

  • Smyth JR Jr (1990) Genetics of plumage, skin and eye pigmentation in chickens. In: Crawford RD (ed) Poultry breeding and genetics. Elsevier, Amsterdam, pp 109–167

    Google Scholar 

  • Stradi R, Pini E, Celentano G (2001) The chemical structure of the pigments in Ara macao plumage. Comp Biochem Physiol Part B 130:57–63

    Article  CAS  Google Scholar 

  • Tachibana M, Perez-Jurado LA, Naknama A, Hodgkinson CA, Li X, Schneider M, Miki T, Fex J, Francke U, Arnheiter H (1994) Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum Mol Genet 3:553–557

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Takeda K, Nobukuni Y, Urabe K, Long JE, Meyers KA, Aaronson SA, Miki T (1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 14:50–54

    Article  CAS  PubMed  Google Scholar 

  • Tadano R, Sekino M, Nishibori M, Tsudzuki M (2007) Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds. Poult Sci 86:460–469

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi S, Suzuki H, Yabuuchi M, Takahashi S (1996) A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken. Biochim Biophys Acta 1308:164–168

    Article  PubMed  Google Scholar 

  • Theron E, Hawkins K, Bermingham E, Ricklefs RE, Mundy NI (2001) The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Curr Biol 11(8):550–557. https://doi.org/10.1016/s0960-9822(01)00158-0

    Article  CAS  PubMed  Google Scholar 

  • Thomas DB, McGoverin CM, McGraw KJ, James HF, Madden O (2013) Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. J R Soc Interface 10(83):20121065. https://doi.org/10.1098/rsif.2012.1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Thommen H, Wackernagel H (1963) Isolation and identification of canthaxanthin in the lesser flamingo (Phoenicolnaias minor). Biochim Biophys Acta 69:387–396

    Article  CAS  PubMed  Google Scholar 

  • Tinbergen J, Wilts BD, Stavenga DG (2013) Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures. J Exp Biol 216:4358–4364. https://doi.org/10.1242/jeb.091561

    Article  PubMed  Google Scholar 

  • Tobita-Teramoto T, Jang GY, Kino K, Salter DW, Brumbaugh JA, Akiyama T (2000) Autosomal albino chicken mutation (ca/ca) deletes hexanucleotide (-△GACTGG817) at a copper-binding site of the tyrosinase gene. Poult Sci 79:46–50

    Article  CAS  PubMed  Google Scholar 

  • Tsudzuki M, Nakane Y, Wakasugi N, Mizutani M (1993) Allelism of panda and dotted white plumage genes in Japanese quail. J Hered 84:225–229

    Article  CAS  PubMed  Google Scholar 

  • Twyman H, Prager M, Mundy NI, Andersson S (2018) Expression of a carotenoid-modifying gene and evolution of red coloration in weaverbirds (Ploceidae). Mol Ecol 27(2):449–458

    Article  CAS  PubMed  Google Scholar 

  • Valverde P, Healy E, Jackson I, Rees JL, Thody AJ (1995) Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 11(3):328–330

    Article  CAS  PubMed  Google Scholar 

  • Weaver RJ, Santos ESA, Tucker AM, Wilson AE, Hill GE (2018) Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat Commun 9(1):73–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors deeply thank Dr. John Brumbaugh, Dr. Makoto Mizutani, Dr. Ai Shinomiya, Dr. Yoko Satta, Dr. Kunio Kitamura, Mrs. Mizuho Nakamura, Dr. Takayuki Tobita-Teramoto, Dr. Atsushi Kurabayashi, Dr. Yasunori Kayashima and Dr. Tomoko Adachi for their valuable help with the research. We also appreciate Dr. Katsutoshi Kino, Dr. Naoki Tsukahara, Dr. Masanori Sugiyama, Dr. Gen Morimoto, Dr. Harumi Kusano, Mr. Sachio Kono, Mr. Tsutomu Matsuda, Mr. Hiroto Hayashi, Ms. Tamaki Shimosaka, Groupe Pico, Ltd, Tokyo Tama Zoo, Fukuoka City Zoo, Ishikawa Zoo, and Nogeyama Zoo in Japan for the donation or supply of birds, illustrations, photos, and feathers. We are also grateful to the Avian Bioscience Research Center in Nagoya University for supplying chickens and valuable information. This research was supported in part by grants from the Keio University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyoko Akiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akiyama, T., Kinoshita, K. (2021). Body Color Expression in Birds. In: Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R., Akiyama, T. (eds) Pigments, Pigment Cells and Pigment Patterns. Springer, Singapore. https://doi.org/10.1007/978-981-16-1490-3_3

Download citation

Publish with us

Policies and ethics